首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The relationships between muscle glycogenolysis, glycolysis, and H+ concentration were examined in eight subjects performing three 30-s bouts of maximal isokinetic cycling at 100 rpm. Bouts were separated by 4 min of rest, and muscle biopsies were obtained before and after bouts 2 and 3. Total work decreased from 20.5 +/- 0.7 kJ in bout 1 to 16.1 +/- 0.7 and 13.2 +/- 0.6 kJ in bouts 2 and 3. Glycogenolysis was 47.2 and 15.1 mmol glucosyl U/kg dry muscle during bouts 2 and 3, respectively. Lower accumulations of pathway intermediates in bout 3 confirmed a reduced glycolytic flux. In bout 3, the work done represented 82% of the work in bout 2, whereas glycogenolysis was only 32% of that in bout 2. Decreases in ATP and phosphocreatine contents were similar in the two bouts. Muscle [H+] increased from 195 +/- 12 to 274 +/- 19 nmol/l during bout 2, recovered to 226 +/- 8 nmol/l before bout 3, and increased to 315 +/- 24 nmol/l during bout 3. Muscle [H+] could not be predicted from lactate content, suggesting that ion fluxes are important in [H+] regulation in this exercise model. Low glycogenolysis in bout 3 may be due to an inhibitory effect of increased [H+] on glycogen phosphorylase activity. Alternately, reduced Ca2+ activation of fast-twitch fibers (including a possible H+ effect) may contribute to the low overall glycogenolysis. Total work in bout 3 is maintained by a greater reliance on slow-twitch fibers and oxidative metabolism.  相似文献   

2.
This study determined the cellular energetic and structural adaptations of elderly muscle to exercise training. Forty male and female subjects (69.2 +/- 0.6 yr) were assigned to a control group or 6 mo of endurance (ET) or resistance training (RT). We used magnetic resonance spectroscopy and imaging to characterize energetic properties and size of the quadriceps femoris muscle. The phosphocreatine and pH changes during exercise yielded the muscle oxidative properties, glycolytic ATP synthesis, and contractile ATP demand. Muscle biopsies taken from the same site as the magnetic resonance measurements were used to determine myosin heavy chain isoforms, metabolite concentrations, and mitochondrial volume densities. The ET group showed changes in all energetic pathways: oxidative capacity (+31%), contractile ATP demand (-21%), and glycolytic ATP supply (-56%). The RT group had a large increase in oxidative capacity (57%). Only the RT group exhibited change in structural properties: a rise in mitochondrial volume density (31%) and muscle size (10%). These results demonstrate large energetic, but smaller structural, adaptations by elderly muscle with exercise training. The rise in oxidative properties with both ET and RT suggests that the aerobic pathway is particularly sensitive to exercise training in elderly muscle. Thus elderly muscle remains adaptable to chronic exercise, with large energetic changes accompanying both ET and RT.  相似文献   

3.
4.
Oxygen homeostasis is an essential regulation system for cell energy production and survival. The oxygen-sensitive subunit alpha of the hypoxia inducible factor-1 (HIF-1) complex is a key protein of this system. In this work, we analyzed mouse and rat HIF-1alpha protein and mRNA expression in parallel to energetic metabolism variations within skeletal muscle. Two physiological situations were studied using HIF-1alpha-specific Western blotting and semiquantitative RT-PCR. First, we compared HIF-1alpha expression between the predominantly oxidative soleus muscle and three predominantly glycolytic muscles. Second, HIF-1alpha expression was assessed in an energy metabolism switch model that was based on muscle disuse. These two in vivo situations were compared with the in vitro HIF-1alpha induction by CoCl(2) treatment on C(2)C(12) mouse muscle cells. HIF-1alpha mRNA and protein levels were found to be constitutively higher in the more glycolytic muscles compared with the more oxidative muscles. Our results gave rise to the hypothesis that the oxygen homeostasis regulation system depends on the fiber type.  相似文献   

5.
Muscle power and metabolism in maximal intermittent exercise   总被引:4,自引:0,他引:4  
Muscle power and the associated metabolic changes in muscle were investigated in eight male human subjects who performed four 30-s bouts of maximal isokinetic cycling at 100 rpm, with 4-min recovery intervals. In the first bout peak power and total work were (mean +/- SE) 1,626 +/- 102 W and 20.83 +/- 1.18 kJ, respectively; muscle glycogen decreased by 18.2 mmol/kg wet wt, lactate increased to 28.9 +/- 2.7 mmol/kg, and there were up to 10-fold increases in glycolytic intermediates. External power and work decreased by 20% in both the second and third exercise periods, but no further change occurred in the fourth bout. Muscle glycogen decreased by an additional 14.8 mmol/kg after the second exercise and thereafter remained constant. Muscle adenosine triphosphate (ATP) was reduced by 40% from resting after each exercise period; creatine phosphate (CP) decreased successively to less than 5% of resting; in the recovery periods ATP and CP increased to 76 and 95% of initial resting levels, respectively. Venous plasma glycerol increased linearly to 485% of resting; free fatty acids did not change. Changes in muscle glycogen, lactate, and glycolytic intermediates suggested rate limitation at phosphofructokinase during the first and second exercise periods, and phosphorylase in the third and fourth exercise periods. Despite minimal glycolytic flux in the third and fourth exercise periods, subjects generated 1,000 W peak power and sustained 400 W for 30 s, 60% of the values recorded in the first exercise period.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

6.
To assess the significance of energy supply routes in cellular energetic homeostasis, net phosphoryl fluxes catalyzed by creatine kinase (CK), adenylate kinase (AK) and glycolytic enzymes were quantified using 18O-phosphoryl labeling. Diaphragm muscle from double M-CK/ScCKmit knockout mice exhibited virtually no CK-catalyzed phosphotransfer. Deletion of the cytosolic M-CK reduced CK-catalyzed phosphotransfer by 20%, while the absence of the mitochondrial ScCKmit isoform did not affect creatine phosphate metabolic flux. Contribution of the AK-catalyzed phosphotransfer to total cellular ATP turnover was 15.0, 17.2, 20.2 and 28.0% in wild type, ScCKmit, M-CK and M-CK/ScCKmit deficient muscles, respectively. Glycolytic phosphotransfer, assessed by G-6-P 18O-phosphoryl labeling, was elevated by 32 and 65% in M-CK and M-CK/ScCKmit deficient muscles, respectively. Inhibition of glyceraldehyde 3-phosphate dehydrogenase (GAPDH)/phosphoglycerate kinase (PGK) in CK deficient muscles abolished inorganic phosphate compartmentation and redirected high-energy phosphoryl flux through the AK network. Under such conditions, AK phosphotransfer rate was equal to 86% of the total cellular ATP turnover concomitant with almost normal muscle performance. This indicates that near-equilibrium glycolytic phosphotransfer reactions catalyzed by the GAPDH/PGK support a significant portion of the high-energy phosphoryl transfer in CK deficient muscles. However, CK deficient muscles displayed aberrant ATPase-ATPsynthase communication along with lower energetic efficiency (P/O ratio), and were more sensitive to metabolic stress induced by chemical hypoxia. Thus, redistribution of phosphotransfer through glycolytic and AK networks contributes to energetic homeostasis in muscles under genetic and metabolic stress complementing loss of CK function.  相似文献   

7.
The evolution of the locomotor apparatus in vertebrates is marked by major reorganizations in trunk's musculature. The hypothesized functions of mammalian back muscles in the literature are discussed under consideration of the distribution and proportion of oxidative, type‐I‐fibres, oxidative‐glycolytic, type‐IIa‐fibres and glycolytic, type‐IIb‐fibres in paravertebral muscles of a small mammal. The fibre type distribution was examined from a complete series of histological sections maintaining topographical relationships between the muscles as well as within the muscle, in order to establish the overall distribution pattern. The deep and short muscles showed the highest percentage of oxidative fibres. The larger, superficial paravertebral muscles contained the highest percentage of glycolytic fibres. Two muscles were intermediate in their proportion of fibre types. All epaxial muscles together can be interpreted as an antigravity muscle–complex counteracting enduringly against the rebound tendency caused by gravitation, comparable with antigravity muscles in limbs. A gradient from deep to superficial, or a clear regionalization of oxidative muscle fibres in central deep regions around a large intramuscular tendon was found in the m. spinalis and the m. quadratus lumborum, respectively. Concepts of the function of human back muscles as those of A. Bergmark (1989: Acta Orthop. Scand. 230 , 1) or S.G.T. Gibbons & M.J. Comerford (2001: Orthop. Division Rev. March/April, 21) were exposed to be more general within mammals. Functional specializations of different muscles and muscle parts are discussed under the consideration of evolutionary reorganization of the paravertebral musculature in tetrapods. Along the cranio‐caudal axis, the percentage of oxidative fibres was decreased in caudal direction within the same muscles, whereas the proportion of glycolytic fibres was increased. Therefore, classifications of muscles as ‘glycolytic’ or ‘oxidative’ based on biopsies or analyses of single cross‐sections may result in wrong interpretations. Changes in the proportions of the fibre type distribution pattern were mostly due to oxidative and glycolytic fibre types, whereas the percentage of oxidative‐glycolytic fibres had only minor influence. A significant positive correlation between the cross‐sectional area of the single fibre and its percentage in the area investigated were observed for oxidative fibres, whereby the size was positive correlated to the proportion of the oxidative fibres.  相似文献   

8.
Birds seem to employ powerful physiological strategies to curb the harmful effects of reactive oxygen species (ROS) because they generally live longer than predicted by the free radical theory of aging. However, little is known about the physiological mechanisms that confer protection to birds against excessive ROS generation. Hence, we investigated the ability of birds to control mitochondrial ROS generation during physiologically stressful periods. In our study, we analyzed the relationship between the thyroid status and the function of intermyofibrillar and subsarcolemmal mitochondria located in glycolytic and oxidative muscles of ducklings. We found that the intermyofibrillar mitochondria of both glycolytic and oxidative muscles down regulate ROS production when plasma T3 levels rise. The intermyofibrillar mitochondria of the gastrocnemius muscle (an oxidative muscle) produced less ROS and were more sensitive than the pectoralis muscle (a glycolytic muscle) to changes in plasma T3. Such differences in the ROS production by glycolytic and oxidative muscles were associated with differences in the membrane proton permeability and in the rate of free radical leakage within the respiratory chain. This is the first evidence which shows that in birds, the amount of ROS that the mitochondria release is dependent on: (1) their location within the muscle; (2) the type of muscle (glycolytic or oxidative) and (3) on the thyroid status. Reducing muscle mitochondrial ROS generation might be an important mechanism in birds to limit oxidative damage during periods of physiological stress.  相似文献   

9.
Alterations in endogenous levels of the angiogenic proteins basic fibroblast growth factor (bFGF) and vascular endothelial growth factor (VEGF) were assessed in rabbit hindlimb muscles subjected to 1, 5, or 21 days of ischemia. In the glycolytic [tibialis anterior (TA)] and the oxidative [soleus (SOL)] muscles from the ischemic and contralateral (control) hindlimb, bFGF and VEGF protein expression was determined by ELISA and immunoblot analysis. Total VEGF protein expression was greater in oxidative than in glycolytic muscles after 5 days of hindlimb ischemia. In SOL muscle, total VEGF detected by ELISA in ischemic limbs was increased to 137, 300, and 220% of control at 1, 5, and 21 days, respectively. However, in TA, total VEGF expression by ELISA was increased only at 1 and 5 days of ischemia to 140 and 134% of control, respectively. By immunoblotting, the expression of the 165-amino acid isoform (VEGF(165)) was initially decreased to 55% of control in ischemic SOL at 1 day but was increased to 250% of control at day 5 and remained at 155% at day 21. In TA, VEGF(165) was increased to 260% of control at 1 day of ischemia but only to 150% of control by day 5. The only significant change in bFGF expression in either the oxidative or glycolytic muscles was a small increase (129% of control) at 21 days in SOL. This study demonstrates that the magnitude and direction of change in VEGF protein expression depend on VEGF subtype, muscle fiber type, and duration of ischemia. These findings suggest that strategies in therapeutic angiogenesis may need to differ depending on muscle fiber type.  相似文献   

10.
Exercise increases while physical inactivity decrease mitochondrial content and oxidative capacity of skeletal muscles in vivo. It is unknown whether mitochondrial mass and substrate oxidation are related in non-contracting skeletal muscle. Mitochondrial mass, ATP, ADP, AMP, glucose and lipid oxidation (complete and incomplete) were determined in non-contracting myotubes established from 10 lean, 10 obese and 10 subjects with type 2 diabetes precultured under normophysiological conditions. ATP, ADP, AMP, mitochondrial mass and energy charge were not different between groups. In diabetic myotubes, basal glucose oxidation and incomplete lipid oxidation were significantly increased while complete lipid oxidation was lower. Mitochondrial mass was not correlated to glucose oxidation or incomplete lipid oxidation in human myotubes but inversely correlated to complete lipid oxidation. Thus within a stable energetic background, an increased mitochondrial mass in human myotubes was not positive correlated to an increased substrate oxidation as expected from skeletal muscles in vivo but surprisingly with a reduced complete lipid oxidation.  相似文献   

11.
Myofiber types of the medial thyroarytenoid (vocalis) muscle, lateral thyroarytenoid muscle, and cricothyroid muscle of the Japanese macaque were examined with enzyme-histochemical methods. For comparison, the semitendinosus muscle of the Japanese macaque and the thyroarytenoid (vocalis) muscle of cattle, sheep, and pig were examined with the same methods. The vocalis muscle of the Japanese macaque was composed exclusively of fast-twitch/oxidative/glycolytic (FOG) myofibers; it differed from the lateral thyroarytenoid, cricothyroid, and semitendinosus muscles of the Japanese macaque and from the vocalis muscles of the other animals, which consisted of slow-twitch/oxidative, FOG-, and fast-twitch/glycolytic myofibers or type IIC myofibers. The histochemical properties of the vocalis muscle of the Japanese macaque show that the vocalis muscle has a capacity to close the glottis rapidly and completely.  相似文献   

12.
Energy for muscle contractions is supplied by ATP generated from 1) the net hydrolysis of phosphocreatine (PCr) through the creatine kinase reaction, 2) oxidative phosphorylation, and 3) anaerobic glycolysis. The effect of old age on these pathways is unclear. The purpose of this study was to examine whether age may affect ATP synthesis rates from these pathways during maximal voluntary isometric contractions (MVIC). Phosphorus magnetic resonance spectroscopy was used to assess high-energy phosphate metabolite concentrations in skeletal muscle of eight young (20-35 yr) and eight older (65-80 yr) men. Oxidative capacity was assessed from PCr recovery after a 16-s MVIC. We determined the contribution of each pathway to total ATP synthesis during a 60-s MVIC. Oxidative capacity was similar across age groups. Similar rates of ATP synthesis from PCr hydrolysis and oxidative phosphorylation were observed in young and older men during the 60-s MVIC. Glycolytic flux was higher in young than older men during the 60-s contraction (P < 0.001). When expressed relative to the overall ATP synthesis rate, older men relied on oxidative phosphorylation more than young men (P = 0.014) and derived a smaller proportion of ATP from anaerobic glycolysis (P < 0.001). These data demonstrate that although oxidative capacity was unaltered with age, peak glycolytic flux and overall ATP production from anaerobic glycolysis were lower in older men during a high-intensity contraction. Whether this represents an age-related limitation in glycolytic metabolism or a preferential reliance on oxidative ATP production remains to be determined.  相似文献   

13.
Diabetes mellitus is a complex metabolic disorder characterized by a disturbance in glucose metabolism. Recent evidence suggests that increased oxidative damage as well as reduction in antioxidant capacity could be related to the complications in patients with type 2 diabetes. The aim of this study was to measure plasma antioxidant status in type 2 diabetic patients with good and poor glycaemic control and its relationship with oxidative DNA damage. Thirty-nine type 2 diabetic patients and eighteen healthy subjects were recruited for this study. We found that diabetic patients had slightly, but not significantly lower antioxidant capacity, measured with the "ferric reducing ability of plasma" (FRAP) assay, than healthy subjects. On the contrary, oxidative DNA damage (measured by the Comet assay) in leukocytes obtained from diabetic patients was significantly higher compared to healthy subjects. Taking into account glucose control, we found that the FRAP level was significantly (p<0.05) lower in diabetic subjects with poor glycaemic control than healthy subjects, while patients with good glycaemic control had FRAP values similar to controls. We also observed an unexpected positive correlation between FRAP values and oxidative DNA damage in diabetic patients; moreover, a positive correlation was found between FRAP and glucose level or HbA(1c) in patients with poor glycaemic control. In conclusion, our results confirm that patients with type 2 diabetes have a higher oxidative DNA damage than healthy subjects and that plasma antioxidant capacity is significantly lower only in patients with poor glycaemic control, moreover, in these patients FRAP values are positively correlated with glycaemic levels and HbA(1c). These observations indicate that a compensatory increase of the antioxidant status is induced as a response to free radical overproduction in type 2 diabetes. Therefore, the addition of antioxidant supplements to the current pharmacological treatment could have potentially beneficial effects in diabetic patients with poor glycaemic control.  相似文献   

14.
Yu Z  Li P  Zhang M  Hannink M  Stamler JS  Yan Z 《PloS one》2008,3(5):e2086
Oxidative skeletal muscles are more resistant than glycolytic muscles to cachexia caused by chronic heart failure and other chronic diseases. The molecular mechanism for the protection associated with oxidative phenotype remains elusive. We hypothesized that differences in reactive oxygen species (ROS) and nitric oxide (NO) determine the fiber type susceptibility. Here, we show that intraperitoneal injection of endotoxin (lipopolysaccharide, LPS) in mice resulted in higher level of ROS and greater expression of muscle-specific E3 ubiqitin ligases, muscle atrophy F-box (MAFbx)/atrogin-1 and muscle RING finger-1 (MuRF1), in glycolytic white vastus lateralis muscle than in oxidative soleus muscle. By contrast, NO production, inducible NO synthase (iNos) and antioxidant gene expression were greatly enhanced in oxidative, but not in glycolytic muscles, suggesting that NO mediates protection against muscle wasting. NO donors enhanced iNos and antioxidant gene expression and blocked cytokine/endotoxin-induced MAFbx/atrogin-1 expression in cultured myoblasts and in skeletal muscle in vivo. Our studies reveal a novel protective mechanism in oxidative myofibers mediated by enhanced iNos and antioxidant gene expression and suggest a significant value of enhanced NO signaling as a new therapeutic strategy for cachexia.  相似文献   

15.
In this study, we investigated the hypothesis that impairments in forearm skeletal muscle free fatty acid (FFA) metabolism are present in patients with type 2 diabetes both in the overnight fasted state and during beta-adrenergic stimulation. Eight obese subjects with type 2 diabetes and eight nonobese controls (Con) were studied using the forearm balance technique and indirect calorimetry during infusion of the stable isotope tracer [U-(13)C]palmitate after an overnight fast and during infusion of the nonselective beta-agonist isoprenaline (Iso, 20 ng. kg lean body mass(-1) x min(-1)). Additionally, activities of mitochondrial enzymes and of cytoplasmatic fatty acid-binding protein (FABP) were determined in biopsies from the vastus lateralis muscle. Both during fasting and Iso infusion, the tracer balance data showed that forearm muscle FFA uptake (Con vs. type 2: fast 449+/-69 vs. 258 +/-42 and Iso 715+/-129 vs. 398+/-70 nmol. 100 ml tissue(-1) x min(-1), P<0.05) and FFA release were lower in type 2 diabetes compared with Con. Also, the oxidation of plasma FFA by skeletal muscle was blunted during Iso infusion in type 2 diabetes (Con vs. type 2: Iso 446 +/- 274 vs. 16+/-70 nmol. 100 ml tissue(-1) x min(-1), P<0.05). The net forearm glycerol release was increased in type 2 diabetic subjects (P< 0.05), which points to an increased forearm lipolysis. Additionally, skeletal muscle cytoplasmatic FABP content and the activity of muscle oxidative enzymes were lowered in type 2 diabetes. We conclude that the uptake and oxidation of plasma FFA are impaired in the forearm muscles of type 2 diabetic subjects in the overnight fasted state with and without Iso stimulation.  相似文献   

16.
Fiber type specificity for expression of all three rat skeletal muscle pyruvate dehydrogenase kinase (PDK) isoforms (PDK1, 2, and 4) was determined in fed and 24-h fasted rats. PDK activity and isoform protein and mRNA contents were determined in white gastrocnemius (WG; fast-twitch glycolytic), red gastrocnemius (RG; fast-twitch oxidative), and soleus (Sol; slow-twitch oxidative) muscles. PDK activity was lower in WG compared with oxidative muscles (RG, Sol) in both fed and fasted rats. PDK activities from fed muscles were 0.12 +/- 0.04, 0.30 +/- 0.01, and 0.36 +/- 0.08 min(-1) in WG, Sol, and RG, respectively, and increased in fasted muscles (0.36 +/- 0.09, 0.68 +/- 0.18, and 0.80 +/- 0.14 min(-1)). This correlated with increased PDK4 protein and to a lesser extent with PDK4 mRNA. PDK2 protein was not different between fiber types in fed or fasted rats, but PDK2 mRNA content was twofold greater in RG from fasted rats compared with fed rats. PDK1 was unaltered by fasting in all muscle types at both the protein and mRNA level, but in both fed and fasted rats had much greater protein and mRNA content in the oxidative vs. glycolytic muscles. In conclusion, PDK activity and PDK1 and 4 protein and mRNA were lower in glycolytic vs. oxidative muscles from fed and fasted rats. Fasting for 24 h induced a two- to threefold increase in PDK activity that was mainly due to increases in PDK4 protein and mRNA. PDK1 and 2 protein and mRNA were generally unaltered by fasting in all fiber types, except for increased PDK2 mRNA in the fast oxidative fibers. Because the PDK isoforms vary greatly in their kinetic properties, their relative proportions in the three fiber types at any given time during fasting could significantly alter the acute regulation of the pyruvate dehydrogenase complex.  相似文献   

17.
Alpha-lipoic acid mitigates insulin resistance in Goto-Kakizaki rats.   总被引:5,自引:0,他引:5  
Impaired glucose uptake and metabolism by peripheral tissues is a common feature in both type I and type II diabetes mellitus. This phenomenon was examined in the context of oxidative stress and the early events within the insulin signalling pathway using soleus muscles derived from non-obese, insulin-resistant type II diabetic Goto-Kakizaki (GK) rats, a well-known genetic rat model for human type II diabetes. Insulin-stimulated glucose transport was impaired in soleus muscle from GK rats. Oxidative and non-oxidative glucose disposal pathways represented by glucose oxidation and glycogen synthesis in soleus muscles of GK rats appear to be resistant to the action of insulin when compared to their corresponding control values. These diabetes-related abnormalities in glucose disposal were associated with a marked diminution in the insulin-mediated enhancement of protein kinase B (Akt/PKB) and insulin receptor substrate-1 (IRS-1)-associated phosphatidylinostol 3-kinase (PI 3-kinase) activities; these two kinases are key elements in the insulin signalling pathway. Moreover, heightened state of oxidative stress, as indicated by protein bound carbonyl content, was evident in soleus muscle of GK diabetic rats. Chronic administration of the hydrophobic/hydrophilic antioxidant alpha -lipoic-acid (ALA, 100 mg/kg, i.p.) partly ameliorated the diabetes-related deficit in glucose metabolism, protein oxidation as well as the activation by insulin of the various steps of the insulin signalling pathway, including the enzymes Akt/PKB and PI-3 kinase. Overall, the current investigation illuminates the concept that oxidative stress may indeed be involved in the pathogenesis of certain types of insulin resistance. It also harmonizes with the notion of including potent antioxidants such as ALA in the armamentarium of antidiabetic therapy.  相似文献   

18.
Summary Fiber composition, and glycolytic and oxidative capacities of the pectoralis, gastrocnemius, and cardiac muscles from active and hibernating little brown bats (Myotis lucifugus) was studied. The data were used to test two hypotheses: First, since hibernating bats maintain the capability of flight and make use of leg muscles to maintain a roosting position all winter, the fiber composition of the pectoralis and gastrocnemius muscles should not change with season. Second, we tested the hypothesis of Ianuzzo et al. (in press), who propose that the oxidative potential of mammalian cardiac muscle should increase with increasing heart rate while glycolytic potential should not. Our results indicate that the fiber composition of the pectoralis muscle was uniformly fast-twitch oxidative (FO)_ regardless of the time of year, as predicted. However, the gastrocnemius muscle exhibited a change in FO composition from 83% in active to 61% in hibernating animals. Contrary to the variable change in histochemical properties with metabolic state, a trend of reduced maximal oxidative (CS) and glycolytic (PFK) potential during hibernation in both flight and leg muscles was apparent. The oxidative potential of flight and leg muscles decreased by 15.2% and 56.5%, respectively, while the glycolytic potential of the same muscles decreased by 23.5% and 60.5%, respectively. As predicted, the glycolytic potential of cardiac muscle remained constant between active and hibernating bats, although there was a significant decrease (22.0%) in oxidative potential during hibernation.Abbreviations FO fast-twitch oxidative - FG fast-twitch glycolytic - SO slow-twitch oxidative - Vmax maximal enzyme activity - PFK phosphofructokinase - CS citrate synthase  相似文献   

19.
The purpose of this study was to estimate the absolute and relative masses of the three types of skeletal muscle fibers in the total hindlimb of the male Sprague-Dawley rat (Rattus norvegicus). For six rats, total body mass was recorded and the following weights taken from dissection of one hindlimb: 32 individual major muscles or muscle parts, remaining skeletal musculature (small hip muscles and intrinsic foot muscles), bone, inguinal fat pad, and skin. The fibers from the 32 muscles or muscle parts (which constituted 98% of the hindlimb skeletal muscle mass) were classified from histochemistry as fast-twitch oxidative glycolytic (FOG), fast-twitch glycolytic (FG), or slow-twitch oxidative (SO), and their populations were determined. Fiber cross-sectional areas from the same muscles were measured with a digitizer. Mass of each of the fiber types within muscles and in the total hindlimb was then calculated from fiber-type population, fiber-type area, and muscle-mass data. Skeletal muscle made up 71% of the total hindlimb mass. Of this, 76% was occupied by FG fibers, 19% by FOG fibers, and 5% by SO fibers. Thus, the FG fiber type is clearly the predominant fiber type in the rat hindlimb in terms of muscle mass. Fiber-type mass data are compared with physiological (blood flow) and biochemical (succinate dehydrogenase activities) data for the muscles taken from previous studies, and it is demonstrated that these functional properties are closely related to the proportions of muscle mass composed of the various fiber types.  相似文献   

20.
Do muscle fiber properties commonly associated with fiber types in adult animals and the population distribution of these properties require normal activation patterns to develop? To address this issue, the activity of an oxidative [succinic dehydrogenase (SDH)] and a glycolytic [alpha-glycerophosphate dehydrogenase (GPD)] marker enzyme, the characteristics of myosin adenosinetriphosphatase (myosin ATPase, alkaline preincubation), and the cross-sectional area of single fibers were studied. The soleus and medial gastrocnemius of normal adult cats were compared with cats that 6 mo earlier had been spinally transected at T12-T13 at 2 wk of age. In control cats, SDH activity was higher in dark than light ATPase fibers in the soleus and higher in light than dark ATPase fibers in the medial gastrocnemius. After transection, SDH activity was similar to control in both muscles. GPD activity appeared to be elevated in some fibers in each fiber type in both muscles after transection. The cross-sectional areas most affected by spinal transection were light ATPase fibers of the soleus and dark ATPase fibers of the medial gastrocnemius, the predominant fiber type in each muscle. These data demonstrate that although the muscle fibers of cats spinalized at 2 wk of age presumably were never exposed to normal levels of activation, the activity of an oxidative marker enzyme was maintained or elevated 6 mo after spinal transection. Furthermore, although the absolute enzyme activities in some fibers were elevated by transection, three functional protein systems commonly associated with fiber types, i.e., hydrolysis of ATP by myosin ATPase and glycolytic (GPD) and oxidative (SHD) metabolism, developed in a coordinated manner typical of normal adult muscles.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号