首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
观察了侧柏(Phaycladusorientalis(L.)Franco)和北美香柏(ThujaoccidentalisL.)散粉后花粉进入珠孔的过程。在散粉期,这两种植物的胚珠均分泌出传粉滴。当花粉落到传粉滴上后,引起传粉滴表面的形状发生改变或减弱胚珠的继续分泌,使得该传粉滴蒸腾加快,导致其比未授粉的传粉滴明显收缩。观察结果表明:不同植物的花粉导致侧柏传粉滴的收缩速率不尽相同。其中,与侧柏亲缘关系较近的植物花粉引起传粉滴的收缩速率和侧柏自身花粉引起的传粉滴收缩速率相似;反之,收缩速率变慢。侧柏传粉滴的收缩可能主要是由于花粉减弱胚珠分泌的结果。  相似文献   

2.
Observation of ovulate cones at the time of pollination in the southern coniferous family Podocarpaceae demonstrates a distinctive method of pollen capture, involving an extended pollination drop. Ovules in all genera of the family are orthotropous and single within the axil of each fertile bract. In Microstrobus and Phyllocladus ovules are erect (i.e., the micropyle directed away from the cone axis) and are not associated with an ovule-supporting structure (epimatium). Pollen in these two genera must land directly on the pollination drop in the way usual for gymnosperms, as observed in Phyllocladus. In all other genera, the ovule is inverted (i.e., the micropyle is directed toward the cone axis) and supported by a specialized ovule-supporting structure (epimatium). In Saxegothaea there is no pollination drop and gametes are delivered to the ovule by pollen tube growth. Pollination drops were observed in seven of the remaining genera. In these genera the drop extends over the adjacent bract surface or cone axis and can retain pollen that has arrived prior to drop secretion (“pollen scavenging”). The pollen floats upward into the micropylar cavity. The configuration of the cone in other genera in which a pollination drop has not yet been observed directly suggests that pollen scavenging is general within the family and may increase pollination efficiency by extending pollination in space and time. Increased pollination efficiency may relate to the reduction of ovule number in each cone, often to one in many genera, a derived condition. A biological perspective suggests that animal dispersal of large seeds may be the ultimate adaptive driving force that has generated the need for greater pollination efficiency.  相似文献   

3.
In Sequoiadendron ovules are borne inside the ovulate cone, and pollination drops secreted from these ovules collect pollen. We examined: (1) the relation between ovular position and pollen capture; (2) pollen behavior when in contact with a pollination drop; and (3) ultrastructure of ovules during pollination drop secretion. During wet periods a water sheet forms on the surface of the cone due to bract shape and wettability. Pollination drops persist inside the wetted cone, and pollen capture resumes immediately after drying. Pollen landing on a pollination drop is taken inside the drop and carried into the micropyle when the drop contracts. Several notable ultrastructural features appear in the nucellus, integument, chalaza, and bract lamina during pollination-drop secretion. The abaxial surface of the lamina is covered by a membrane that may contribute to the wettable nature of the surface.  相似文献   

4.
In conifers, which have non-saccate Cupressaceae-type pollen, the pollen must land on a pollination drop or be picked up by the pollination drop from the surface of the cone near the ovule before it can be taken into the ovule. After contact with the drop, the pollen intine absorbs moisture from the drop, expands and the exine is shed. In this study the significance of the shedding of the exine is interpreted from experiments in which simulated pollination drops and micropyles were used to determine the movement of pollen and other particles in suspension. The non-expanded pollen, which can be observed upon contact with the pollination drop, sheds the exine, which then functions as a non-elastic particle, while the pollen from which the exine was shed swells and functions as an elastic particle because it is enclosed by the flexible intine. Non-elastic particles are not easily transferred through narrow passages (the micropyle and micropylar canal) and tend to plug these passages. However, elastic particles, such as the swollen pollen, are easily transferred along narrow passages even when non-elastic particles are present. The simulated experiments demonstrate that exine shedding is an important feature in getting pollen through the narrow micropyle and micropylar canal to the nucellus of the ovule.  相似文献   

5.
Comparative study shows that Phyllocladus and representative Podocarpaceae differ in the mechanism by which pollen is introduced into the pollen chamber and onto the apex of the nucellus ("pollen capture"). Both types involve a pollination drop, but only in Podocarpaceae is it consistently inverted and in contact with adjacent surfaces. Phyllocladus has functionally nonsaccate pollen (although a vestigial saccus has been claimed); its pollen is wettable and sinks in water. Podocarpaceae (except Saxegorhaea) have saccate pollen, which is nonwettable and floats on water. In Phyllocladus the pollination drop receives the pollen directly and presence of pollen stimulates complete drop withdrawal, which may be a metabolic process. Once pollinated, an ovule does not resecrete a pollination drop. In Podocarpaceae the drop usually receives the pollen indirectly via pollen scavenging and saccate pollen is preferentially captured. The retraction of the drop appears to be the result of evaporation and is presumably nonmetabolic. Drop secretion can be repeated in the presence of pollen. A major consequence of these contrasted mechanisms is that in Phyllocladus the entire contents of the pollination drop are ingested, whereas in Podocarpaceae only that part of the drop that includes saccate pollen is ingested. Because of differences in repeatability of the secretion process, Podocarpaceae are likely to capture more pollen. In neither mechanism does the process favor 'own" pollen. but in Podocarpaceae all but saccate pollen is excluded. We thus have further evidence for differences in pollen capture mechanisms in conifers with a pollination drop, and differences in the behavior of the pollination drop itself.  相似文献   

6.
Pollination drop (PD) secretion plays a critical role in wind pollination in many gymnosperms. We conducted detailed investigations on PD secretion in Ginkgo biloba, and found that PDs could not form when the micropyle was removed, but were able to form after removal of the shoot, leaves, ovular stalk, or ovular collar. The duration and volume of the PD increased under high relative humidity, but addition of salt or sugar did not affect PD secretion, its size, or its duration. Morphological and anatomical observations showed that many secretion cells at the nucellus tip contributed to secreting the PD after the formation of pollen chamber. Under laboratory conditions, the PD persisted for approximately 10 d if not pollinated, and re-formed five times after it was removed, with the total volume of PDs reaching approximately 0.4 μL. These results suggested that PDs can be continuously secreted by the tip of the nucellus cells during the pollination stage to increase the chance of capturing pollen from the air. Importantly, PD secretion is an independent behavior of the ovule and PDs were produced apoplastically.  相似文献   

7.
云南红豆杉传粉生物学研究   总被引:6,自引:0,他引:6  
云南红豆杉(Taxus yunnanens/s)是分布于我国西南部及不丹和缅甸北部的红豆杉属植物。用石蜡切片法、电镜扫描和整体透明染色法观察了云南红豆杉成熟小孢子和胚珠的结构,在野外观测了云南红豆杉的花期及传粉滴的活动规律。结果显示:云南红豆杉为单核小孢子,没有气囊,有(无)活力的小孢子水合后都急剧膨胀,胚珠单个生于叶腋。云南红豆杉雄株的散粉期在11月中旬到12月中旬,胚珠下弯期从11月下旬持续到2月中旬。在雄株散粉期内及人工授粉的传粉滴持续存在的时间较短,而且授粉后不再出现,在非散粉期内的传粉滴持续存在的时间较长,而且在消失后又会重新出现。红豆杉属植物可能的传粉机制:(1)传粉滴大而且裸露,持续存在的时间较长,有助于提高传粉效率。(2)小孢子能在常温下较长时间的保持活性,不具备远距离飞行的特征,有利于在一定范围内保持较高的小孢子密度;(3)虽然小孢子散粉期短且易变,但胚珠的成熟期较长,从而保证了花期可遇。传粉期内的降水和低的种群密度可能是影响红豆杉传粉效率的主要因素。  相似文献   

8.
Summary In the young ovule of Welwitschia mirabilis the nucellar apex is dome shaped and starch begins to accumulate near the female gametophyte. With the degeneration of the cells of the nucellar apex, a pollen chamber is formed, which contains the micropylar fluid. Starch storage increases considerably in the upper part of the nucellus. Pollen drop emission is not a rhythmic process, and pollination does not produce the rapid withdrawal of droplets. The micropylar drop consists almost entirely of sugars, uronic acids and a very small amount of free amino acids and enzymes. The mechanism of micropylar drop secretion and its probable role in the process of pollination is discussed.This work was supported by a grant from MURST 40%  相似文献   

9.
The pollination efficiency hypothesis has long been proposed as an explanation for interspecific variation in pollen–ovule (P:O) ratios. However, no empirical study on P:O ratios has directly and quantitatively measured pollen transfer efficiency (PE). Here, we use a PE index, defined as the proportion of pollen grains removed from anthers that are subsequently deposited on conspecific stigmas, as a direct and quantitative measure of PE. We investigated P:O ratios, pollen removal and pollen deposition in 26 plant species in an alpine meadow, over three consecutive years. Our community survey showed that nearly 5% of removed pollen was successfully deposited on conspecific stigmas. The PE index ranged from 0.01% up to 78.56% among species, and correlated negatively with the P:O ratio across years. This correlation was not changed by controlling for phylogenetic relationships among species, suggesting that the interspecific variation in P:O ratios can be attributed to the probability of pollen grains reaching a stigma. The results indicate that the pollination efficiency hypothesis can help to explain interspecific variation in P:O ratios.  相似文献   

10.
In angiosperms, initiation of ovule enlargement represents the start of seed development, the molecular mechanism of which is not yet elucidated.It was previously reported that pollen tube contents,rather than double fertilization, can trigger ovule enlargement. However, it remains unclear whether the signal(s) to trigger the initiation of ovule enlargement are from the sperm cells or from the pollen tubes.Recently, we identified a mutant drop1- drop2-, which produces pollen tubes with no sperm cells. Taking advantage of this special genetic material, we conducted pollination assays, and found that the ovules pollinated with drop1- drop2- pollen could initiate the enlargement and exhibited significant enlarged sizes at 36 h after pollination in comparison with those unpollinated ovules. However, the sizes of the ovules pollinated with drop1- drop2- pollen are significantly smaller than those of the ovules pollinated with wildtype pollen. These results demonstrate that the pollen tube, rather than the sperm cells, release the signal to trigger the initiation of ovule enlargement, and that double fertilization is required for further enlargement of the seeds.  相似文献   

11.
Pollination in the Cupressaceae is studied ex situ, focused on orientation and withdrawal of pollination drops. Orientation of pollination drops is a constant feature in most taxa studied and important for pollen capture. Conspecific pollen causes a withdrawal of pollination drops, varying in time among species from 8 to 24 min, but with little variation within species. Pollination drops of each tested Cupressaceae taxon are also withdrawn when pollinated with foreign, but Cupressaceous pollen. However, they remain unchanged and are not withdrawn immediately when pollinated with pollen of other seed plants. The results clearly indicate that the time for the total withdrawal of pollination drops is strongly influenced by the evolutionary distance of the taxa being involved in the pollination process. Among closely related taxa the withdrawal is much more rapid than in distantly related ones. This points to an effective recognition system regulating the withdrawal of pollination drops, probably controlled by the nucellus. This recognition system can be regarded as an important preadaption for the evolution of a self-incompatibility mechanism. The withdrawal of pollination drops is thus not exclusively a physically induced process as suggested in some earlier studies. Pollination drops of several ovules can fuse to form a large common one, perhaps increasing by this way successful pollen capture.  相似文献   

12.
Differences in pollen tube growth rates (certation) between heterospecific (foreign) and conspecific pollen may strongly influence whether hybrid offspring are produced after mixed pollen loads are delivered to a stigma. For both members of a sympatric species pair, Hibiscus moscheutos and H. laevis, pollination by pure loads of foreign pollen resulted in fruit set that was not significantly different from conspecific pollination, indicating that pure loads of foreign pollen could readily result in hybrid offspring. However, the number of seeds per fruit from pure foreign pollinations was significantly less than that of pure conspecific pollination. Simultaneous mixed pollination resulted in a proportion of hybrid seeds (detected by an electrophoretic marker enzyme) that was significantly lower than expected based upon the capacity of foreign pollen to effect fertilization when applied in pure pollinations. After these 50/50% pollen mixtures were applied to stigmas, 8.0 and 7.4% hybrids were produced when H. moscheutos and H. laevis were the ovule parents, respectively. For these Hibiscus species, pollen competition appears to function as a barrier to hybridization that is of moderate intensity compared with similar barriers occurring between other recently studied sympatric species pairs.  相似文献   

13.
14.

Background

Pollination drops and nectars (floral nectars) are secretions related to plant reproduction. The pollination drop is the landing site for the majority of gymnosperm pollen, whereas nectar of angiosperm flowers represents a common nutritional resource for a large variety of pollinators. Extrafloral nectars also are known from all vascular plants, although among the gymnosperms they are restricted to the Gnetales. Extrafloral nectars are not generally involved in reproduction but serve as ‘reward’ for ants defending plants against herbivores (indirect defence).

Scope

Although very different in their task, nectars and pollination drops share some features, e.g. basic chemical composition and eventual consumption by animals. This has led some authors to call these secretions collectively nectar. Modern techniques that permit chemical analysis and protein characterization have very recently added important information about these sugary secretions that appear to be much more than a ‘reward’ for pollinating (floral nectar) and defending animals (extrafloral nectar) or a landing site for pollen (pollination drop).

Conclusions

Nectar and pollination drops contain sugars as the main components, but the total concentration and the relative proportions are different. They also contain amino acids, of which proline is frequently the most abundant. Proteomic studies have revealed the presence of common functional classes of proteins such as invertases and defence-related proteins in nectar (floral and extrafloral) and pollination drops. Invertases allow for dynamic rearrangement of sugar composition following secretion. Defence-related proteins provide protection from invasion by fungi and bacteria. Currently, only few species have been studied in any depth. The chemical composition of the pollination drop must be investigated in a larger number of species if eventual phylogenetic relationships are to be revealed. Much more information can be provided from further proteomic studies of both nectar and pollination drop that will contribute to the study of plant reproduction and evolution.Key words: Nectar, pollination drop, ovular secretion, plant reproduction, proteins, sugars, gymnosperms, angiosperms, plant–animal interaction  相似文献   

15.
The pollination mechanisms of Acmopyle pancheri(Brongn. &Gris) Pilg. andPhyllocladus hypophyllus Hook.f. were investigatedby conventional microscopical techniques and by nuclear magneticresonance (NMR) imaging. Dissimilarities include the orientationof the ovule and type of pollen;Phyllocladus has erect ovulesand wettable pollen with vestigial sacci, whereas Acmopyle hasmore-or-less erect ovules and non-wettable, functionally saccatepollen. Similarities include the mode of formation of the pollinationdrop and its response upon pollination. In both genera, pollinationtriggers pollination drop retraction and drop secretion ceases.Neither NMR imaging nor conventional histology of Phyllocladusovules revealed any specific tissue beneath the ovule whichcould be responsible for pollination drop retraction. It ismore likely, therefore, that the drop is channelled into thevascular supply or the apoplast. These findings invalidate thetaxonomic value of the pollination mechanism as a suite of characterstraditionally used to separate Phyllocladaceae from Podocarpaceae.Copyright 2000 Annals of Botany Company Acmopyle pancheri, gymnosperms, NMR imaging, nuclear magnetic resonance imaging, Phyllocladaceae,Phyllocladus hypophyllus , Podocarpaceae, pollination drop, pollination mechanism  相似文献   

16.
The structure and function of orchid pollinaria   总被引:5,自引:0,他引:5  
Cohesive masses of pollen known as pollinia have evolved independently in two plant families — Orchidaceae and Asclepiadaceae. Yet, the bilateral symmetry of orchids has allowed a greater degree of specialization in pollination systems and a much greater diversity in the morphology of pollinaria — units comprising the pollinia(um) together with accessory structures for attachment to the pollinator. Pollinaria differ in the degree of cohesion of pollen in the pollinium, which may be soft, sectile (comprised of sub-units known as massulae) or hard. A single hard pollinium may contain more than a million pollen grains, yet pollen:ovule ratios in orchids are several orders of magnitude lower than in plants with powdery pollen due to the lack of wastage during transport to the stigma. Attachment of pollinia to the pollinator is usually achieved by means of a viscidium that adheres most effectively to smooth surfaces, such as the eyes and mouthparts of insects and beaks of birds. The stalk connecting a pollinium to the viscidium may be comprised of a caudicle (sporogenous in origin) and/or a stipe (derived from vegetative tissue), or be lacking altogether. Caudicles and stipes may undergo a gradual bending movement 20 s to several hours after withdrawal from the flower, the main function of which appears to be to reduce the possibility of geitonogamous pollination. Other mechanisms that promote outcrossing and pollen export in orchids include pollen carryover (achieved by sectile or soft pollinia), temporary retention of the anther cap, protandry and self-incompatibility (rare among orchids). Pollinaria ensure that large pollen loads are deposited on the stigma, thus enabling the fertilization of the large numbers of ovules in the flowers of Orchidaceae. Pollinaria also ensure efficient removal of pollen from the anther, minimal pollen wastage during transit, and a high probability of deposition on conspecific stigmas.  相似文献   

17.
Integration influences patterns of trait evolution, but the relationship between these patterns and the degree of trait integration is not well understood. To explore this further, we study a specialized pollination mechanism in conifers whose traits are linked through function but not development. This mechanism depends on interactions among three characters: pollen that is buoyant, ovules that face downward at pollination, and the production of a liquid droplet that buoyant grains float through to enter the ovule. We use a well‐sampled phylogeny of conifers to test correlated evolution among these characters and specific sequences of character change. Using likelihood models of character evolution, we find that pollen morphology and ovule characters evolve in a concerted manner, where the flotation mechanism breaks down irreversibly following changes in orientation or drop production. The breakdown of this functional constraint, which may be facilitated by the lack of developmental integration among the constituent traits, is associated with increased trait variation and more diverse pollination strategies. Although this functional “release” increases diversity in some ways, the irreversible way in which the flotation mechanism is lost may eventually result in its complete disappearance from seed plant reproductive biology.  相似文献   

18.

Reproductive interference (RI), an interspecific mating interaction that reduces the fitness of at least one of the species involved, can lead to exclusive distributions in closely related species. A hypothesis previously proposed is that RI in plants may occur by ovule usurpation, in which pistils lack interspecific incompatibility and mistakenly accept heterospecific pollen, thereby losing an opportunity for conspecific pollen fertilization. However, few comparative studies have evaluated the consistency of the inferred mechanism within and among individuals and populations. We conducted hand-pollination experiments in six populations of three native Taraxacum species that suffered from different levels of RI from an alien congener, T. officinale, and compared pollen–pistil interactions among populations. We also investigated the interactions for eight individual T. japonicum plants whose response to heterospecific pollen deposition had been previously measured. Our results revealed that pollen tubes often penetrated native ovaries following heterospecific pollination in populations suffering from strong RI, whereas they seldom did in populations suffering from marginal RI. However, the relative frequency of the pollen tube penetration was not significantly related to the strength of alien RI. Not all pistils on an individual plant showed the same pollen receptivity following heterospecific pollination; rather, some accepted and some refused the pollen tubes. The relationship between pollen tube penetration following heterospecific pollination and the strength of the alien RI was also not significant among individuals. Our present results generally support the ovule usurpation hypothesis, but suggest that other factors, such as competition for pollinator services, variation in the effects of heterospecific pollen donors, and condition of the native inflorescences, might also affect the observed RI strength.

  相似文献   

19.
Variation in within-population floral density can affect interactions between plants and pollinators, resulting in variable pollen export for plants. We investigated the effects of conspecific and heterospecific floral densities on pollination success both of two related, self-compatible, nectar-rewarding orchid species in Ireland, Spiranthes romanzoffiana (rare and listed as endangered) and its congener, S. spiralis (more abundant and not of conservation concern). Floral densities, insect visitation rates, and orchid pollen transport were recorded in multiple quadrats in four populations of both orchid species over their flowering season. We found that conspecific and heterospecific co-flowering plant density affected pollination in both orchid species. For S. romanzoffiana, higher heterospecific density increased pollen removal. For S. spiralis, higher conspecific visitation increased pollen removal and increased heterospecific density decreased pollen deposition. In addition, increased conspecific density increased pollen deposition in both species. This study shows that plants may interact to facilitate or compete for different components of the pollination process, namely; pollinator attraction, pollen removal and deposition. Such interactions have immediate consequences for endangered plant species, as increases in both conspecific and heterospecific coflowering density may ameliorate the negative effects of rarity on pollination, hence overall reproductive success.  相似文献   

20.
The study of plant responses to touch, particularly the responses of leaves, stems, and roots, has a long history. By contrast, floral responses are relatively unexplored. Stigma closure is common in the Bignoniaceae, but the factors influencing it are not well understood. We investigated factors influencing stigma closure and reopening and its effects on pollen receipt in seven Oroxylum indicum trees near Hat Yai, Thailand. The effects of pressure, conspecific and heterospecific pollen, and pollen load (the amount of pollen deposited) on stigma behavior were examined in 270 flowers (of the total 430 flowers evaluated in the entire study). Pressure alone resulted in faster closure than did conspecific pollination and faster reopening than did heterospecific pollination. Stigmas never reopened after conspecific pollination. Pollen load had no effect on stigma behavior. Stigmas discriminated between conspecific and foreign pollen; they reopened only after pollination with the latter. A manipulative experiment revealed that stigma closure did not affect the number of conspecific pollen grains received. We also counted pollen tubes in styles that were either hand-supplemented with outcross conspecific pollen or open-pollinated. Pollen tube numbers were highest after light pollination (~900 grains), indicating that interference among pollen grains may occur after pollination with very heavy loads (>6000 grains). Possible fitness consequences of these responses are discussed.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号