首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The picosecond photodissociation of the CO and O2 forms of alpha and beta chains of hemoglobin were studied by following pi pi Soret absorption changes using a Nd3+ phosphate-glass laser, 531-nm pump pulse, 8 ps full width half maximum, and a pump-probe double-beam absorption apparatus. Three intermediates were observed within the first 50 ps after photon absorption. The most notable differences between the two monomers are the extent and rate of geminate recombination with the two ligands. We attribute this result to differences between the tertiary protein structure of the alpha and beta forms of Hb, both distal and proximal.  相似文献   

2.
M C Manning  R W Woody 《Biopolymers》1991,31(5):569-586
An improved model for calculating the CD of polypeptides has been developed. Excited state wavefunctions were derived from CNDO/S (complete neglect of differential overlap, spectroscopic) calculations on N-methylacetamide. Four discrete peptide-localized transitions were employed: pi 0 pi* (NV1), pi* + pi* (NV2), n pi*, and n' pi*. Inclusion of the pi + pi transition (lambda 0 = 140 nm) significantly improves the accuracy of the calculated CD spectra in the 180-250-nm region. Spectra were computed for various helical structures, including right-handed alpha-, alpha II-, omega-, pi-, 3(10-), and poly (proline) I-helices, and the left-handed poly (proline) II-helix. Sensitivity to changes in the peptide backbone geometry and chain length are examined. Electronic factors such as ground-state charge distribution, hybridization effects, and basis set deorthogonalization have been investigated. The nonconservative nature of the poly (Pro) I and II CD spectra is reproduced, and the helix band present in earlier exciton calculations on the alpha-helix has been diminished.  相似文献   

3.
Interactions of wild-type and Tyr83 mutant (Y83F, Y83S, Y83L, and Y83H) plastocyanins (PCs) with lysine peptides as models for the PC interacting site of cytochrome f have been studied by absorption, resonance Raman, and electron paramagnetic resonance (EPR) spectroscopies and electrochemical measurements. The spectral and electrochemical properties of PCs corresponded well with each other; species having a longer wavelength maximum for the S(Cys) pi --> Cu 3d(x)()()2(-)(y)()()2 charge transfer (CT) band observed around 600 nm and a stronger intensity for the 460-nm absorption band exhibited stronger intensities for the positive Met --> Cu 3d(x)()()2(-)(y)()()2 and negative His pi(1) --> Cu 3d(x)()()2(-)(y)()()2 circular dichroism (CD) bands at about 420 and 470 nm, respectively, a lower average nu(Cu)(-)(S) frequency, a smaller |A( parallel)| EPR parameter, and a higher redox potential, properties all related to a weaker Cu-S(Cys) bond and a more tetrahedral planar geometry for the Cu site. Similarly, on oligolysine binding to wild-type and several Tyr83 mutant PCs, a longer absorption maximum for the 600-nm CT band, a stronger intensity for the 460-nm absorption band, stronger 420-nm positive and 470-nm negative CD bands, and a lower average nu(Cu)(-)(S) frequency were observed, suggesting that PC assumes a slight more tetrahedral geometry on binding of oligolysine. Since changes were observed for both wild-type and Tyr83 mutant PCs, the structural change due to binding of oligolysine to PC may not be transmitted through the path of Tyr83-Cys84-copper by a cation-pi interaction which is proposed for electron transfer.  相似文献   

4.
5.
Cells were microinjected with four mouse monoclonal antibodies that were directed against either alpha- or beta-tubulin subunits, one monoclonal with activity against both subunits, and a guinea pig polyclonal antibody with activity directed against both subunits, to determine the effects on the distribution of cytoplasmic microtubules and 10-nm filaments. The specificities of the antibodies were confirmed by Western blots, solid phase radioimmunoassay, and Western blot analysis of alpha- and beta-tubulin peptide maps. Two monoclonals DM1A and DM3B3, an anti-alpha- and anti-beta-tubulin respectively, and the guinea pig polyclonal anti-alpha/beta-tubulin antibody (GP1T4) caused the 10-nm filaments to collapse into large lateral aggregates collecting in the cell periphery or tight juxtanuclear caps; the other monoclonal antibodies had no effect when microinjected into cells. The filament collapsing was observed to be complete at 1.5-2 h after injection. During the first 30 min after injection a few cytoplasmic microtubules near the cell periphery could be observed by fluorescence microscopy. This observation was confirmed by electron microscopy, which also demonstrated assembled microtubules in the juxtanuclear region. By 1.5 h, when most of the 10-nm filaments were collapsed, the complete cytoplasmic array of microtubules was observed. Cells injected in prophase were able to assemble a mitotic spindle, suggesting that the antibody did not block microtubule assembly. Metabolic labeling with [35S]methionine of microinjected cells revealed that total protein synthesis was the same as that observed in uninjected cells. This indicated that the microinjected antibody apparently did not produce deleterious effects on cellular metabolism. These results suggest that through a direct interaction of antibodies with either alpha- or beta- tubulin subunits, 10-nm filaments were dissociated from their normal distribution. It is possible that the antibodies disrupted postulated 10-nm filament-microtubule interactions.  相似文献   

6.
The transient absorption anisotropy spectrum of bacteriochlorophyll a (BChl a) in pyridine was measured in the wavelength interval 550-850 nm, 1 ps after optical excitation with a 792-nm femtosecond light pulse. In the wavelength region of Q(y) absorption and stimulated emission (775-825 nm), the anisotropy was found to be close to the theoretically expected value (0.4) for a two-level system. In the wavelength region 650-750 nm, where the transient absorption signal is dominated by excited state absorption, the anisotropy is reduced to approximately 0.18. Anisotropy kinetics were measured at several wavelengths and found to be constant within the time window 0-5 ps, showing that no internal dynamics of the BChl a molecule change the anisotropy on the time scale of tens of picoseconds.  相似文献   

7.
During steady-state photosynthesis in low-light, 830-nm absorption (A830) by leaves was close to that in darkness in Arabidopsis, indicating that the primary donor P700 in the reaction center of photosystem I (PSI) was in reduced form. However, P700 was not fully oxidized by a saturating light pulse, suggesting the presence of a population of PSI centers with reduced P700 that remains thermodynamically stable during the application of the saturating light pulse (i.e., reduced-inactive P700). To substantiate this, the effects of methyl viologen (MV) and far-red light on P700 oxidation by the saturating light pulse were analyzed, and the cumulative effects of repetitive application of the saturating light pulse on photosynthesis were analyzed using a mutant crr2-2 with impaired PSI cyclic electron flow. We concluded that the reduced-inactive P700 in low-light as revealed by saturating light pulse indicates limitations of electron flow at the PSI acceptor side.  相似文献   

8.
Visible absorption spectra and circular dichroism (CD) of the red absorption band of isolated photosystem II reaction centers were measured at room temperature during progressive bleaching by electrochemical oxidation, in comparison with aerobic photochemical destruction, and with anaerobic photooxidation in the presence of the artificial electron acceptor silicomolybdate. Initially, selective bleaching of peripheral chlorophylls absorbing at 672 nm was obtained by electrochemical oxidation at +0.9 V, whereas little selectivity was observed at higher potentials. Illumination in the presence of silicomolybdate did not cause a bleaching but a spectral broadening of the 672-nm band was observed, apparently in response to the oxidation of carotene. The 672-nm absorption band is shown to exhibit a positive CD, which accounts for the 674-nm shoulder in CD spectra at low temperature. The origin of this CD is discussed in view of the observation that all CD disappears with the 680-nm absorption band during aerobic photodestruction.  相似文献   

9.
Visible absorption spectra and circular dichroism (CD) of the red absorption band of isolated photosystem II reaction centers were measured at room temperature during progressive bleaching by electrochemical oxidation, in comparison with aerobic photochemical destruction, and with anaerobic photooxidation in the presence of the artificial electron acceptor silicomolybdate. Initially, selective bleaching of peripheral chlorophylls absorbing at 672 nm was obtained by electrochemical oxidation at +0.9 V, whereas little selectivity was observed at higher potentials. Illumination in the presence of silicomolybdate did not cause a bleaching but a spectral broadening of the 672-nm band was observed, apparently in response to the oxidation of carotene. The 672-nm absorption band is shown to exhibit a positive CD, which accounts for the 674-nm shoulder in CD spectra at low temperature. The origin of this CD is discussed in view of the observation that all CD disappears with the 680-nm absorption band during aerobic photodestruction.  相似文献   

10.
The degradation of protoheme in the heme oxygenase reaction involves three oxidation steps: from protoheme to hydroxyheme, from hydroxyheme to a 688-nm substance, a protein-bound intermediate, and from the 688-nm substance to a biliverdin-iron complex. The 688-nm substance has a ferrous iron and it readily binds carbon monoxide to form a CO-complex, called the 638-nm substance (Yoshida, T., Noguchi, M., & Kikuchi, G. (1980) J. Biochem. 88, 557-563). The ferric 688-nm substance was prepared from the 638-nm substance by the addition of potassium ferricyanide together with aspiration to eliminate CO. The ferric 688-nm substance did not show any distinct absorption maximum in the red region of the absorption spectrum. The ferric 688-nm substance was readily reduced on the addition of the NADPH-cytochrome P-450 reductase system, but the ferric 688-nm substance could also be reduced spontaneously though at a very low rate. The ferrous 688-nm substance free from excess reducing agents was prepared by passing the 638-nm substance through a column of Sephadex G-25. The ferrous 688-nm substance was degraded to a biliverdin-iron complex much more rapidly in the presence of the NADPH-cytochrome P-450 reductase system than in its absence, indicating that a reducing equivalent is essential for the initiation of heme degradation even when starting from the ferrous 688-nm substance. Cyanide was found to bind to the ferrous 688-nm substance to form a stable compound; the cyanide compound formed could revert to neither the ferrous 688-nm substance nor the 638-nm substance.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

11.
Bovine rhodopsin and isorhodopsin were excited with a single 530-nm, 7-ps light pulse emitted by a mode-locked Nd 3+ glass laser at room temperature. Within 3 ps of excitation, absorbance changes due to formation of bathorhodopsin were observed. The difference spectra generated during and 100 ps after pulse excitation are presented. The data show that bathorhodopsin formation is completed within 3 ps for both the primary pigments and suggest that a single common bathorhodopsin is photochemically formed from both primary pigments. Our findings provide additional support for the cis-trans isomerization model of the primary event in vision. Additional absorption transients that were observed near 670 and 460 nm are discussed.  相似文献   

12.
Escherichia coli NADPH-sulfite reductase is a complex hemoflavoprotein with an alpha 8 beta 4 subunit structure. The beta-subunits each contain one siroheme and a tetranuclear iron-sulfur center (Fe4S4). Isolated beta-monomers can catalyze the 6-electron reduction of sulfite to sulfide. We have studied the beta-monomers with M?ssbauer and EPR spectroscopy. The data show conclusively that the siroheme and the Fe4S4 cluster are strongly exchange-coupled. This is proven by the observations that (a) the two chromophores share a single electronic spin and (b) the addition of 1 electron to oxidized sulfite reductase changes the environments of 5 iron atoms. Spin-sharing is demonstrated in oxidized and 2-electron-reduced sulfite reductase and strongly implicated in 1-electron-reduced material. Thus, sulfite reductase provides the first example of an active site where a heme and an iron-sulfur cluster are closely linked as a functional unit, probably via a common bridging ligand.  相似文献   

13.
Anaerobic reaction of ascorbate oxidase with ascorbate   总被引:1,自引:0,他引:1  
Ascorbate oxidase is fully reduced by 4 mol of ascorbate in the absence of air, as monitored by optical and electron paramagnetic resonance spectra. At less than stoichiometric ascorbate concentration there is a slow equilibration between the 605-and 330-nm absorption bands: The 605-nm chromophore is first reduced, then its color reappears while the 330-nm absorption band decreases. Upon reoxidation with air the process takes place in the opposite direction. Intramolecular rather than intermolecular electron exchange appears to be responsible for this process. The reduced protein is about twice as fluorescent as the oxidized protein. The fluorescence quenching in the oxidized protein is related to the 330-nm absorption band rather than to the 605-nm band as previously reported for laccase.  相似文献   

14.
Proteins with a BLUF (sensor of blue light using flavin adenine dinucleotide) domain represent a newly recognized class of photoreceptors that is widely distributed in the genomes of photosynthetic bacteria, cyanobacteria, and Euglena. Recently, Okajima et al. [Okajima, K., Yoshihara, S., Geng, X., Katayama, M. and Ikeuchi, M. (2003) Plant Cell Physiol. 44 (Suppl), 162] purified BLUF protein Tll0078 encoded in the genome of thermophilic cyanobacterium Thermosynechococcus elongatus BP-1 by expressing the protein in Escherichia coli. We investigated the photocycle of Tll0078 by measuring the picosecond fluorescence kinetics, transient absorption changes, and the UV-visible absorption spectra at 10 to 330 K. The absorption spectrum of the FAD moiety of Tll0078 showed a 10-nm red shift upon illumination at 278-330 K. The quantum efficiency of the formation of the red-shifted form was 29%. Illumination at 10 K, on the other hand, caused only a 5-nm red shift in about one-half of the protein population. The 5-nm-shifted form was stable at 10 K. The 5-nm red-shifted form was converted into the 10-nm red-shifted form at 50-240 K upon warming in the dark. At room temperature, the 10-nm red-shifted final product appeared within 10 ns after laser flash excitation. The lifetime of the fluorescence of FAD was found to be 120 ps at room temperature. These results reveal a fast and efficient photoconversion process from the singlet-excited state to the final product at room temperature. A photocycle of BLUF protein is proposed that includes the 5-nm red-shifted intermediate form as the precursor for the 10-nm red-shifted final product. The temperature dependence of each step of the photocycle is also discussed.  相似文献   

15.
K H Dahl  M F Dunn 《Biochemistry》1984,23(26):6829-6839
Liver alcohol dehydrogenase (LADH) carboxymethylated at Cys-46 (CMLADH) forms two different ternary complexes with 4-trans-(N,N-dimethylamino)cinnamaldehyde (DACA). The complex with reduced nicotinamide adenine dinucleotide (NADH) is characterized by a 38-nm red shift of the long-wavelength pi, pi* transition to 436 nm, while the complex with oxidized nicotinamide adenine dinucleotide (NAD+) is characterized by a 60-nm red shift to 458 nm. CMLADH also forms a ternary complex with NAD+ and the Z isomer of 4-trans-(N,N-dimethylamino)cinnamaldoxime in which the absorption of the oxime (lambda max = 354 nm) is red shifted 80 nm to 434 nm. Pyrazole and 4-methylpyrazole are weak competitive inhibitors of ligand binding to the substrate site of native LADH. These inhibitors were found to form ternary complexes with CMLADH and NADH which are more stable than the corresponding complexes with the native enzyme. The transient reductions of the aldehydes DACA and p-nitrobenzaldehyde (NBZA) were studied under single-turnover conditions. Carboxymethylation decreases the DACA reduction rate 80-fold and renders the process essentially independent of pH over the region 5-9, whereas this process depends on a pKa of 6.0 in the native enzyme. At pH 7.0, the rate constant for NBZA reduction also is decreased at least 80-fold to a value of 7.7 +/- 0.3 s-1. Since primary kinetic isotope effects are observed when NADH is substituted with (4R)-4-deuterio-NADH (kH/kD = 3.0 for DACA and kH/kD = 2.3 for NBZA), the rate-limiting step for both aldehydes involves hydride transfer. The altered pH dependence is concluded to be due to an increase in the pK value of the zinc-coordinated DACA-alcohol in the ternary complex with NAD+ by more than 3 units. This perturbation is brought about by the close proximity of the negatively charged carboxymethyl carboxylate.  相似文献   

16.
In the presence of low concentrations (less than 0.5 mM) of hydrogen peroxide Mr 350,000 and 170,000 fragments were generated from plasma and fibroblast medium fibronectins (Fns). No other major fragments were detected when H2O2 concentration was raised or the incubation time prolonged. A 200-300-fold concentration of H2O2 was needed for a complete degradation of the protein. The degradation was inhibited or completely prevented by deferoxamine, diethylene-triaminepentaacetic acid, and thiourea or by Chelex-pretreatment of the Fn solution suggesting a Fenton-type reaction to produce .OH radicals from H2O2. In immunoblotting the Mr 170,000 fragment reacted with monoclonal antibodies against the NH2 terminus and mid-molecule but not with those against the cell-binding site and the COOH terminus of Fn. Reduction of the Mr 350,000 fragment produced alpha- and beta-monomers of Fn as well as Mr 95,000 and 85,000 fragments which reacted with monoclonal antibodies against the cell-binding site and the COOH terminus of Fn. These results suggest that the Mr 170,000 fragment is derived from the NH2-terminal part of both subunits of Fn. The rest of the subunits, the Mr 95,000 (from alpha-chain) and Mr 85,000 (from beta-chain), thus remain disulfide-bonded to an intact Fn subunit to form the nonreduced Mr 350,000 polypeptide. The results show that oxygen radical action may generate defined and reproducible fragments from Fn. The high susceptibility of Fn to the radical induced degradation makes it plausible to occur also in vivo.  相似文献   

17.
A water-soluble yellow protein, previously discovered in the purple photosynthetic bacterium Ectothiorhodospira halophila, contains a chromophore which has an absorbance maximum at 446 nm. The protein is now shown to be photoactive. A pulse of 445-nm laser light caused the 446-nm peak to be partially bleached and red-shifted in a time less than 1 microsecond. The intermediate thus formed was subsequently further bleached in the dark in a biphasic process occurring in approximately 20 ms. Finally, the absorbance of native protein was restored in a first-order process occurring over several seconds. These kinetic processes are remarkably similar to those of sensory rhodopsin from Halobacterium, and to a lesser extent bacteriorhodopsin and halorhodopsin; although these proteins are membrane-bound, they have absorbance maxima at about 570 nm, and they cycle more rapidly. In attempts to remove the chromophore for identification, it was found that a variety of methods of denaturation of the protein caused transient or permanent conversion to a form which has an absorbance maximum near 340 nm. Thus, by analogy to the rhodopsins, the absorption at 446 nm in the native protein appears to result from a 106-nm red shift of the chromophore induced by the protein. Acid denaturation followed by extraction with organic solvents established that the chromophore could be removed from the protein. It is not identical with all-trans-retinal and remains to be identified, although it could still be a related pigment. The E. halophila yellow protein has a circular dichroism spectrum which indicates little alpha-helical secondary structure (19%).(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

18.
19.
G.J. Leppink  J.B. Thomas   《BBA》1973,305(3):610-617
Mathematical analysis of the results of mild acetone extraction of chloro-plast-fragment preparations from Ulva lactuca demonstrates that the 640-nm shoulder on the short-wave side of the red chlorophyll b absorption band is not due to this chlorophyll.

The analysis furthermore provides rather strong evidence that the 640-nm shoulder is correlated with an absorption band peaking around 682nm. It is suggested that the 640-nm component is due to the reaction center pigment of Photo-system II.  相似文献   


20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号