首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Tamoxifen is an estrogen receptor antagonist used in the treatment of breast cancer. However, tamoxifen has been shown to induce QT prolongation of the electrocardiogram, thereby potentially causing life-threatening polymorphic ventricular arrhythmias. The purpose of the present study was to elucidate the electrophysiological mechanism(s) that underlie the arrhythmogenic effects of tamoxifen. We used standard ruptured whole cell and perforated patch-clamping techniques on rat ventricular myocytes to investigate the effects of tamoxifen on cardiac action potential (AP) waveforms and the underlying K+ currents. Tamoxifen (3 micromol/l) markedly prolonged AP duration, decreased maximal rate of depolarization, and decreased resting membrane potential. At this concentration, tamoxifen significantly depressed the Ca2+-independent transient outward K+ current (Ito), sustained outward delayed rectifier K+ current (Isus), inward rectifier K+ current (IK1), and Na+ current (INa) in the myocytes. Lower concentrations of tamoxifen (1 micromol/l) also decreased the resting membrane potential and significantly depressed IK1 to 79 +/- 5% (n = 5; at -120 mV) of pretreatment values. The results of this study indicate that inhibition of Ito, Isus, and IK1 by tamoxifen may underlie AP prolongation in cardiac myocytes and thereby contribute to prolonged QT interval observed in patients.  相似文献   

2.
Summary The voltage-dependent properties of inwardly rectifying potassium channels were studied in adult and neonatal rat ventricular myocytes using patch voltage-clamp techniques. Inward rectification was pronounced in the single-channel currentvoltage relation and outward currents were not detected at potentials positive to the calculated reversal potential for potassium (E k). Single-channel currents having at least three different conductances were observed and the middle one was predominant. Its single-channel conductance was nonlinear ranging from 20 to 40 pS. Its open-time distribution was fit by a single exponential and the time constants decreased markedly with hyperpolarization fromE k. The distribution of the closed times required at least two exponentials for fitting, and their taus were related to the bursting behavior displayed at negative potentials. The steady-state probability of being open (P o) for this channel was determined from the single-channel records; in symmetrical isotonic K solutionsP o was 0.73 at –60 mV, but fell to 0.18 at –100 mV. The smaller conductance was about one-half the usual value and the open times were greatly prolonged. The large conductance was about 50 percent greater than the usual value and the open times were very brief. TheP o(V) relation, the kinetics and the conductance of the predominant channel account for most of the whole cell inwardly rectifying current. The kinetics suggest that an intrinsic K+-dependent mechanism may control the gating, and the conductance of this channel. In the steady state, the opening and closing probabilities for the two smaller channels were not independent of each other, suggesting the possibility of a sub-conductance state or cooperativity between different channels.  相似文献   

3.
Depolarization-activated outward K+ currents in isolated adult rat ventricular myocytes were characterized using the whole-cell variation of the patch-clamp recording technique. During brief depolarizations to potentials positive to -40 mV, Ca(2+)-independent outward K+ currents in these cells rise to a transient peak, followed by a slower decay to an apparent plateau. The analyses completed here reveal that the observed outward current waveforms result from the activation of two kinetically distinct voltage-dependent K+ currents: one that activates and inactivates rapidly, and one that activates and inactivates slowly, on membrane depolarization. These currents are referred to here as Ito (transient outward) and IK (delayed rectifier), respectively, because their properties are similar (although not identical) to these K+ current types in other cells. Although the voltage dependences of Ito and IK activation are similar, Ito activates approximately 10-fold and inactivates approximately 30-fold more rapidly than IK at all test potentials. In the composite current waveforms measured during brief depolarizations, therefore, the peak current predominantly reflects Ito, whereas IK is the primary determinant of the plateau. There are also marked differences in the voltage dependences of steady-state inactivation of these two K+ currents: IK undergoes steady-state inactivation at all potentials positive to -120 mV, and is 50% inactivated at -69 mV; Ito, in contrast, is insensitive to steady-state inactivation at membrane potentials negative to -50 mV. In addition, Ito recovers from steady-state inactivation faster than IK: at -90 mV, for example, approximately 70% recovery from the inactivation produced at -20 mV is observed within 20 ms for Ito; IK recovers approximately 25-fold more slowly. The pharmacological properties of Ito and IK are also distinct: 4-aminopyridine preferentially attenuates Ito, and tetraethylammonium suppresses predominantly IK. The voltage- and time-dependent properties of these currents are interpreted here in terms of a model in which Ito underlies the initial, rapid repolarization phase of the action potential (AP), and IK is responsible for the slower phase of AP repolarization back to the resting membrane potential, in adult rat ventricular myocytes.  相似文献   

4.
The functional expression of the Ca2+-activated K+ current (IK[Ca]) is dependent on cell-cell interactions in developing chick autonomic neurons. In chick ciliary ganglion (CG) neurons, expression of macroscopic IK[Ca] coincides with the formation of synapses with target tissues. CG neurons that develop in vivo in the absence of normal target tissues fail to express functional IK[Ca], although voltage-activated Ca2+ currents and most other ionic currents are expressed at normal amplitudes and densities. CG neurons placed in cell culture prior to formation of synapses with target tissues also fail to express macroscopic IK[Ca]. However, CG neurons cultured in the presence of a heat- and trypsin-sensitive extract of target tissues express IK[Ca] at normal levels. Similarly, interactions with target tissue appear to regulate the expression of whole-cell IK[Ca] in developing chick sympathetic ganglion neurons, although the relevant trophic factors appear to be different from those required by CG neurons. In addition to target tissue interactions, an intact preganglionic innervation is required for the normal in vivo development of IK[Ca] in chick CG neurons. The trophic effects of the afferent innervation do not require synaptic activation of the CG neurons, indicating secretion of a trophic factor, possibly an isoform of β-neuregulin. The results are consistent with the hypothesis that target- and nerve terminal-derived trophic factors interact at a posttranslational level in the regulation of a functional IK[Ca]. Together, this body of data demonstrates an essential role for cell-cell interactions in the differentiation of neuronal excitability. © 1998 John Wiley & Sons, Inc. J Neurobiol 37: 23–36, 1998  相似文献   

5.
In the experiments here, the developmental expression of the functional Ca(2+)-independent, depolarization-activated K+ channel currents, Ito and IK, and of the voltage-gated K+ channel (Kv) alpha subunits, Kv1.2, Kv1.4, Kv1.5, Kv2.1, and Kv4.2 in rat ventricular myocytes were examined quantitatively. Using the whole-cell patch clamp recording method, the properties and the densities of Ito and IK in ventricular myocytes isolated from postnatal day 5 (P5), 10 (P10), 15 (P15), 20 (P20), 25 (P25), 30 (P30), and adult (8-12 wk) rats were characterized and compared. These experiments revealed that mean Ito densities increase fourfold between birth and P30, whereas IK densities vary only slightly. Neither the time- nor the voltage-dependent properties of the currents vary measurably, suggesting that the subunits underlying functional Ito and IK channels are the same throughout postnatal development. In parallel experiments, the developmental expression of each of the voltage-gated K+ channel alpha subunits, Kv1.2, Kv1.4, Kv1.5, Kv2.1, and Kv4.2, was examined quantitatively at the mRNA and protein levels using subunit-specific probes. RNase protection assays revealed that Kv1.4 message levels are high at birth, increase between P0 and P10, and subsequently decrease to very low levels in adult rat ventricles. The decrease in message is accompanied by a marked reduction in Kv1.4 protein, consistent with our previous suggestion that Kv1.4 does not contribute to the formation of functional K+ channels in adult rat ventricular myocytes. In contrast to Kv1.4, the mRNA levels of Kv1.2, Kv1.5, Kv2.1, and Kv4.2 increase (three- to five- fold) between birth and adult. Western analyses, however, revealed that the expression patterns of these subunits proteins vary in distinct ways: Kv1.2 and Kv4.2, for example, increase between P5 and adult, whereas Kv1.5 remains constant and Kv2.1 decreases. Throughout development, therefore, there is a mismatch between the numbers of Kv alpha subunits expressed and the functional voltage-gated K+ channel currents distinguished electrophysiologically in rat ventricular myocytes. Alternative experimental approaches will be required to define directly the Kv alpha subunits that underlie functional voltage- gated K+ channels in these (and other) cells. In addition, the finding that Kv alpha subunit protein expression levels do not necessarily mirror mRNA levels suggests that caution should be exercised in attempting functional interpretations of observed changes in mRNA levels alone.  相似文献   

6.
The transient potassium current, IK(t), of enzymatically dissociated rat olfactory receptor neurons was studied using patch-clamp techniques. Upon depolarization from negative holding potentials, IK(t) activated rapidly and then inactivated with a time course described by the sum of two exponential components with time constants of 22.4 and 143 ms. Single-channel analysis revealed a further small component with a time constant of several seconds. Steady-state inactivation was complete at -20 mV and completely removed at -80 mV (midpoint -45 mV). Activation was significant at -40 mV and appeared to reach a maximum conductance at +40 mV (midpoint -13 mV). Deactivation was described by the sum of two voltage-dependent exponential components. Recovery from inactivation was extraordinarily slow (50 s at -100 mV) and the underlying processes appeared complex. IK(t) was reduced by 4-aminopyridine and tetraethylammonium applied externally. Increasing the external K+ concentration ([K+]o) from 5 to 25 mM partially removed IK(t) inactivation, usually without affecting activation kinetics. The elevated [K+]o also hyperpolarized the steady-state inactivation curve by 9 mV and significantly depolarized the voltage dependence of activation. Single transient K+ channels, with conductances of 17 and 26 pS, were observed in excised patches and often appeared to be localized into large clusters. These channels were similar to IK(t) in their kinetic, pharmacological, and voltage-dependent properties and their inactivation was also subject to modulation by [K+]o. The properties of IK(t) imply a role in action potential repolarization and suggest it may also be important in modulating spike parameters during neuronal burst firing. A simple method is also presented to correct for errors in the measurement of whole-cell resistance (Ro) that can result when patch-clamping very small cells. The analysis revealed a mean corrected Ro of 26 G omega for these cells.  相似文献   

7.
8.
In the experiments here, the time- and voltage-dependent properties of the Ca2+-independent, depolarization-activated K+ currents in adult mouse ventricular myocytes were characterized in detail. In the majority (65 of 72, approximately 90%) of cells dispersed from the ventricles, analysis of the decay phases of the outward currents revealed three distinct K+ current components: a rapidly inactivating, transient outward K+ current, Ito,f (mean +/- SEM taudecay = 85 +/- 2 ms); a slowly (mean +/- SEM taudecay = 1,162 +/- 29 ms) inactivating K+ current, IK,slow; and a non inactivating, steady state current, Iss. In a small subset (7 of 72, approximately 10%) of cells, Ito,f was absent and a slowly inactivating (mean +/- SEM taudecay = 196 +/- 7 ms) transient outward current, referred to as Ito,s, was identified; the densities and properties of IK,slow and Iss in Ito,s-expressing cells are indistinguishable from the corresponding currents in cells with Ito,f. Microdissection techniques were used to remove tissue pieces from the left ventricular apex and from the ventricular septum to allow the hypothesis that there are regional differences in Ito,f and Ito,s expression to be tested directly. Electrophysiological recordings revealed that all cells isolated from the apex express Ito,f (n = 35); Ito,s is not detected in these cells (n = 35). In the septum, by contrast, all of the cells express Ito,s (n = 28) and in the majority (22 of 28, 80%) of cells, Ito,f is also present. The density of Ito,f (mean +/- SEM at +40 mV = 6.8 +/- 0.5 pA/pF, n = 22) in septum cells, however, is significantly (P < 0.001) lower than Ito,f density in cells from the apex (mean +/- SEM at +40 mV = 34.6 +/- 2.6 pA/pF, n = 35). In addition to differences in inactivation kinetics, Ito,f, Ito,s, and IK,slow display distinct rates of recovery (from inactivation), as well as differential sensitivities to 4-aminopyridine (4-AP), tetraethylammonium (TEA), and Heteropoda toxin-3. IK,slow, for example, is blocked selectively by low (10-50 microM) concentrations of 4-AP and by (>/=25 mM) TEA. Although both Ito,f and Ito,s are blocked by high (>100 microM) 4-AP concentrations and are relatively insensitive to TEA, Ito,f is selectively blocked by nanomolar concentrations of Heteropoda toxin-3, and Ito,s (as well as IK,slow and Iss) is unaffected. Iss is partially blocked by high concentrations of 4-AP or TEA. The functional implications of the distinct properties and expression patterns of Ito,f and Ito,s, as well as the likely molecular correlates of these (and the IK,slow and Iss) currents, are discussed.  相似文献   

9.
10.
We previously demonstrated that both adenosine receptor activation and direct activation of protein kinase C (PKC) decrease unloaded shortening velocity (V(max)) of rat ventricular myocytes. The goal of this study was to further investigate a possible link among adenosine receptors, phosphoinositide-PKC signaling, and V(max) in rat ventricular myocytes. We determined that the adenosine receptor agonist R-phenylisopropyladenosine (R-PIA, 100 microM) and the alpha-adrenergic receptor agonist phenylephrine (Phe, 10 microM) increased turnover of inositol phosphates. PKC translocation from the cytosol to the sarcolemma was used as an indicator of PKC activation. Western blot analysis demonstrated an increased PKC-epsilon translocation after exposure to R-PIA, Phe, and the PKC activators dioctanoylglycerol (50 microM) and phorbol myristate acetate (1 microM). PKC-alpha, PKC-delta, and PKC-zeta did not translocate to the membrane after R-PIA exposure. Finally, PKC inhibitors blocked R-PIA-induced decreases in V(max) as well as Ca(2+)-dependent actomyosin ATPase in rat ventricular myocytes. These results support the conclusions that adenosine receptors activate phosphoinositide-PKC signaling and that adenosine receptor-induced PKC activation mediates a decrease in V(max) in ventricular myocytes.  相似文献   

11.
Role of HERG-like K+ currents in opossum esophageal circular smooth muscle   总被引:4,自引:0,他引:4  
An inwardlyrectifying K+ conductance closelyresembling the human ether-a-go-go-related gene (HERG) current wasidentified in single smooth muscle cells of opossum esophageal circularmuscle. When cells were voltage clamped at 0 mV, in isotonicK+ solution (140 mM), stephyperpolarizations to 120 mV in 10-mV increments resulted inlarge inward currents that activated rapidly and then declined slowly(inactivated) during the test pulse in a time- and voltage- dependentfashion. The HERG K+ channelblockers E-4031 (1 µM), cisapride (1 µM), andLa3+ (100 µM) strongly inhibitedthese currents as did millimolar concentrations ofBa2+. Immunoflourescence stainingwith anti-HERG antibody in single cells resulted in punctate stainingat the sarcolemma. At membrane potentials near the resting membranepotential (50 to 70 mV), thisK+ conductance did not inactivatecompletely. In conventional microelectrode recordings, both E-4031 andcisapride depolarized tissue strips by 10 mV and also induced phasiccontractions. In combination, these results provide direct experimentalevidence for expression of HERG-likeK+ currents in gastrointestinalsmooth muscle cells and suggest that HERG plays an important role inmodulating the resting membrane potential.

  相似文献   

12.
K+ currents activated by depolarization in cardiac fibroblasts   总被引:1,自引:0,他引:1  
K(+) currents expressed in freshly dispersed rat ventricular fibroblasts have been studied using whole-cell patch-clamp recordings. Depolarizing voltage steps from a holding potential of -90 mV activated time- and voltage-dependent outward currents at membrane potentials positive to approximately -30 mV. The relatively slow activation kinetics exhibited strong dependence on the membrane potential. Selected changes in extracellular K(+) concentration ([K(+)](o)) revealed that the reversal potentials of the tail currents changed as expected for a K(+) equilibrium potential. The activation and inactivation kinetics of this K(+) current, as well as its recovery from inactivation, were well-fitted by single exponential functions. The steady-state inactivation was well described by a Boltzmann function with a half-maximal inactivation potential (V(0.5)) of -24 mV. Increasing [K(+)](o) (from 5 to 100 mM) shifted this V(0.5) in the hyperpolarizing direction by -11 mV. Inactivation was slowed by increasing [K(+)](o) to 100 mM, and the rate of recovery from inactivation was decreased after increasing [K(+)](o). Block of this K(+) current by extracellular tetraethylammonium also slowed inactivation. These [K(+)](o)-induced changes and tetraethylammonium effects suggest an important role for a C-type inactivation mechanism. This K(+) current was sensitive to dendrotoxin-I (100 nM) and rTityustoxin Kalpha (50 nM).  相似文献   

13.
14.
The regulation of L-type Ca2+ current in isolated rat cardiac cells was studied using the perforated patch-clamp technique. A dual effect of the cAMP-dependent phosphorylation activator, isoproterenol, at different holding potentials (V(h)) was shown. The currents increased at V(h) = -50 mV and decreased at V(h) = -30 mV. A dihydropyridine agonist, BAY K 8644, and isoproterenol had an additive effect on the activation of Ca2+ channels at holding potentials close to the resting potential. The additivity was disturbed at more positive V(h). The activating effect of BAY K 8644 did not virtually change in the presence of a protein kinase blocker, H8, and a phosphatase activator, acetylcholine. The results were interpreted within the framework of a two-site phosphorylation model with two independent pathways of Ca2+ current regulation.  相似文献   

15.
Outward K+ currents were recorded from 3-day-old embryonic chick ventricular myocytes using the patch clamp method. Two types of macroscopic outward currents were observed, one with rapid activation and de-activation time courses, and the other displaying a slower activation and long-duration tail currents. A time-dependent inactivation at positive potentials was a feature of the rapidly-activating current, allowing resolution of an early outward current. Single K+ channel currents were recorded using the outside-out patch technique. Two classes of K+ channels, which may contribute to the macroscopic currents, were differentiated on the basis of their conductances and kinetics. One class (ca 20 pS conductance) showed a rapid activation upon depolarization, and the other class (ca 60 pS) had a more delayed activation. A time-dependent inactivation of the rapid-activating, single-channel K+ current was also recorded. The two types of K+ channels contribute outward current during the plateau and promote the repolarization of the action potential, and the slowly de-activating K+ current may also be involved in the electrogenesis of automaticity observed in some of these cells.  相似文献   

16.
Fatty acid metabolites accumulate in the heart underpathophysiological conditions that affect -oxidation and can elicit marked electrophysiological changes that are arrhythmogenic. The purpose of the present study was to determine the impact of amphiphilic fatty acid metabolites on K+currents that control cardiac refractoriness and excitability. Transient outward(Ito) andinward rectifier(IK1)K+ currents were recorded by thewhole cell voltage-clamp technique in rat ventricular myocytes, and theeffects of two major fatty acid metabolites were examined:palmitoylcarnitine and palmitoyl-coenzyme A (palmitoyl-CoA).Palmitoylcarnitine (0.5-10 µM) caused a concentration-dependent decrease in Itodensity in myocytes internally dialyzed with the amphiphile; 10 µMreduced mean Itodensity at +60 mV by 62% compared with control(P < 0.05). In contrast, externalpalmitoylcarnitine at the same concentrations had no effect, nor didinternal dialysis significantly alterIK1. Dialysiswith palmitoyl-CoA (1-10 µM) produced a smaller decrease inIto densitycompared with that produced by palmitoylcarnitine; 10 µM reduced meanIto density at+60 mV by 37% compared with control(P < 0.05). Both metabolites delayedrecovery of Itofrom inactivation but did not affect voltage-dependent properties.Moreover, the effects of palmitoylcarnitine were relatively specific,as neither palmitate (10 µM) nor carnitine (10 µM) alone significantly influencedIto when added tothe pipette solution. These data therefore suggest that amphiphilicfatty acid metabolites downregulateIto channels by amechanism confined to the cytoplasmic side of the membrane. Thisdecrease in cardiac K+ channelactivity may delay repolarization under pathophysiological conditionsin which amphiphile accumulation is postulated to occur, such asdiabetes mellitus or myocardial infarction.

  相似文献   

17.
The mechanism of sensing hypoxia and hypoxia-induced activation of cerebral arterial Ca(2+)-activated K(+) (K(Ca)) channel currents and vasodilation is not known. We investigated the roles of the cytochrome P-450 4A (CYP 4A) omega-hydroxylase metabolite of arachidonic acid, 20-hydroxyeicosatetraenoic acid (20-HETE), and generation of superoxide in the hypoxia-evoked activation of the K(Ca) channel current in rat cerebral arterial muscle cells (CAMCs) and cerebral vasodilation. Patch-clamp analysis of K(+) channel current identified a voltage- and Ca(2+)-dependent 238 +/- 21-pS unitary K(+) currents that are inhibitable by tetraethylammonium (TEA, 1 mM) or iberiotoxin (100 nM). Hypoxia (<2% O(2)) reversibly enhanced the open-state probability (NP(o)) of the 238-pS unitary K(Ca) current in cell-attached patches. This effect of hypoxia was not observed on unitary K(Ca) currents recorded from either excised inside-out or outside-out membrane patches. Inhibition of CYP 4A omega-hydroxylase activity increased the NP(o) of K(Ca) single-channel current. Hypoxia reduced the basal endogenous level of 20-HETE by 47 +/- 3% as well as catalytic formation of 20-HETE in cerebral arterial muscle homogenates as determined by liquid chromatography-mass spectrometry analysis. The concentration of authentic 20-HETE was reduced when incubated with the superoxide donor KO(2). Exogenous 20-HETE (100 nM) attenuated the hypoxia-induced activation of the K(Ca) current in CAMCs. Hypoxia did not augment the increase in NP(o) of K(Ca) channel current induced by suicide inhibition of endogenous CYP 4A omega-hydroxylase activity with 17-octadecynoic acid. In pressure (80 mmHg)-constricted cerebral arterial segments, hypoxia induced dilation that was partly attenuated by 20-HETE or by the K(Ca) channel blocker TEA. Exposure to hypoxia caused the generation of intracellular superoxide as evidenced by intense staining of arterial muscle with the fluorescent probe hydroethidine, by quantitation using fluorescent HPLC analysis, and by attenuation of the hypoxia-induced activation of the K(Ca) channel current by superoxide dismutation. These results suggest that the exposure of CAMCs to hypoxia results in the generation of superoxide and reduction in endogenous level of 20-HETE that may account for the hypoxia-induced activation of arterial K(Ca) channel currents and cerebral vasodilation.  相似文献   

18.
Interactions between neutrophils and the ventricular myocardium can contribute to tissue injury, contractile dysfunction and generation of arrhythmias in acute cardiac inflammation. Many of the molecular events responsible for neutrophil adhesion to ventricular myocytes are well defined; in contrast, the resulting electrophysiological effects and changes in excitation–contraction coupling have not been studied in detail. In the present experiments, rat ventricular myocytes were superfused with either circulating or emigrated neutrophils and whole-cell currents and action potential waveforms were recorded using the nystatin-perforated patch method. Almost immediately after adhering to ventricular myocytes, emigrated neutrophils caused a depolarization of the resting membrane potential and a marked prolongation of myocyte action potential. Voltage clamp experiments demonstrated that following neutrophil adhesion, there was (i) a slowing of the inactivation of a TTX-sensitive Na+ current, and (ii) a decrease in an inwardly rectifying K+ current.

One cytotoxic effect of neutrophils appears to be initiated by enhanced Na+ entry into the myocytes. Thus, manoeuvres that precluded activation of Na+ channels, for example holding the membrane potential at −80 mV, significantly increased the time to cell death or prevented contracture entirely. A mathematical model for the action potential of rat ventricular myocytes has been modified and then utilized to integrate these findings. These simulations demonstrate the marked effects of (50-fold) slowing of the inactivation of 2–4% of the available Na+ channels on action potential duration and the corresponding intracellular Ca2+ transient. In ongoing studies using this combination of approaches, are providing significant new insights into some of the fundamental processes that modulate myocyte damage in acute inflammation.  相似文献   


19.
In this study we have evaluated the specificity of different PKC isozymes for the phosphorylation of the catalytic alpha1 subunit of rat renal Na+,K+-ATPase (alpha1 Na+,K+-ATPase). Using in vitro phosphotransferase assays we found that classical PKCs (cPKCs) alpha, betaI, and gamma efficiently phosphorylate alpha1 Na+,K+-ATPase. However, alpha1 Na+,K+-ATPase was a poor substrate for the novel PKCs (nPKCs) delta and epsilon. Two-dimensional phosphopeptide mapping revealed a similar pattern of phosphorylation by all cPKCs. The functional significance of this finding was evaluated by measuring Na+,K+-ATPase activity (assessed by 86Rb+ uptake) in COS-7 cells expressing the rat alpha1 Na+,K+-ATPase. 1-oleoyl-2-acetoyl-sn-glycerol (OAG), a nonselective PKC activator, inhibited Na+,K+-ATPase activity in this system. On the other hand, 12-deoxyphorbol-13-phenylacetate (DPP), which preferentially activates nPKCepsilon, did not affect 86Rb+ uptake. These results indicate a differential pattern of phosphorylation and regulation of rat renal Na+,K+-ATPase activity by PKC isoforms and suggest an important role for cPKCs in the physiological regulation of the pump.  相似文献   

20.
吗啡对新生鼠尾核神经元钾离子通道电流的作用   总被引:4,自引:1,他引:4  
目的 :研究吗啡对新生鼠尾核神经元钾离子通道电流的作用。方法 :应用全细胞膜片钳技术在培养的尾核神经元上 ,观察吗啡急性与慢性处理对尾核神经元电压门控钾离子通道电流的影响。结果 :吗啡急性处理尾核神经元诱发钾离子通道电流增大 ,电流从加吗啡前的 (2 .6± 0 .4 )nA增高到 (3.3± 0 .5 )nA ,加纳洛酮后电流下降为 (2 .4± 0 .4 )nA ;吗啡慢性处理尾核神经元的钾离子通道电流从对照组的 (2 .6± 0 .4 )nA增高到 (3.1± 0 .5 )nA ,加纳洛酮后电流下降为 (2 .4± 0 .4 )nA。结论 :在吗啡急性或慢性处理尾核神经元后 ,吗啡经 μ受体介导 ,诱发尾核神经元钾离子通道电流增大 ,使神经元处于超极化状态 ,导致神经元活动的抑制  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号