共查询到20条相似文献,搜索用时 15 毫秒
1.
Summary The voltage-dependent properties of inwardly rectifying potassium channels were studied in adult and neonatal rat ventricular myocytes using patch voltage-clamp techniques. Inward rectification was pronounced in the single-channel currentvoltage relation and outward currents were not detected at potentials positive to the calculated reversal potential for potassium ( E
k). Single-channel currents having at least three different conductances were observed and the middle one was predominant. Its single-channel conductance was nonlinear ranging from 20 to 40 pS. Its open-time distribution was fit by a single exponential and the time constants decreased markedly with hyperpolarization from E
k. The distribution of the closed times required at least two exponentials for fitting, and their taus were related to the bursting behavior displayed at negative potentials. The steady-state probability of being open ( P
o) for this channel was determined from the single-channel records; in symmetrical isotonic K solutions P
o was 0.73 at –60 mV, but fell to 0.18 at –100 mV. The smaller conductance was about one-half the usual value and the open times were greatly prolonged. The large conductance was about 50 percent greater than the usual value and the open times were very brief. The P
o(V) relation, the kinetics and the conductance of the predominant channel account for most of the whole cell inwardly rectifying current. The kinetics suggest that an intrinsic K +-dependent mechanism may control the gating, and the conductance of this channel. In the steady state, the opening and closing probabilities for the two smaller channels were not independent of each other, suggesting the possibility of a sub-conductance state or cooperativity between different channels. 相似文献
2.
Depolarization-activated outward K+ currents in isolated adult rat ventricular myocytes were characterized using the whole-cell variation of the patch-clamp recording technique. During brief depolarizations to potentials positive to -40 mV, Ca(2+)-independent outward K+ currents in these cells rise to a transient peak, followed by a slower decay to an apparent plateau. The analyses completed here reveal that the observed outward current waveforms result from the activation of two kinetically distinct voltage-dependent K+ currents: one that activates and inactivates rapidly, and one that activates and inactivates slowly, on membrane depolarization. These currents are referred to here as Ito (transient outward) and IK (delayed rectifier), respectively, because their properties are similar (although not identical) to these K+ current types in other cells. Although the voltage dependences of Ito and IK activation are similar, Ito activates approximately 10-fold and inactivates approximately 30-fold more rapidly than IK at all test potentials. In the composite current waveforms measured during brief depolarizations, therefore, the peak current predominantly reflects Ito, whereas IK is the primary determinant of the plateau. There are also marked differences in the voltage dependences of steady-state inactivation of these two K+ currents: IK undergoes steady-state inactivation at all potentials positive to -120 mV, and is 50% inactivated at -69 mV; Ito, in contrast, is insensitive to steady-state inactivation at membrane potentials negative to -50 mV. In addition, Ito recovers from steady-state inactivation faster than IK: at -90 mV, for example, approximately 70% recovery from the inactivation produced at -20 mV is observed within 20 ms for Ito; IK recovers approximately 25-fold more slowly. The pharmacological properties of Ito and IK are also distinct: 4-aminopyridine preferentially attenuates Ito, and tetraethylammonium suppresses predominantly IK. The voltage- and time-dependent properties of these currents are interpreted here in terms of a model in which Ito underlies the initial, rapid repolarization phase of the action potential (AP), and IK is responsible for the slower phase of AP repolarization back to the resting membrane potential, in adult rat ventricular myocytes. 相似文献
3.
In the experiments here, the developmental expression of the functional Ca(2+)-independent, depolarization-activated K+ channel currents, Ito and IK, and of the voltage-gated K+ channel (Kv) alpha subunits, Kv1.2, Kv1.4, Kv1.5, Kv2.1, and Kv4.2 in rat ventricular myocytes were examined quantitatively. Using the whole-cell patch clamp recording method, the properties and the densities of Ito and IK in ventricular myocytes isolated from postnatal day 5 (P5), 10 (P10), 15 (P15), 20 (P20), 25 (P25), 30 (P30), and adult (8-12 wk) rats were characterized and compared. These experiments revealed that mean Ito densities increase fourfold between birth and P30, whereas IK densities vary only slightly. Neither the time- nor the voltage-dependent properties of the currents vary measurably, suggesting that the subunits underlying functional Ito and IK channels are the same throughout postnatal development. In parallel experiments, the developmental expression of each of the voltage-gated K+ channel alpha subunits, Kv1.2, Kv1.4, Kv1.5, Kv2.1, and Kv4.2, was examined quantitatively at the mRNA and protein levels using subunit-specific probes. RNase protection assays revealed that Kv1.4 message levels are high at birth, increase between P0 and P10, and subsequently decrease to very low levels in adult rat ventricles. The decrease in message is accompanied by a marked reduction in Kv1.4 protein, consistent with our previous suggestion that Kv1.4 does not contribute to the formation of functional K+ channels in adult rat ventricular myocytes. In contrast to Kv1.4, the mRNA levels of Kv1.2, Kv1.5, Kv2.1, and Kv4.2 increase (three- to five- fold) between birth and adult. Western analyses, however, revealed that the expression patterns of these subunits proteins vary in distinct ways: Kv1.2 and Kv4.2, for example, increase between P5 and adult, whereas Kv1.5 remains constant and Kv2.1 decreases. Throughout development, therefore, there is a mismatch between the numbers of Kv alpha subunits expressed and the functional voltage-gated K+ channel currents distinguished electrophysiologically in rat ventricular myocytes. Alternative experimental approaches will be required to define directly the Kv alpha subunits that underlie functional voltage- gated K+ channels in these (and other) cells. In addition, the finding that Kv alpha subunit protein expression levels do not necessarily mirror mRNA levels suggests that caution should be exercised in attempting functional interpretations of observed changes in mRNA levels alone. 相似文献
4.
The transient potassium current, IK(t), of enzymatically dissociated rat olfactory receptor neurons was studied using patch-clamp techniques. Upon depolarization from negative holding potentials, IK(t) activated rapidly and then inactivated with a time course described by the sum of two exponential components with time constants of 22.4 and 143 ms. Single-channel analysis revealed a further small component with a time constant of several seconds. Steady-state inactivation was complete at -20 mV and completely removed at -80 mV (midpoint -45 mV). Activation was significant at -40 mV and appeared to reach a maximum conductance at +40 mV (midpoint -13 mV). Deactivation was described by the sum of two voltage-dependent exponential components. Recovery from inactivation was extraordinarily slow (50 s at -100 mV) and the underlying processes appeared complex. IK(t) was reduced by 4-aminopyridine and tetraethylammonium applied externally. Increasing the external K+ concentration ([K+]o) from 5 to 25 mM partially removed IK(t) inactivation, usually without affecting activation kinetics. The elevated [K+]o also hyperpolarized the steady-state inactivation curve by 9 mV and significantly depolarized the voltage dependence of activation. Single transient K+ channels, with conductances of 17 and 26 pS, were observed in excised patches and often appeared to be localized into large clusters. These channels were similar to IK(t) in their kinetic, pharmacological, and voltage-dependent properties and their inactivation was also subject to modulation by [K+]o. The properties of IK(t) imply a role in action potential repolarization and suggest it may also be important in modulating spike parameters during neuronal burst firing. A simple method is also presented to correct for errors in the measurement of whole-cell resistance (Ro) that can result when patch-clamping very small cells. The analysis revealed a mean corrected Ro of 26 G omega for these cells. 相似文献
5.
In the experiments here, the time- and voltage-dependent properties of the Ca2+-independent, depolarization-activated K+ currents in adult mouse ventricular myocytes were characterized in detail. In the majority (65 of 72, approximately 90%) of cells dispersed from the ventricles, analysis of the decay phases of the outward currents revealed three distinct K+ current components: a rapidly inactivating, transient outward K+ current, Ito,f (mean +/- SEM taudecay = 85 +/- 2 ms); a slowly (mean +/- SEM taudecay = 1,162 +/- 29 ms) inactivating K+ current, IK,slow; and a non inactivating, steady state current, Iss. In a small subset (7 of 72, approximately 10%) of cells, Ito,f was absent and a slowly inactivating (mean +/- SEM taudecay = 196 +/- 7 ms) transient outward current, referred to as Ito,s, was identified; the densities and properties of IK,slow and Iss in Ito,s-expressing cells are indistinguishable from the corresponding currents in cells with Ito,f. Microdissection techniques were used to remove tissue pieces from the left ventricular apex and from the ventricular septum to allow the hypothesis that there are regional differences in Ito,f and Ito,s expression to be tested directly. Electrophysiological recordings revealed that all cells isolated from the apex express Ito,f (n = 35); Ito,s is not detected in these cells (n = 35). In the septum, by contrast, all of the cells express Ito,s (n = 28) and in the majority (22 of 28, 80%) of cells, Ito,f is also present. The density of Ito,f (mean +/- SEM at +40 mV = 6.8 +/- 0.5 pA/pF, n = 22) in septum cells, however, is significantly (P < 0.001) lower than Ito,f density in cells from the apex (mean +/- SEM at +40 mV = 34.6 +/- 2.6 pA/pF, n = 35). In addition to differences in inactivation kinetics, Ito,f, Ito,s, and IK,slow display distinct rates of recovery (from inactivation), as well as differential sensitivities to 4-aminopyridine (4-AP), tetraethylammonium (TEA), and Heteropoda toxin-3. IK,slow, for example, is blocked selectively by low (10-50 microM) concentrations of 4-AP and by (>/=25 mM) TEA. Although both Ito,f and Ito,s are blocked by high (>100 microM) 4-AP concentrations and are relatively insensitive to TEA, Ito,f is selectively blocked by nanomolar concentrations of Heteropoda toxin-3, and Ito,s (as well as IK,slow and Iss) is unaffected. Iss is partially blocked by high concentrations of 4-AP or TEA. The functional implications of the distinct properties and expression patterns of Ito,f and Ito,s, as well as the likely molecular correlates of these (and the IK,slow and Iss) currents, are discussed. 相似文献
6.
We previously demonstrated that both adenosine receptor activation and direct activation of protein kinase C (PKC) decrease unloaded shortening velocity (V(max)) of rat ventricular myocytes. The goal of this study was to further investigate a possible link among adenosine receptors, phosphoinositide-PKC signaling, and V(max) in rat ventricular myocytes. We determined that the adenosine receptor agonist R-phenylisopropyladenosine (R-PIA, 100 microM) and the alpha-adrenergic receptor agonist phenylephrine (Phe, 10 microM) increased turnover of inositol phosphates. PKC translocation from the cytosol to the sarcolemma was used as an indicator of PKC activation. Western blot analysis demonstrated an increased PKC-epsilon translocation after exposure to R-PIA, Phe, and the PKC activators dioctanoylglycerol (50 microM) and phorbol myristate acetate (1 microM). PKC-alpha, PKC-delta, and PKC-zeta did not translocate to the membrane after R-PIA exposure. Finally, PKC inhibitors blocked R-PIA-induced decreases in V(max) as well as Ca(2+)-dependent actomyosin ATPase in rat ventricular myocytes. These results support the conclusions that adenosine receptors activate phosphoinositide-PKC signaling and that adenosine receptor-induced PKC activation mediates a decrease in V(max) in ventricular myocytes. 相似文献
7.
K(+) currents expressed in freshly dispersed rat ventricular fibroblasts have been studied using whole-cell patch-clamp recordings. Depolarizing voltage steps from a holding potential of -90 mV activated time- and voltage-dependent outward currents at membrane potentials positive to approximately -30 mV. The relatively slow activation kinetics exhibited strong dependence on the membrane potential. Selected changes in extracellular K(+) concentration ([K(+)](o)) revealed that the reversal potentials of the tail currents changed as expected for a K(+) equilibrium potential. The activation and inactivation kinetics of this K(+) current, as well as its recovery from inactivation, were well-fitted by single exponential functions. The steady-state inactivation was well described by a Boltzmann function with a half-maximal inactivation potential (V(0.5)) of -24 mV. Increasing [K(+)](o) (from 5 to 100 mM) shifted this V(0.5) in the hyperpolarizing direction by -11 mV. Inactivation was slowed by increasing [K(+)](o) to 100 mM, and the rate of recovery from inactivation was decreased after increasing [K(+)](o). Block of this K(+) current by extracellular tetraethylammonium also slowed inactivation. These [K(+)](o)-induced changes and tetraethylammonium effects suggest an important role for a C-type inactivation mechanism. This K(+) current was sensitive to dendrotoxin-I (100 nM) and rTityustoxin Kalpha (50 nM). 相似文献
9.
Outward K+ currents were recorded from 3-day-old embryonic chick ventricular myocytes using the patch clamp method. Two types of macroscopic outward currents were observed, one with rapid activation and de-activation time courses, and the other displaying a slower activation and long-duration tail currents. A time-dependent inactivation at positive potentials was a feature of the rapidly-activating current, allowing resolution of an early outward current. Single K+ channel currents were recorded using the outside-out patch technique. Two classes of K+ channels, which may contribute to the macroscopic currents, were differentiated on the basis of their conductances and kinetics. One class (ca 20 pS conductance) showed a rapid activation upon depolarization, and the other class (ca 60 pS) had a more delayed activation. A time-dependent inactivation of the rapid-activating, single-channel K+ current was also recorded. The two types of K+ channels contribute outward current during the plateau and promote the repolarization of the action potential, and the slowly de-activating K+ current may also be involved in the electrogenesis of automaticity observed in some of these cells. 相似文献
10.
The regulation of L-type Ca2+ current in isolated rat cardiac cells was studied using the perforated patch-clamp technique. A dual effect of the cAMP-dependent phosphorylation activator, isoproterenol, at different holding potentials (V(h)) was shown. The currents increased at V(h) = -50 mV and decreased at V(h) = -30 mV. A dihydropyridine agonist, BAY K 8644, and isoproterenol had an additive effect on the activation of Ca2+ channels at holding potentials close to the resting potential. The additivity was disturbed at more positive V(h). The activating effect of BAY K 8644 did not virtually change in the presence of a protein kinase blocker, H8, and a phosphatase activator, acetylcholine. The results were interpreted within the framework of a two-site phosphorylation model with two independent pathways of Ca2+ current regulation. 相似文献
11.
Interactions between neutrophils and the ventricular myocardium can contribute to tissue injury, contractile dysfunction and generation of arrhythmias in acute cardiac inflammation. Many of the molecular events responsible for neutrophil adhesion to ventricular myocytes are well defined; in contrast, the resulting electrophysiological effects and changes in excitation–contraction coupling have not been studied in detail. In the present experiments, rat ventricular myocytes were superfused with either circulating or emigrated neutrophils and whole-cell currents and action potential waveforms were recorded using the nystatin-perforated patch method. Almost immediately after adhering to ventricular myocytes, emigrated neutrophils caused a depolarization of the resting membrane potential and a marked prolongation of myocyte action potential. Voltage clamp experiments demonstrated that following neutrophil adhesion, there was (i) a slowing of the inactivation of a TTX-sensitive Na + current, and (ii) a decrease in an inwardly rectifying K + current. One cytotoxic effect of neutrophils appears to be initiated by enhanced Na+ entry into the myocytes. Thus, manoeuvres that precluded activation of Na+ channels, for example holding the membrane potential at −80 mV, significantly increased the time to cell death or prevented contracture entirely. A mathematical model for the action potential of rat ventricular myocytes has been modified and then utilized to integrate these findings. These simulations demonstrate the marked effects of (50-fold) slowing of the inactivation of 2–4% of the available Na+ channels on action potential duration and the corresponding intracellular Ca2+ transient. In ongoing studies using this combination of approaches, are providing significant new insights into some of the fundamental processes that modulate myocyte damage in acute inflammation. 相似文献
12.
In this study we have evaluated the specificity of different PKC isozymes for the phosphorylation of the catalytic alpha1 subunit of rat renal Na+,K+-ATPase (alpha1 Na+,K+-ATPase). Using in vitro phosphotransferase assays we found that classical PKCs (cPKCs) alpha, betaI, and gamma efficiently phosphorylate alpha1 Na+,K+-ATPase. However, alpha1 Na+,K+-ATPase was a poor substrate for the novel PKCs (nPKCs) delta and epsilon. Two-dimensional phosphopeptide mapping revealed a similar pattern of phosphorylation by all cPKCs. The functional significance of this finding was evaluated by measuring Na+,K+-ATPase activity (assessed by 86Rb+ uptake) in COS-7 cells expressing the rat alpha1 Na+,K+-ATPase. 1-oleoyl-2-acetoyl-sn-glycerol (OAG), a nonselective PKC activator, inhibited Na+,K+-ATPase activity in this system. On the other hand, 12-deoxyphorbol-13-phenylacetate (DPP), which preferentially activates nPKCepsilon, did not affect 86Rb+ uptake. These results indicate a differential pattern of phosphorylation and regulation of rat renal Na+,K+-ATPase activity by PKC isoforms and suggest an important role for cPKCs in the physiological regulation of the pump. 相似文献
13.
目的 :研究吗啡对新生鼠尾核神经元钾离子通道电流的作用。方法 :应用全细胞膜片钳技术在培养的尾核神经元上 ,观察吗啡急性与慢性处理对尾核神经元电压门控钾离子通道电流的影响。结果 :吗啡急性处理尾核神经元诱发钾离子通道电流增大 ,电流从加吗啡前的 (2 .6± 0 .4 )nA增高到 (3.3± 0 .5 )nA ,加纳洛酮后电流下降为 (2 .4± 0 .4 )nA ;吗啡慢性处理尾核神经元的钾离子通道电流从对照组的 (2 .6± 0 .4 )nA增高到 (3.1± 0 .5 )nA ,加纳洛酮后电流下降为 (2 .4± 0 .4 )nA。结论 :在吗啡急性或慢性处理尾核神经元后 ,吗啡经 μ受体介导 ,诱发尾核神经元钾离子通道电流增大 ,使神经元处于超极化状态 ,导致神经元活动的抑制 相似文献
14.
We hypothesized that voltage-gated K+ (Kv) currents regulate the resting membrane potential (Em), and that serotonin (5-HT) causes Em depolarization by reducing Kv currents in rat mesenteric artery smooth muscle cells (MASMCs). The resting Em was about -40 mV in the nystatin-perforated patch configuration, and the inhibition of Kv currents by 4-aminopyridine caused marked Em depolarization. The inhibition of Ca2+-activated K+ (KCa) currents had no effect on Em. 5-HT (1 microM) depolarized Em by approximately 11 mV and reduced the Kv currents to approximately 63% of the control at -20 mV. Similar 5-HT effects were observed with the conventional whole-cell configuration with a weak Ca2+ buffer in the pipette solution, but not with a strong Ca2+ buffer. In the presence of tetraethylammonium (1mM), 5-HT caused Em depolarization similar to the control condition. These results indicate that the resting Em is largely under the regulation of Kv currents in rat MASMCs, and that 5-HT depolarizes Em by reducing Kv currents in a [Ca2+]i-dependent manner. 相似文献
15.
In the experiments here, the detailed kinetic properties of the Ca(2+)-independent, depolarization-activated outward currents (Iout) in enzymatically dispersed adult rat atrial myocytes were studied. Although there is only slight attenuation of peak Iout during brief (100 ms) voltage steps, substantial decay is evident during long (10 s) depolarizations. The analyses here reveal that current inactivation is best described by the sum of two exponential components, which we have termed IKf and IKs to denote the fast and slow components, respectively, of Iout decay. At all test potentials, IKf inactivates approximately 20-fold more rapidly than IKs. Neither the decay time constants nor the fraction of Iout remaining at the end of 10-s depolarizations varies over the potential range of 0 to +50 mV, indicating that the rates of inactivation and recovery from inactivation are voltage independent. IKf recovers from inactivation completely, independent of the recovery of IKs, and IKf recovers approximately 20 times faster than IKs. The pharmacological properties of IKf and IKs are similar: both components are sensitive to 4-aminopyridine (1-5 mM) and both are relatively resistant to externally applied tetraethylammonium (50 mM). Taken together, these findings suggest that IKf and IKs correspond to two functionally distinct K+ currents with similar voltage-dependent properties and pharmacologic sensitivities, but with markedly different rates of inactivation and recovery from inactivation. From the experimental data, several gating models were developed in which voltage-independent inactivation is coupled either to channel opening or to the activation of the individual channel subunits. Experimental testing of predictions of these models suggests that voltage-independent inactivation is coupled to activation, and that inactivation of only a single subunit is required to result in functional inactivation of the channels. This model closely approximates the properties of IKf and IKs, as well as the composite outward currents, measured in adult rat atrial myocytes. 相似文献
16.
目的:探讨溶血卵磷脂(LPC)对人脐静脉内皮细胞(HUVEC)胞外5’-核苷酸酶(CD73)的调节作用及其与蛋白激酶C(PKC)的关系。方法:将含已融合HUVEC的细胞培养皿分为4组(n=15):①LPC组:培养皿中加入LPC10μmol/L;②CHE(白屈菜赤碱,PKC抑制剂)组:加入CHE100μmol/L及LPC10μmol/L;③AOPCP(α,β-甲基腺苷-5′-二磷酸,CD73抑制剂)组:加入AOPCP50μmol/L及LPC10μmol/L;④对照组:无干预。每组均于实验开始时加入乙烯-单磷酸腺苷(eAMP,5μmol/L)。在实验第15、30、45min测定各培养皿中乙烯-腺苷(eAD)含量。结果:在上述三个时间点LPC组HUVEC的eAD生成均较对照组显著增高(P〈0.05),加入CHE使LPC的这种增加作用消失,其eAD生成与对照组无差别(P〉0.05),而AOPCP组eAD生成较其它三组均显著减少(P〈0.01)。结论:LPC可兴奋内皮细胞胞外CD73,此作用可被PKC抑制剂CHE抑制,LPC上调CD73活性作用可能与PKC有关。 相似文献
17.
The autocrine modulation of cardiac K(+) currents was compared in ventricular and atrial cells (V and A cells, respectively) from Type 1 diabetic rats. K(+) currents were measured by using whole cell voltage clamp. ANG II was measured by ELISA and immunofluorescent labeling. Oxidative stress was assessed by immunofluorescent labeling with dihydroethidium, a measure of superoxide ions. In V cells, K(+) currents are attenuated after activation of the renin-angiotensin system (RAS) and the resulting ANG II-mediated oxidative stress. In striking contrast, these currents are not attenuated in A cells. Inhibition of the angiotensin-converting enzyme (ACE) also has no effect, in contrast to current augmentation in V cells. ANG II levels are enhanced in V, but not in A, cells. However, the high basal ANG II levels in A cells suggest that in these cells, ANG II-mediated pathways are suppressed, rather than ANG II formation. Concordantly, superoxide ion levels are lower in diabetic A than in V cells. Several findings indicate that high atrial natriuretic peptide (ANP) levels in A cells inhibit RAS activation. In male diabetic V cells, in vitro ANP (300 nM-1 muM, >5 h) decreases oxidative stress and augments K(+) currents, but not when excess ANG II is present. ANP has no effect on ventricular K(+) currents when the RAS is not activated, as in control males, in diabetic males treated with ACE inhibitor and in diabetic females. In conclusion, the modulation of K(+) currents and oxidative stress is significantly different in A and V cells in diabetic rat hearts. The evidence suggests that this is largely due to inhibition of RAS activation and/or action by ANP in A cells. These results may underlie chamber-specific arrhythmogenic mechanisms. 相似文献
18.
The present study was conducted to characterize possible rapid effects of 17-β-estradiol on voltage-gated K(+) channels in preoptic neurons and, in particular, to identify the mechanisms by which 17-β-estradiol affects the K(+) channels. Whole-cell currents from dissociated rat preoptic neurons were studied by perforated-patch recording. 17-β-Estradiol rapidly (within seconds) and reversibly reduced the K(+) currents, showing an EC(50) value of 9.7 μM. The effect was slightly voltage dependent, but independent of external Ca(2+), and not sensitive to an estrogen-receptor blocker. Although 17-α-estradiol also significantly reduced the K(+) currents, membrane-impermeant forms of estradiol did not reduce the K(+) currents and other estrogens, testosterone and cholesterol were considerably less effective. The reduction induced by estradiol was overlapping with that of the K(V)-2-channel blocker r-stromatoxin-1. The time course of K(+) current in 17-β-estradiol, with a time-dependent inhibition and a slight dependence on external K(+), suggested an open-channel block mechanism. The properties of block were predicted from a computational model where 17-β-estradiol binds to open K(+) channels. It was concluded that 17-β-estradiol rapidly reduces voltage-gated K(+) currents in a way consistent with an open-channel block mechanism. This suggests a new mechanism for steroid action on ion channels. 相似文献
19.
Plenty of evidence suggests that increased blood levels of homocysteine (Hcy) are an independent risk factor for the development of vascular diseases, but the underlying mechanisms are not well understood. It is well known that the larger conductance Ca(2+)-activated K(+) channels (BK(Ca)) play an essential role in vascular function, so the present study was conducted to determine direct effects of Hcy on BK(Ca) channel properties of smooth muscle cells. Whole-cell patch-clamp recordings were made in mesenteric artery smooth muscle cells isolated from normal rat and patients to investigate effects of 5, 50 and 500 microM Hcy on BK(Ca), the main current mediating vascular responses in these cells. In human artery smooth muscle cells, maximum BK(Ca) density (measured at +60 mV) was inhibited by about 24% (n=6, P<0.05). In rat artery smooth muscle cells, maximum BK(Ca) density was decreased by approximately 27% in the presence of 50 microM Hcy (n=8, P<0.05). In addition, when rat artery smooth muscle cells was treated with 50 microM Hcy for 24 h, maximum BK(Ca) density decreased by 58% (n=5, P<0.05). These data suggest that Hcy significantly inhibited BK(Ca) currents in isolated human and rat artery smooth muscle cells. BK(Ca) reduced and impaired by elevated Hcy levels might contribute to abnormal vascular diseases. 相似文献
20.
本文旨在研究急性低温/再复温对大鼠心室肌膜电位和钾电流的影响.膜电位和膜电流分别在全细胞膜片钳的电压钳和电流钳模式下记录.当细胞外灌流液从25℃降低到4℃后,一过性外向电流(transient outward current, Ito)完全消失,膜电位为 60mV时的稳态外向K 电流(sustained outward K current, Iss)和膜电位为-120mV时的内向整流K 电流(inward rectifier K current, IK1)分别降低(48.5±14.1)%和(35.7±18.2)%,同时,膜电位绝对值降低.当细胞外灌流液从4℃再升高到36℃后,膜电位出现一过性超级化,然后恢复到静息电位水平;在58个细胞中,有36个细胞伴随复温出现ATP-敏感性K (ATP-sensitive K , KATP)通道的激活.再复温引起的上述变化可以被Na /K -ATP酶抑制剂哇巴因(100μmol/L)所抑制.再复温引起的KATP通道激活也能被蛋白激酶A抑制剂H-89(100μmol/L)所抑制.在细胞膜电位被钳制在0mV时,当细胞外灌流液温度从25℃降低到4℃后,细胞的体积没有发生明显改变,但当再复温引起KATP通道激活后,细胞很快发生皱缩,同时细胞内部出现许多折光较强的斑点.上述结果表明急性低温/再复温对大鼠心室肌膜电位和K 电流有明显影响,并提示KATP通道激活可能与心肌低温/再复温损伤有关. 相似文献
|