首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Nucleolus: the fascinating nuclear body   总被引:1,自引:0,他引:1  
Nucleoli are the prominent contrasted structures of the cell nucleus. In the nucleolus, ribosomal RNAs are synthesized, processed and assembled with ribosomal proteins. RNA polymerase I synthesizes the ribosomal RNAs and this activity is cell cycle regulated. The nucleolus reveals the functional organization of the nucleus in which the compartmentation of the different steps of ribosome biogenesis is observed whereas the nucleolar machineries are in permanent exchange with the nucleoplasm and other nuclear bodies. After mitosis, nucleolar assembly is a time and space regulated process controlled by the cell cycle. In addition, by generating a large volume in the nucleus with apparently no RNA polymerase II activity, the nucleolus creates a domain of retention/sequestration of molecules normally active outside the nucleolus. Viruses interact with the nucleolus and recruit nucleolar proteins to facilitate virus replication. The nucleolus is also a sensor of stress due to the redistribution of the ribosomal proteins in the nucleoplasm by nucleolus disruption. The nucleolus plays several crucial functions in the nucleus: in addition to its function as ribosome factory of the cells it is a multifunctional nuclear domain, and nucleolar activity is linked with several pathologies. Perspectives on the evolution of this research area are proposed.  相似文献   

2.
核仁是位于细胞核内的非膜结构。电子显微镜下的核仁从形态上可以分为三层结构包括纤维中心区(FC)、高密度纤维区(DFC)和颗粒区(GC)。核仁内的蛋白有核糖体蛋白和非核糖体蛋白两种。利用蛋白质组学方法已经鉴定了350多种核仁蛋白,其中包括80多种核糖体蛋白。核仁是核糖体合成的场所,核仁中的非核糖体蛋白对核糖体的生物合成起关键调控作用。核仁不仅是细胞内通讯和核糖体:RNA加工的中心,而且在细胞周期、细胞增殖和衰老中起重要调控作用;核仁也是tRNA、mRNA和其它类型小分子RNA加工的场所。因此核仁是一个多功能的细胞生命活动中心。  相似文献   

3.
The distribution of newly formed ribosomal proteins between cytoplasmic, nucleoplasmic, and nucleolar fractions of HeLa cells was determined. All but a few of the newly formed ribosomal proteins were concentrated 10- to 50-fold in the nucleolus and two- to fivefold in the nucleoplasm. Nevertheless, substantial amounts were found in the cytoplasm. Pretreatment of cells with actinomycin D to deplete the nucleolar pool of ribosomal precursor RNA had no effect on the concentration of newly formed ribosomal proteins in the nucleus, but did lead to an increased amount in the nucleoplasm at the expense of the nucleolus.  相似文献   

4.
The nucleolus: the magician's hat for cell cycle tricks   总被引:17,自引:0,他引:17  
The nucleolus, for decades considered a ribosome factory and site for ribosomal RNA synthesis and processing, has recently acquired new fame. Analyses of proteins important for cell-cycle regulation have shown that this organelle is used to sequester proteins, thereby inhibiting their activity.  相似文献   

5.
Biogenesis of eukaryotic ribosomes occurs mainly in a specific subnuclear compartment, the nucleolus, and involves the coordinated assembly of ribosomal RNA and ribosomal proteins. Identification of amino acid sequences mediating nucleolar localization of ribosomal proteins may provide important clues to understand the early steps in ribosome biogenesis. Human ribosomal protein S9 (RPS9), known in prokaryotes as RPS4, plays a critical role in ribosome biogenesis and directly binds to ribosomal RNA. RPS9 is targeted to the nucleolus but the regions in the protein that determine its localization remains unknown. Cellular expression of RPS9 deletion mutants revealed that it has three regions capable of driving nuclear localization of a fused enhanced green fluorescent protein (EGFP). The first region was mapped to the RPS9 N-terminus while the second one was located in the proteins C-terminus. The central and third region in RPS9 also behaved as a strong nucleolar localization signal and was hence sufficient to cause accumulation of EGFP in the nucleolus. RPS9 was previously shown to interact with the abundant nucleolar chaperone NPM1 (nucleophosmin). Evaluating different RPS9 fragments for their ability to bind NPM1 indicated that there are two binding sites for NPM1 on RPS9. Enforced expression of NPM1 resulted in nucleolar accumulation of a predominantly nucleoplasmic RPS9 mutant. Moreover, it was found that expression of a subset of RPS9 deletion mutants resulted in altered nucleolar morphology as evidenced by changes in the localization patterns of NPM1, fibrillarin and the silver stained nucleolar organizer regions. In conclusion, RPS9 has three regions that each are competent for nuclear localization, but only the central region acted as a potent nucleolar localization signal. Interestingly, the RPS9 nucleolar localization signal is residing in a highly conserved domain corresponding to a ribosomal RNA binding site.  相似文献   

6.
7.
Proteins with Pumilio RNA binding domains (Puf proteins) are ubiquitous in eukaryotes. Some Puf proteins bind to the 3′-untranslated regions of mRNAs, acting to repress translation and promote degradation; others are involved in ribosomal RNA maturation. The genome of Trypanosoma brucei encodes eleven Puf proteins whose function cannot be predicted by sequence analysis. We show here that epitope-tagged TbPUF7 is located in the nucleolus, and associated with a nuclear cyclophilin-like protein, TbNCP1. RNAi targeting PUF7 reduced trypanosome growth and inhibited two steps in ribosomal RNA processing.  相似文献   

8.
Silver staining as an indicator of active ribosomal genes   总被引:1,自引:0,他引:1  
  相似文献   

9.
Structure, function and assembly of the nucleolus   总被引:24,自引:0,他引:24  
  相似文献   

10.
Summary The assembly of proteins and RNA into mature ribosomal subunits has been studied in Drosophila cell cultures by pulse-chase experiments. Pulse labeled rRNA has a transit time of 3 h, while the transfer of ribosomal protein occurs completely within 30 min. Inhibition of protein synthesis by cycloheximide results in an almost immediate cessation of ribosome assembly, a result which indicates that no large pool of free ribosomal proteins exists in the cell. Substituting pre-ribosomal RNA with the analogue 5-fluorouridine (5-FU) results in a cessation of ribosome maturation. Under these conditions at least three large subunit proteins continue to accumulate on pre-existing cytoplasmic subunits, indicating an exchange. A portion of ribosomal subunit proteins synthesized in the presence of 5-FU can be recovered in cytoplasmic subunits once the effect of 5-FU has been reversed. This is most easily interpreted in terms of their stabilization on substituted pre-rRNA within the nucleolus, and subsequent utilization on unsubstituted RNA.Work supported by a grant from the NIH (GM 22866)  相似文献   

11.
Silver Staining as an Indicator of Active Ribosomal Genes   总被引:2,自引:0,他引:2  
  相似文献   

12.
Administration of -galactosamine to rats produces inhibition of liver nuclear RNA synthesis and associated alterations in the structure of the nucleolus. Polyacrylamide gel electrophoretic analysis of liver nuclear RNA from galactosamine-treated rats has shown the virtual complete absence of ribosomal RNA (rRNA) precursor molecules at a time when the nucleolus consists solely of a dense fibrillar core devoid of granules. No evidence for an artefactual, preferential breakdown of nuclear RNA during extraction could be obtained from either 2.7 or 8% acrylamide gels. Furthermore, the almost complete cessation of nuclear RNA synthesis makes the possibility of there being rapid synthesis and degradation of ribosomal precursor molecules in vivo unlikely. With toluidine blue stains for RNA with nuclei isolated from galactosamine-treated animals, the large, brightly staining area associated with the normal nucleolus was not seen. On the basis of these observations, it is concluded that an RNA-depleted nucleolus appears fibrillar. It is suggested that the fibrillar material of a normal nucleolus may not itself be RNA even though this region does contain RNA precursor molecules.  相似文献   

13.
Cells control their metabolism through modulating the anabolic and catabolic pathways. TP53INP2/DOR (tumor protein p53 inducible nuclear protein 2), participates in cell catabolism by serving as a promoter of autophagy. Here we uncover a novel function of TP53INP2 in protein synthesis, a major biosynthetic and energy-consuming anabolic process. TP53INP2 localizes to the nucleolus through its nucleolar localization signal (NoLS) located at the C-terminal domain. Chromatin immunoprecipitation (ChIP) assays detected an association of TP53INP2 with the ribosomal DNA (rDNA), when exclusion of TP53INP2 from the nucleolus repressed rDNA promoter activity and the production of ribosomal RNA (rRNA) and proteins. The removal of TP53INP2 also impaired the association of the POLR1/RNA polymerase I preinitiation complex (PIC) with rDNA. Further, TP53INP2 interacts directly with POLR1 PIC, and is required for the assembly of the complex. These data indicate that TP53INP2 promotes ribosome biogenesis through facilitating rRNA synthesis at the nucleolus, suggesting a dual role of TP53INP2 in cell metabolism, assisting anabolism on the nucleolus, and stimulating catabolism off the nucleolus.  相似文献   

14.
15.
The nucleolus is the site of ribosome biosynthesis, but is now known to have other functions as well. In the present study we have investigated how the distribution of signal recognition particle (SRP) RNA within the nucleolus relates to the known sites of ribosomal RNA synthesis, processing, and nascent ribosome assembly (i.e., the fibrillar centers, the dense fibrillar component (DFC), and the granular component). Very little SRP RNA was detected in fibrillar centers or the DFC of the nucleolus, as defined by the RNA polymerase I-specific upstream binding factor and the protein fibrillarin, respectively. Some SRP RNA was present in the granular component, as marked by the protein B23, indicating a possible interaction with ribosomal subunits at a later stage of maturation. However, a substantial portion of SRP RNA was also detected in regions of the nucleolus where neither B23, UBF, or fibrillarin were concentrated. Dual probe in situ hybridization experiments confirmed that a significant fraction of nucleolar SRP RNA was not spatially coincident with 28S ribosomal RNA. These results demonstrate that SRP RNA concentrates in an intranucleolar location other than the classical stations of ribosome biosynthesis, suggesting that there may be nucleolar regions that are specialized for other functions.  相似文献   

16.
Control points in eucaryotic ribosome biogenesis   总被引:6,自引:0,他引:6  
  相似文献   

17.
18.
19.
1. Salivary glands of insect larvae accumulate newly made transfer RNA in the nucleolus when maintained in the presence of nucleoside antagonists that inhibit RNA synthesis preferentially at the chromosome. 2. The nucleus contains precursor transfer RNA, which, on the basis of the general evidence, may originate in the chromosome and then be methylated in the nucleolus. 3. The maturation of precursor ribosomal RNA is blocked in the nucleolus during inhibition. 4. The transport of nuclear RNA to cytoplasm is also blocked. 5. It is suggested that, if the transfer RNA accumulated in the nucleolus does indeed originate in the chromosome, the accumulation may result from the blockage of an obligatory transient association of the RNA with the nucleolus.  相似文献   

20.
Cytosine methylation and nucleolar dominance in cereal hybrids   总被引:5,自引:0,他引:5  
In wheat-rye hybrids the nucleolus organizer regions (NORs), the sites of ribosomal RNA genes, from rye are suppressed. Wheat and wheat-rye hybrid genetic stocks containing different numbers of wheat and rye nucleolus organizers, as well as addition lines and rye-barley hybrids, were used in Southern hybridization experiments to determine the cause of nucleolar dominance and suppression in cereal hybrids. Based on the use of restriction endonucleases that cleave near the ends of the spacer unit and an additional, methylation-sensitive enzyme, HpaII, which does not recognize the CCGG restriction site if the internal C is methylated, an indirect method of assaying NOR expression was established. The results indicated that cleavage by the HpaII enzyme of the rye NOR sequences, is reduced when major NORs from other cereals were present. The reduction in the number of rye rRNA genes containing an unmethylated CCGG site in the promoter was associated with the suppression of the rye nucleolus. These results are consistent with a model in which promoter and upstream regulatory repeats of ribosomal RNA genes compete for limited concentrations of regulatory proteins, and genes that are methylated at key binding sites fail to engage these regulatory proteins and thus remain inactive. Received: 15 November 1996 / Accepted: 19 March 1997  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号