首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
There is marked endogenous production of nitrate in young calves. Here we have studied the contribution of exogenous nitrate and nitrite to plasma concentrations and urinary excretion of nitrite and nitrate in milk-fed calves. In experiment 1, calves were fed 0 or 200 &mgr;mol nitrate or nitrite/kg(0.75) or 100 &mgr;mol nitrite plus 100 &mgr;mol nitrate/kg(0.75) with milk for 3 d. In experiment 2, calves were fed 400 &mgr;mol nitrate or nitrite/kg(0.75) with milk for 1 d. Plasma nitrate rapidly and comparably increased after feeding nitrite, nitrate or nitrite plus nitrate. The rise of plasma nitrate was greater if 400 than 200 &mgr;mol nitrate or nitrite/kg(0.75) were fed. Plasma nitrate decreased slowly after the 3-d administration of 200 &mgr;mol nitrate or nitrite/kg(0.75) and reached pre-experimental concentrations 4 d later. Urinary nitrate excretions nearly identically increased if nitrate, nitrite or nitrite plus nitrate were administered and excreted amounts were greater if 400 than 200 &mgr;mol nitrate or nitrite/kg(0.75) were fed. After nitrite ingestion plasma nitrite only transiently increased after 2 and 4 h and urinary excretion rates remained unchanged. Plasma nitrate concentration remained unchanged if milk was not supplemented with nitrite or nitrate. Nitrate concentrations were stable for 24 h after addition of nitrite to full blood in vitro, whereas nitrite concentrations decreased within 2 h. In conclusion, plasma nitrate concentrations and urinary nitrate excretions are enhanced dose-dependently by feeding low amounts of nitrate and nitrite, whereas after ingested nitrite only a transient and small rise of plasma nitrite is observed because of rapid conversion to nitrate.  相似文献   

2.
3.
An excessive production of nitric oxide (NO) by NO synthase (NOS) is considered to contribute to circulatory disturbance, tissue damage, and refractory hypotention, which are often observed in septic disorders. It is anticipated that a selective inducible NOS (iNOS) inhibitor with excellent pharmacokinetics may be potentially effective as a novel and potent therapeutic intervention in sepsis. We examined whether or not a selective iNOS inhibitor shows iNOS selectivity at the tissue level, when administered systemically. The effects of four NOS inhibitors on plasma nitrite/nitrate (NOx) and tissue NOS levels were compared in major organs (lungs, liver, heart, kidneys, and brain) 6 hr after the injection of E. coli lipopolysaccharide (LPS) into male Wistar-King rats. The rats treated with the three iNOS inhibitors (N-(3-(aminomethyl)benzyl)acetamidine (1400W), (1 S, 5 S, 6 R, 7 R )-2-aza-7-chloro-3-imino-5-methylbicyclo [4.1.0] heptane hydrochloride (ONO-1714), and aminoguanidine) administered 1 hr after LPS injection, showed dose-dependent decreases in plasma NOx levels and NOS activity in the lungs. The non-selective NOS inhibitor (N(G)-methyl-L-arginine (L-NMMA)) had an effect only at the maximum dose. The differences in in vitro iNOS selectivity among these drugs did not correlate with iNOS selectivity at the tissue level. The relationship between plasma NOx levels and NOS activity in the lungs showed a linear relationship with or without the NOS inhibitors. In conclusion, the iNOS selectivity of these drugs does not seem to differ at the tissue level. Plasma NOx levels may be a useful indicator of lung NOS activity.  相似文献   

4.
NAAG, an agonist at Group II metabotropic glutamate receptors and at the N-methyl- d -aspartate (NMDA)-type of ionotropic glutamate receptor, was infused at 250 nmoles in 0.25 μL of saline into each cerebral ventricle of 12-day-old rat pups. Proportion of pycnotic neurons was determined in 100 × 200 μm areas of medial and lateral blades of DG, and in areas CA1, CA3a, b of both dorsal and ventral hippocampus. In some sections we used Fluoro-JADE-B staining to visualize degenerating neuronal cell bodies. There was a marked neurodegeneration, particularly in the medial blade of DG, at 24 h after the administration of NAAG but it was lower at the 4-day time point. No significant damage was observed in 50-day-old rat. The results indicate that early postnatal administration of NAAG can cause serious loss of neurons in rat hippocampus.
Acknowledgement:  Supported by LNOOB122 MEYS CR.  相似文献   

5.
We describe a step-by-step protocol for measuring the stable products of the nitric oxide (NO) pathway: nitrite, nitrite plus nitrate and nitrate. This described protocol is easy to apply and is about 50 times more sensitive than the commonly used Griess reaction or commercially available assay kits based on the Griess reaction. It also allows the study of minimal changes in the NO pathway. With this method, it takes about 3 h to analyze the above-mentioned stable products in culture supernatants or in various body fluids, and the method has a sensitive linear range of 0.02-10.0 microM. This restricted linear range suggests that the technique is useful for studying small changes of nitrite and nitrate, rather than for routine diagnostic measurements.  相似文献   

6.
Nitrate and nitrite transport across biological membranes is often facilitated by protein transporters that are members of the major facilitator superfamily. Paracoccus denitrificans contains an unusual arrangement whereby two of these transporters, NarK1 and NarK2, are fused into a single protein, NarK, which delivers nitrate to the respiratory nitrate reductase and transfers the product, nitrite, to the periplasm. Our complementation studies, using a mutant lacking the nitrate/proton symporter NasA from the assimilatory nitrate reductase pathway, support that NarK1 functions as a nitrate/proton symporter while NarK2 is a nitrate/nitrite antiporter. Through the same experimental system, we find that Escherichia coli NarK and NarU can complement deletions in both narK and nasA in P. denitrificans, suggesting that, while these proteins are most likely nitrate/nitrite antiporters, they can also act in the net uptake of nitrate. Finally, we argue that primary sequence analysis and structural modelling do not readily explain why NasA, NarK1 and NarK2, as well as other transporters from this protein family, have such different functions, ranging from net nitrate uptake to nitrate/nitrite exchange.  相似文献   

7.
A new, accurate, fast and simple method has been implemented by which nitrite and nitrate ions, as stable forms of nitric oxide production were studied. A study of these two ions was carried out by a sensitive and accurate HPLC method with two detectors. The most important advantages of the reported method are: short time of analysis, minimal sample pre-treatment, long life of the analytical column and stable eluent solution. The photodiode array UV-Vis detector detected nitrite and nitrate ions at an absorbance of 212 nm. Much more sensitive electrochemical detection with a WE (glassy carbon) electrode was used for the detection of nitrite ions. An analytical chromatographic column was formed by a sorbent, containing strong base anion-exchange groups bound in Cl(-) form in the hydrophilic hydroxyethyl methacrylate matrix. The anions were analysed in human plasma without deproteinization using 0.02 M sodium perchlorate monohydrate as eluent solution at pH 3.9. At this pH organic substances do not affect the analysis. The retention times for nitrite and nitrate were 3.62 and 3.72 min (by electrochemical detection) and 4.44 min, respectively. The method was linear (r=0.9992, 0.9998, 0.996) within a 1-100 (nitrate), 1-20 micro mol/l (nitrite) concentration range.  相似文献   

8.
Enzyme activities involved in nitrate assimilation were analyzed from crude leaf extracts of wild-type (cv. Williams) and mutant ( nr1 ) soybean [ Glycine max (L.) Merr.] plants lacking constitutive nitrate reductase (NR) activity. The nr1 soybean mutant (formerly LNR-2), had decreased NADH-NR, FMNH2-NR and cytochrome c reductase activities, all of which were associated with the loss of constitutive NR activity. Measurement of FMNH2-NR activity, by nitrite determination, was accurate since nitrite reductase could not use FMNH2 as a reductant source. Nitrite reductase activity was normal in the nr1 plant type in the presence of reduced methyl viologen. Assuming that constitutive NR is similar in structure to nitrate reductases from other plants, presence of xanthine dehydrogenase activity and loss of cytochrome c reductase activity indicated that the apoprotein and not the molybdenum cofactor had been affected in the constitutive enzyme of the mutant. Constitutive NR from urea-grown wild-type plants had 1) greater ability to use FMNH2 as an electron donor, 2) a lower pH optimum, and 3) decreased ability to distinguish between NO3 and HCO3, compared with inducible NR from NO3-grown nr1 plants. The presence in soybean leaves of a nitrate reductase with a pH optimum of 7.5 is contrary to previous reports and indicates that soybean is not an exception among higher plants for this activity.  相似文献   

9.
Nitrate-grown Azotobacter chroococcum ATCC 4412 cells lack the ability to fix N2. Nitrogenase activity developed after the cells were suspended in a combined nitrogen-free medium and was paralleled by a concomitant decrease in nitrate assimilation capacity. In such treated cells exhibiting transitory nitrate assimilation and N2-fixation capacity, nitrate or nitrite caused a short-term inhibitory effect on nitrogenase activity which ceased once the anion was exhausted from the medium. The analog L-methionine-DL-sulfoximine, an inhibitor of glutamine synthetase, prevented inhibition of nitrogenase activity by nitrate or nitrite without affecting the uptake of these antions, which were reduced and stoichiometrically released into the external medium as ammonium. Inhibition of nitrogenase by nitrate (nitrite) did not take place in A. chroococcum MCD1, which is unable to assimilate either. We conclude that the short-term inhibitory effect of nitrate (nitrite) on nitrogenase activity is due to some organic product(s) formed during the assimilation of the ammonium resulting from nitrate (nitrite) reduction.  相似文献   

10.
When nitrate was added to anaerobic resting cultures of Escherichia coli, two different profiles of NAD(P)H fluorescence were observed. E. coli is known to reduce nitrate to ammonia via nitrite as an anaerobic respiration mechanism. The profile showing single-stage response corresponded to situations where the nitrite formed from nitrate reduction was immediately converted to ammonia. The other profile showing two-stage response resulted from a much slower reduction of nitrite than nitrate. Nitrite thus accumulated during the first stage and was gradually reduced to ammonia when nitrate was depleted, i.e. in the second stage. An undamped oscillation of NAD(P)H fluorescence was also observed in the cultures showing the two-stage response. The oscillation was always detected during the second stage and seldom during either the first stage or the recovered anaerobic stage (after complete nitrite reduction). It never occurred in the cultures showing the single-stage response. The period of oscillation ranged from 1 to 5min. The possibility of the common glycolytic oscillation being responsible is low, as judged from the current knowledge of the nitrate/nitrite reductases of E. coli and the observations in this study. This is the first report on the occurrence of oscillatory NAD(P)H fluorescence in E. coli.  相似文献   

11.
When nitrate was added to anaerobic resting cultures of Escherichia coli, two different profiles of NAD(P)H fluorescence were observed. E. coli is known to reduce nitrate to ammonia via nitrite as an anaerobic respiration mechanism. The profile showing single-stage response corresponded to situations where the nitrite formed from nitrate reduction was immediately converted to ammonia. The other profile showing two-stage response resulted from a much slower reduction of nitrite than nitrate. Nitrite thus accumulated during the first stage and was gradually reduced to ammonia when nitrate was depleted, i.e. in the second stage. An undamped oscillation of NAD(P)H fluorescence was also observed in the cultures showing the two-stage response. The oscillation was always detected during the second stage and seldom during either the first stage or the recovered anaerobic stage (after complete nitrite reduction). It never occurred in the cultures showing the single-stage response. The period of oscillation ranged from 1 to 5min. The possibility of the common glycolytic oscillation being responsible is low, as judged from the current knowledge of the nitrate/nitrite reductases of E. coli and the observations in this study. This is the first report on the occurrence of oscillatory NAD(P)H fluorescence in E. coli.  相似文献   

12.
Nitric oxide (NO) is a signal molecule with functions such as neurotransmission, local vascular relaxation, and anti-inflammation in many physiological and pathological processes. Various factors regulate its intracellular lifetime. Due to its high reactivity in biological systems, it is transformed in the bloodstream into nitrates (NO(-)(3)) by oxyhemoglobin. The Griess reaction is a technically simple method (spectrophotometric, 540 nm) for the analysis of nitrites (NO(-)(2)) in aqueous solutions. We studied the interference of common anticoagulants in the quantification of nitrate and nitrite in plasma samples by the Griess method. We obtained rat plasma using heparin or sodium EDTA as anticoagulants, then added, or otherwise, known NO(-)(3) amounts in order to calculate their recovery. We also studied the effect of ultra-filtration performed before Griess reaction on plasma and aqueous solutions of various anticoagulants (heparin, EDTA, and also sodium citrate) to compare the recoveries of added NO(-)(3) or NO(-)(2). We used standards of NO(-)(3) or NO(-)(2) for quantification. We conclude that: (i) The bacterial nitrate reductase used to reduce NO(-)(3) to NO(-)(2) is unstable in certain storage conditions and interferes with different volumes of plasma used. (ii) The ultrafiltration (which is sometimes performed before the Griess reaction) of plasma obtained with EDTA or citrate is not recommended because it leads to overestimation of NO(minus sign)(3). In contrast, ultrafiltration is necessary when heparin is used. (iii) The absorbance at 540 nm attributed to plasma itself (basal value or background) interferes in final quantification, especially when ultrafiltration is not performed. For the quantification of plasma NO(-)(3) we recommend: sodium EDTA as anticoagulant, no ultrafiltration of plasma, and measurement of the absorbance background of each sample.  相似文献   

13.
We have quantitatively measured nitric oxide production in the leaves of Arabidopsis thaliana and Vicia faba by adapting ferrous dithiocarbamate spin tapping methods previously used in animal systems. Hydrophobic diethyldithiocarbamate complexes were used to measure NO interacting with membranes, and hydrophilic N-methyl-d-glucamine dithiocarbamate was used to measure NO released into the external solution. Both complexes were able to trap levels of NO, readily detectable by EPR spectroscopy. Basal rates of NO production (in the order of 1 nmol g(-) (1) h(-1)) agreed with previous studies. However, use of methodologies that corrected for the removal of free NO by endogenously produced superoxide resulted in a significant increase in trapped NO (up to 18 nmol g(-) (1) h(-1)). Basal NO production in leaves is therefore much higher than previously thought, but this is masked by significant superoxide production. The effects of nitrite (increased rate) and nitrate (decreased rate) are consistent with a role for nitrate reductase as the source of this basal NO production. However, rates under physiologically achievable nitrite concentrations never approach that reported following pathogen induction of plant nitric-oxide synthase. In Hibiscus rosa sinensis, the addition of exogenous nitrite generated sufficient NO such that EPR could be used to detect its production using endogenous spin traps (forming paramagnetic dinitrosyl iron complexes). Indeed the levels of this nitrosylated iron pool are sufficiently high that they may represent a method of maintaining bioavailable iron levels under conditions of iron starvation, thus explaining the previously observed role of NO in preventing chlorosis under these conditions.  相似文献   

14.
15.
Autotrophic denitrification coupled with sulfide oxidation represents an interesting alternative for the simultaneous removal of nitrate/nitrite and sulfide from wastewaters. The applicability of such bioprocess is especially advantageous for the post treatment of effluents from anaerobic reactors, since they usually produce sulfides, which can be used as endogenous electron donor for autotrophic denitrification. This study evaluated the effect of sulfide concentration on this bioprocess using nitrate and nitrite as electron acceptors in vertical fixed-bed reactors. The results showed that intermediary sulfur compounds were mainly produced when excess of electron donor was applied, which was more evident when nitrate was used. Visual evidences suggested that elemental sulfur was the intermediary compound produced. There was also evidence that the elemental sulfur previously formed was being used when sulfide was applied in stoichiometric concentration relative to nitrate/nitrite. Nitrite was more readily consumed than nitrate. For both electron acceptors and sulfide concentrations tested, autotrophic denitrification was not affected by residual heterotrophic denitrification via endogenic activity, occurring as a minor additional nitrogen removal process.  相似文献   

16.
Previous studies have reported increased serum concentrations of nitrite/nitrate – the degradation products of nitric oxide – in Plasmodium vivax malaria and uncomplicated Plasmodium falciparum malaria. In all these studies, however, nitrite/nitrate has been measured spectrometrically using Griess reagent which carries major disadvantages in the determination of serum nitrite/nitrate. The method does not allow an exact differentiation of nitrite and biogenic amines that are physiologically present in plasma. In the present study we introduce high-performance liquid chromatography as a new, accurate and cost effective method for determination of serum nitrite/nitrate levels. Significantly increased nitrate concentrations were found in malaria patients and serum values remained above normal levels for at least 21 days. It could be shown that our HPLC method is a sensitive and cost-effective method for direct determination of nitrite/nitrate in serum samples, which is not influenced by the presence of biogenic amines.  相似文献   

17.
18.
19.
Nitrate uptake is essential for various bacterial processes and combines with nitrite export to form the usual initial steps of denitrification, a process that reduces nitrate to dinitrogen gas. Although many bacterial species contain NarK-like transporters that are proposed to function as either nitrate/proton symporters or nitrate/nitrite antiporters based on sequence homology, these transporters remain, in general, poorly characterized. Several bacteria appear to contain a transporter that is a fusion of two NarK-like proteins, although the significance of this arrangement remains elusive. We demonstrate that NarK from Paracoccus denitrificans is expressed as a fusion of two NarK-like transporters. NarK1 and NarK2 are separately capable of supporting anaerobic denitrifying growth but with growth defects that are partially mitigated by coexpression of the two domains. NarK1 appears to be a nitrate/proton symporter with high affinity for nitrate and NarK2 a nitrate/nitrite antiporter with lower affinity for nitrate. Each transporter requires two conserved arginine residues for activity. A transporter consisting of inactivated NarK1 fused to active NarK2 has a dramatically increased affinity for nitrate compared with NarK2 alone, implying a functional interaction between the two domains. A potential model for nitrate and nitrite transport in P. denitrificans is proposed.  相似文献   

20.
The action of peroxynitrite in vivo has been proposed to account for the involvement of nitrotyrosine in the pathogenesis of many diseases. However, it has been demonstrated that nitrite under acidic conditions, similar to those in the human stomach, also has the ability to nitrate tyrosine. Dietary nitrate is also implicated in the progression of gastritis and gastric cancer and elevated levels of nitrate are found in many disease states in which nitrotyrosine may play a role. Thus, we investigated whether the dietary nitrate intake might contribute towards the plasma protein-bound levels of nitrotyrosine.

Seven healthy, non-smokers participated in a two-day study consisting of a nitrate-low control day followed by a day during which three nitrate-rich meals were consumed. Maximal urinary excretion was attained 4-6 hours after consumption of a meal and the maximum was proportional to the dose. Plasma nitrate was elevated nine-fold, 1 hour after consumption of a meal containing 128.3 mg nitrate. Plasma nitrated protein levels did not appear to alter significantly from basal 1 hour after supplementation with a nitrate-rich meal. Thus dietary nitrate does not appear to contribute to the levels of plasma nitrated proteins, as determined using a competitive inhibition of binding ELISA assay, but this does not preclude any contribution it may make to the total body burden of nitrotyrosine.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号