首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 281 毫秒
1.
Abstract

Inflammation is thought to be one of the major contributors to carcinogenesis. Accumulated studies in this field revealed that free radicals produced by inflammatory cells not only cause direct damage to DNA but also exert indirect effects such as de-regulation of cell proliferation and apoptosis, stimulation of angiogenesis, and modification of gene/protein expressions and protein activities, all of which are a critical step toward carcinogenesis. Free radicals have also been reported to act as both initiator and promoter of carcinogenic process. Recent evidence shows that free radicals convert benign tumors to more malignant ones (i.e. tumor progression) leading to the final stage of carcinogenesis. This article reviews the current findings linking inflammation and cancer, and shed light on inflammatory cell-derived free radicals as major endogenous reactive substances for tumor development and progression.  相似文献   

2.
Oxidative stress and experimental carcinogenesis   总被引:6,自引:0,他引:6  
  相似文献   

3.
The role of free radicals and active states of oxygen in human cancer is as yet unresolved. Various lines of evidence provide strong but inferential evidence that free radical reactions can be of crucial importance in certain carcinogenic mechanisms. A central point in considering free radical reactions in carcinogenesis is that human cancer is really a group of highly diverse diseases for which the initial causation and the progression to clinical disease occur through a wide variety of mechanisms. Furthermore, for many human cancers it appears that there are alternate pathways capable of tumor initiation and tumor progression. While for certain of these pathways free radical reactions appear necessary, it is unlikely that there are human cancers for which free radicals, or any other mechanism, are sufficient for the entire processbeginning with the genetic alteration leading to a somatic mutation and eventually resulting in clinically overt disease. It is crucial that we view free radical reactions as aong a panoply of mechanisms leading to human cancer, and consider research about the role of free radicals in cancer as opportunities to prevent the initiation or progression of human cancer.  相似文献   

4.
《Free radical research》2013,47(1-3):3-10
The role of free radicals and active states of oxygen in human cancer is as yet unresolved. Various lines of evidence provide strong but inferential evidence that free radical reactions can be of crucial importance in certain carcinogenic mechanisms. A central point in considering free radical reactions in carcinogenesis is that human cancer is really a group of highly diverse diseases for which the initial causation and the progression to clinical disease occur through a wide variety of mechanisms. Furthermore, for many human cancers it appears that there are alternate pathways capable of tumor initiation and tumor progression. While for certain of these pathways free radical reactions appear necessary, it is unlikely that there are human cancers for which free radicals, or any other mechanism, are sufficient for the entire processbeginning with the genetic alteration leading to a somatic mutation and eventually resulting in clinically overt disease. It is crucial that we view free radical reactions as aong a panoply of mechanisms leading to human cancer, and consider research about the role of free radicals in cancer as opportunities to prevent the initiation or progression of human cancer.  相似文献   

5.
Oxygen free radicals and the systemic inflammatory response   总被引:12,自引:0,他引:12  
Closa D  Folch-Puy E 《IUBMB life》2004,56(4):185-191
The generation of oxygen free radicals is known to be involved in the development of the systemic inflammatory response syndrome. In addition to their actions as noxious mediators generated by inflammatory cells, these molecules play also a crucial role contributing to the onset and progression of inflammation in distant organs. In the early stages of the process, free radicals exert their actions via activation of nuclear factors, as NFkappaB or AP-1, that induce the synthesis of cytokines. In later stages, endothelial cells are activated due to the synergy between free radicals and cytokines, promoting the synthesis of inflammatory mediators and adhesion molecules. Finally, free radicals exert their toxic effects at the site of inflammation by reacting with different cell components, inducing loss of function and cell death. This review focuses on progress in the understanding the different actions of free radicals at the sequential stages of the development of the systemic inflammatory response.  相似文献   

6.
Free radicals, antioxidant enzymes, and carcinogenesis   总被引:29,自引:0,他引:29  
Free radicals are found to be involved in both initiation and promotion of multistage carcinogenesis. These highly reactive compounds can act as initiators and/or promoters, cause DNA damage, activate procarcinogens, and alter the cellular antioxidnt defense system. Antioxidants, the free radicals scavengers, however, are shown to be anticarcinogens. They function as the inhibitors at both initiation and promotion/transformation stage of carcinogenesis and protect cells against oxidative damage.

Altered antioxidant enzymes were observed during carcinogenesis or in tumors. When compared to their appropriate normal cell counterparts, tumor cells are always low in manganese superoxide dismutase activity, usually low in copper and zinc superoxide dismutase activity and almost always low in catalase activity. Glutathione peroxidase and glutathione reductase activities are highly variable. In contrast, glutathione S-transferase 7-7 is increased in many tumor cells and in chemically induced preneoplastic rat hepatocyte nodules. Increased glucose-6-phosphate dehdyrogenase activity is also found in many tumors. Comprehensive data on free radicals, antioxidant enzymes, and carcinogenesis are reviewed. The role of antioxidant enzymes in carcinogenesis is discussed.  相似文献   


7.
Loss of functional capacity of skeletal muscle is a major cause of morbidity in patients with a number of acute and chronic clinical disorders, including sepsis, chronic obstructive pulmonary disease, heart failure, uremia, and cancer. Weakness in these patients can manifest as either severe limb muscle weakness (even to the point of virtual paralysis), respiratory muscle weakness requiring mechanical ventilatory support, and/or some combination of these phenomena. While factors such as nutritional deficiency and disuse may contribute to the development of muscle weakness in these conditions, systemic inflammation may be the major factor producing skeletal muscle dysfunction in these disorders. Importantly, studies conducted over the past 15 years indicate that free radical species (superoxide, hydroxyl radicals, nitric oxide, peroxynitrite, and the free radical-derived product hydrogen peroxide) play an key role in modulating inflammation and/or infection-induced alterations in skeletal muscle function. Substantial evidence exists indicating that several free radical species can directly alter contractile protein function, and evidence suggests that free radicals also have important effects on sarcoplasmic reticulum function, on mitochondrial function, and on sarcolemmal integrity. Free radicals also modulate activation of several proteolytic pathways, including proteosomally mediated protein degradation and, at least theoretically, may also influence pathways of protein synthesis. As a result, free radicals appear to play an important role in regulating a number of downstream processes that collectively act to impair muscle function and lead to reductions in muscle strength and mass in inflammatory conditions.  相似文献   

8.
Traditional wisdom holds that intact immune responses, such as immune surveillance or immunoediting, are required for preventing and inhibiting tumor development; but recent evidence has also indicated that unresolved immune responses, such as chronic inflammation, can promote the growth and progression of cancer. Within the immune system, cytotoxic CD8(+) and CD4(+) Th1 T cells, along with their characteristically produced cytokine IFN-γ, function as the major anti-tumor immune effector cells, whereas tumor associated macrophages (TAM) or myeloid-derived suppressive cells (MDSC) and their derived cytokines IL-6, TNF, IL-1β and IL-23 are generally recognized as dominant tumor-promoting forces. However, the roles played by Th17 cells, CD4(+) CD25(+) Foxp3(+) regulatory T lymphocytes and immunoregulatory cytokines such as TGF-β in tumor development and survival remain elusive. These immune cells and the cellular factors produced from them, including both immunosuppressive and inflammatory cytokines, play dual roles in promoting or discouraging cancer development, and their ultimate role in cancer progression may rely heavily on the tumor microenvironment and the events leading to initial propagation of carcinogenesis.  相似文献   

9.
The intracellular localization of human selenoprotein SelI and the degree of expression of its gene in different human tumor cell lines were determined. It was found that the SelI protein is present in the nucleus, cytoplasm, and endoplasmic reticulum and is absent in the nucleolus. Since the oxidative stress caused by a sharp increase in the content of free radicals in the body is one of the causes of malignant transformation, the study of the role of the trace element selenium and selenocysteine-containing proteins as antioxidants in carcinogenesis is of great scientific interest.  相似文献   

10.
Hepatocellular carcinoma (HCC) remains one of the most deadly solid tumor malignancies worldwide. We recently find that the loss of toll-like receptor 2 (TLR2) activities promotes the diethylnitrosamine (DEN) induced hepatocellular carcinogenesis and tumor progression, which associates with an abundant accumulation of reactive oxygen species (ROS) and endoplasmic reticulum (ER) stress. This finding suggests that the ROS/ER stress plays a role in TLR2 modulated carcinogenesis of HCC. To investigate the mechanism of TLR2 activity defending against hepatocarcinogenesis, the TLR2-deficient mice were treated with or without antioxidant N-acetylcysteine (NAC) before DEN administration. We found that pretreatment of these animals with NAC attenuated carcinogenesis and progression of HCC in the TLR2-deficient mice, declined ROS/ER stress, and alleviated the unfold protein response and inflammatory response in TLR2-deficient liver tissue. Moreover, the NAC treatment significantly reduced the enhanced aggregation of p62 and Mallory-Denk bodies in the DEN-induced HCC liver tissue, suggesting that NAC treatment improves the suppressive autophagic flux in the TLR2-deficient liver. These findings indicate that TLR2 activity defends against hepatocarcinogenesis through diminishing the accumulation of ROS and alleviating ER stress and unfold protein response mediated inflammatory response in the liver.  相似文献   

11.
Inflammation has long been thought to contribute to the development of cancer; however there is also clear evidence that the immune system can recognize and eliminate cancer cells. Current research suggests that cancer-associated inflammation has a dual role in tumor progression; inflammatory mediators promote the malignant activity of cancer cells by acting as growth factors and also stimulate angiogenesis, however, cancer-associated inflammation is also linked with immune-suppression that allows cancer cells to evade detection by the immune system. In this review we will discuss the dual role of inflammation in cancer and how endogenous anti-inflammatory mechanisms may equally be important in carcinogenesis.  相似文献   

12.
Selenium (Se) is an essential micronutrient that exerts its functions via selenoproteins. Little is known about the role of Se in inflammatory bowel disease (IBD). Epidemiological studies have inversely correlated nutritional Se status with IBD severity and colon cancer risk. Moreover, molecular studies have revealed that Se deficiency activates WNT signaling, a pathway essential to intestinal stem cell programs and pivotal to injury recovery processes in IBD that is also activated in inflammatory neoplastic transformation. In order to better understand the role of Se in epithelial injury and tumorigenesis resulting from inflammatory stimuli, we examined colonic phenotypes in Se-deficient or -sufficient mice in response to dextran sodium sulfate (DSS)-induced colitis, and azoxymethane (AOM) followed by cyclical administration of DSS, respectively. In response to DSS alone, Se-deficient mice demonstrated increased morbidity, weight loss, stool scores, and colonic injury with a concomitant increase in DNA damage and increases in inflammation-related cytokines. As there was an increase in DNA damage as well as expression of several EGF and TGF-β pathway genes in response to inflammatory injury, we sought to determine if tumorigenesis was altered in the setting of inflammatory carcinogenesis. Se-deficient mice subjected to AOM/DSS treatment to model colitis-associated cancer (CAC) had increased tumor number, though not size, as well as increased incidence of high grade dysplasia. This increase in tumor initiation was likely due to a general increase in colonic DNA damage, as increased 8-OHdG staining was seen in Se-deficient tumors and adjacent, non-tumor mucosa. Taken together, our results indicate that Se deficiency worsens experimental colitis and promotes tumor development and progression in inflammatory carcinogenesis.  相似文献   

13.
14.
Myeloperoxidase (MPO) released by activated neutrophils can initiate and promote carcinogenesis. MPO produces hypochlorous acid (HOCl) that oxidizes the genomic DNA in inflammatory cells as well as in surrounding epithelial cells. DNA-centered radicals are early intermediates formed during DNA oxidation. Once formed, DNA-centered radicals decay by mechanisms that are not completely understood, producing a number of oxidation products that are studied as markers of DNA oxidation. In this study we employed the 5,5-dimethyl-1-pyrroline N-oxide-based immuno-spin trapping technique to investigate the MPO-triggered formation of DNA-centered radicals in inflammatory and epithelial cells and to test whether resveratrol blocks HOCl-induced DNA-centered radical formation in these cells. We found that HOCl added exogenously or generated intracellularly by MPO that has been taken up by the cell or by MPO newly synthesized produces DNA-centered radicals inside cells. We also found that resveratrol passed across cell membranes and scavenged HOCl before it reacted with the genomic DNA, thus blocking DNA-centered radical formation. Taken together our results indicate that the formation of DNA-centered radicals by intracellular MPO may be a useful point of therapeutic intervention in inflammation-induced carcinogenesis.  相似文献   

15.
Free radicals and disease.   总被引:6,自引:0,他引:6  
Free radicals and reactive oxygen species (ROS) have been associated with the etiology and/or progression of a number of diseases and in aging. Many of the proteins oxidatively modified by free radicals contain side-chain carbonyl derivatives, which can be used as markers for protein oxidation. The protein carbonyl content has been quantitated as a function of age for human cultured dermal fibroblasts, lens, and brain tissue. These data were analyzed using a simple autocatalytic model with the assumption that free radicals randomly oxidize proteins or peptides to form carbonyl derivatives and lead to their inactivation. The carbonylated proteins and peptides are highly susceptible to proteolytic degradation. Implication of free radicals in aging and in age-dependent susceptibility to neurodegenerative diseases will be discussed in light of this simplified kinetic model.  相似文献   

16.
Heat shock proteins (HSPs) play an important role in the cellular response to environmental stress and exert a cytoprotective effect. Especially HSP70 is an effective inhibitor of apoptosis, suggesting a role of HSP70 in carcinogenesis and tumor progression. To explore the relevance of HSP70 in renal cell carcinomas (RCCs), we analyzed nuclear and cytoplasmic HSP70 protein expression in formalin-fixed tissue from 145 clear cell RCCs by immunohistochemistry as well as Western blot analysis. Nuclear HSP70 expression was found in all RCCs and 75% of the tumors also exhibited a cytoplasmic HSP70 staining. Importantly, RCCs showed significantly reduced cytoplasmic (p=0.001) and combined nuclear/cytoplasmic (p=0.0022) HSP70 expression when compared with their cells of origin. A significant (p=0.0176) decrease of nuclear HSP70 expression became evident from well to poorly differentiated clear cell RCCs. Quite similarly, a trend (p=0.0558) for reduced combined nuclear/cytoplasmic HSP70 expression was shown from early (pT1) to advanced (pT3) tumor stages. Nevertheless, no correlation between HSP70 expression and patients survival became evident. In conclusion, our investigation demonstrates a significant decrease of antiapoptotic HSP70 protein expression during carcinogenesis and during progression from well (G1) to poorly (G3) differentiated clear cell RCCs. Our results suggest that HSP70-mediated inhibition of apoptosis seems to be of minor importance for carcinogenesis and tumor progression in RCCs.  相似文献   

17.
Both genomic instability and the presence of chronic inflammation are involved in carcinogenesis and tumor progression. These alterations predispose the cancer cells to undergo metabolic reprogramming as well as the epithelial-mesenchymal transition (EMT). These pathways allow cancer cells to avoid apoptosis and stimulate tumor progression. EMT is an important early event in tumor cell invasion, which can be regulated through inflammatory signaling pathways. Cancer cells undergoing EMT are vulnerable to cell death by the process of ferroptosis. Ferroptosis is a form of regulated cell death involving iron-dependent lipid peroxidation, designed to maintain cellular homeostasis. Several reports have linked ferroptosis, inflammation, and cancer. Ferroptosis inhibitors and EMT inducers have been used to understand the anti-inflammatory and anticancer effects in experimental models. A better understanding of the crosstalk between ferroptosis and EMT, and the involvment of inflammatory mediators may accelerate the discovery of therapeutic strategies to eradicate cancer cells and overcome drug-resistance.  相似文献   

18.
Cyclooxygenase-2 (COX-2) appears to play an important role in inflammation and carcinogenesis, and 2,2'-azobis (2-amidinopropane) dihydrochloride (AAPH) is a hydrophilic azo compound known to generate free radicals. Because reactive oxygen species (ROS) are known to elevate COX-2 expression, we evaluated the effect of AAPH on the expression of COX-2 in a human keratinocyte cell line, HaCaT. When cells were exposed to AAPH, marked COX-2 induction was observed. To clarify the signaling mechanism involved, we next investigated the effects of AAPH upon three major subfamilies of the mitogen-activated protein kinases (MAPKs). AAPH caused an increase in the phosphorylation of extracellular signal-regulated kinase (ERK), p38 and c-Jun NH(2)-terminal kinase (JNK). Furthermore, we found that PD98059, an ERK pathway inhibitor, and SB203580, a p38 MAPK inhibitor, diminished AAPH-induced COX-2 expression and PGE(2) production, whereas JNK inhibitor did not suppress COX-2 expression or PGE(2) production by AAPH. These findings suggest that the ERK and p38 MAPK pathways, but not the JNK pathway, are involved in AAPH-induced inflammatory progression. In addition, we found that both the water-soluble Vitamin E derivative, Trolox, and the green tea constituent, (-)-epigallocatechin gallate (EGCG), diminished AAPH-induced COX-2 expression and p38 activation.  相似文献   

19.
Role of oxygen free radicals in carcinogenesis and brain ischemia   总被引:39,自引:0,他引:39  
R A Floyd 《FASEB journal》1990,4(9):2587-2597
Even though oxygen is necessary for aerobic life, it can also participate in potentially toxic reactions involving oxygen free radicals and transition metals such as Fe that damage membranes, proteins, and nucleic acids. Oxygen free radical reactions and oxidative damage are in most cases held in check by antioxidant defense mechanisms, but where an excessive amount of oxygen free radicals are produced or defense mechanisms are impaired, oxidative damage may occur and this appears to be important in contributing to several pathological conditions including aging, carcinogenesis, and stroke. Several newer methods, such as in vivo spin-trapping, have become available to monitor oxygen free radical flux and quantitate oxidative damage. Using a combination of these newer methods collectively focused on one model, recent results show that oxidative damage plays a key role in brain injury that occurs in stroke. Subtle changes, such as oxidative damage-induced loss of glutamine synthetase activity, may be a key event in stroke-induced brain injury. Oxygen free radicals may play a key role in carcinogenesis by mediating formation of base adducts, such as 8-hydroxyguanine, which can now be quantitated to very low levels. Evidence is presented that a new class of free radical blocking agents, nitrone spin-traps, may help not only to clarify if free radical events are involved, but may help prevent the development of injury in certain pathological conditions.  相似文献   

20.
Reactions of sulfasalazine (SAZ) and its metabolites, 5-aminosalicylic acid (5-ASA) and sulfapyridine (SP), with various oxidizing and reducing free radicals (hydroxyl, haloperoxyl, one-electron oxidizing, lipid peroxyl, glutathiyl, superoxide, tryptophanyl, etc.) have been studied to understand the mechanistic aspects of its action against free radicals produced during inflammation. Nanosecond pulse radiolysis technique coupled with transient spectrophotometry has been used for in situ generation of free radicals and to follow their reaction pathways. The transients produced in these reactions have been assigned and radical scavenging rate constants have been measured. In addition to scavenging of various primary and secondary free radicals by SAZ, 5-ASA and SP, 5-ASA has also been observed to efficiently scavenge radicals of biomolecules. 5-ASA has been found to be the active moiety of SAZ involved in the scavenging of oxidizing free radicals whereas reduction of SAZ produced molecular radical anion. The study suggests that free radical scavenging activity of 5-ASA may be a major path of pharmacological action of SAZ against inflammatory bowel diseases (IBD).  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号