首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Blunted agonist-induced vasoconstriction after chronic hypoxia is associated with endothelium-dependent vascular smooth muscle (VSM) cell hyperpolarization and decreased vessel-wall Ca(2+) concentration ([Ca(2+)]). We hypothesized that myogenic vasoconstriction and pressure-induced Ca(2+) influx would also be attenuated in vessels from chronically hypoxic (CH) rats. Mesenteric resistance arteries isolated from CH [barometric pressure (BP), 380 Torr for 48 h] or normoxic control (BP, 630 Torr) rats were cannulated and pressurized. VSM cell resting membrane potential was recorded at intraluminal pressures of 40-120 Torr under normoxic conditions. VSM cells in vessels from CH rats were hyperpolarized compared with control rats at all pressures. Inner diameter was maintained for vessels from control rats, whereas vessels from CH rats developed less tone as pressure was increased. Pressure-induced increases in vessel-wall [Ca(2+)] were also attenuated for arteries from CH rats. Endothelium removal restored myogenic constriction to vessels from CH rats and normalized VSM cell resting membrane potential and pressure-induced Ca(2+) responses to control levels. Myogenic constriction and pressure-induced vessel-wall [Ca(2+)] increases remained blunted in the presence of nitric oxide (NO) synthase inhibition for arteries from CH rats. We conclude that blunted myogenic reactivity after chronic hypoxia results from a non-NO, endothelium-dependent VSM cell hyperpolarizing influence.  相似文献   

2.
Attenuated vasoconstrictor reactivity following chronic hypoxia (CH) is associated with endothelium-dependent vascular smooth muscle (VSM) cell hyperpolarization and diminished intracellular [Ca(2+)]. We tested the hypothesis that increased production of nitric oxide (NO) after CH contributes to blunted vasoconstrictor responsiveness. We found that basal NO production of mesenteric arteries from CH rats (barometric pressure = 380 Torr; 48 h) was greater than that of controls (barometric pressure = 630 Torr). In addition, studies employing pressurized mesenteric arteries (100-200 microM ID) abluminally loaded with the Ca(2+) indicator fura 2-AM demonstrated that although NO synthase (NOS) inhibition normalized agonist-induced vasoconstrictor responses between groups, VSM cell [Ca(2+)] in vessels from CH rats remained diminished compared with controls. To determine whether elevated NO production following CH results from increased NOS protein levels, we performed Western blots for NOS isoforms by using mesenteric arteries from control and CH rats. Endothelial NOS levels did not differ between groups, and other NOS isoforms were not detected in these samples. Selective endothelial loading of fura 2-AM was employed to test the hypothesis that elevated endothelial cell [Ca(2+)] following CH accounts for enhanced NOS activity. These experiments demonstrated greater endothelial cell [Ca(2+)] in mesenteric arteries isolated from CH rats compared with controls. We conclude that enhanced production of NO resulting from elevated endothelial cell [Ca(2+)] contributes to attenuated reactivity following CH by decreasing VSM cell Ca(2+) sensitivity.  相似文献   

3.
Chronic hypoxia (CH) results in reduced sensitivity to vasoconstrictors in conscious rats that persists upon restoration of normoxia. We hypothesized that this effect is due to endothelium-dependent hyperpolarization of vascular smooth muscle (VSM) cells after CH. VSM cell resting membrane potential was determined for superior mesenteric artery strips isolated from CH rats (PB = 380 Torr for 48 h) and normoxic controls. VSM cells from CH rats studied under normoxia were hyperpolarized compared with controls. Resting vessel wall intracellular Ca(2+) concentration ([Ca(2+)](i)) and pressure-induced vasoconstriction were reduced in vessels isolated from CH rats compared with controls. Vasoconstriction and increases in vessel wall [Ca(2+)](i) in response to the alpha(1)-adrenergic agonist phenylephrine (PE) were also blunted in resistance arteries from CH rats. Removal of the endothelium normalized resting membrane potential, resting vessel wall [Ca(2+)](i), pressure-induced vasoconstrictor responses, and PE-induced constrictor and Ca(2+) responses between groups. Whereas VSM cell hyperpolarization persisted in the presence of nitric oxide synthase inhibition, heme oxygenase inhibition restored VSM cell resting membrane potential in vessels from CH rats to control levels. We conclude that endothelial derived CO accounts for persistent VSM cell hyperpolarization and vasoconstrictor hyporeactivity after CH.  相似文献   

4.
11,12-Epoxyeicosatrienoic acid (11,12-EET), a potent vasodilator produced by the endothelium, acts on calcium-activated potassium channels and shares biological activities with the heme oxygenase/carbon monoxide (HO/CO) system. We examined whether activation of HO mediates the dilator action of 11,12-EET, and that of the other EETs, on rat mesenteric arteries. Dose-response curves (10(-9) to 10(-6) M) to 5,6-EET, 8,9-EET, 11,12-EET, 14,15-EET, and ACh (10(-9) to 10(-4) M) were evaluated in preconstricted (10(-6) mol/l phenylephrine) mesenteric arteries (<350 microm diameter) in the presence or absence of 1) the cyclooxygenase inhibitor indomethacin (2.8 microM), 2) the HO inhibitor chromium mesoporphyrin (CrMP) (15 microM), 3) the soluble guanylyl cyclase (GC) inhibitor ODQ (10 microM), and 4) the calcium-activated potassium channel inhibitor iberiotoxin (25 nM). The vasodilator response to 11,12-EET was abolished by CrMP and iberiotoxin, whereas indomethacin and ODQ had no effect. In contrast, the effect of ACh was attenuated by ODQ but not by CrMP. The vasodilator effect of 8,9-EET, like that of 11,12-EET, was greatly attenuated by HO inhibition. In contrast, the mesenteric vasodilator response to 5,6-EET was independent of both HO and GC, whereas that to 14,15-EET demonstrated two components, an HO and a GC, of equal magnitude. Incubation of mesenteric microvessels with 11,12-EET caused a 30% increase in CO release, an effect abolished by inhibition of HO. We conclude that the rat mesenteric vasodilator action of 11,12-EET is mediated via an increase in HO activity and an activation of calcium-activated potassium channels.  相似文献   

5.
Chronic obstructive pulmonary diseases, as well as prolonged residence at high altitude, can result in generalized airway hypoxia, eliciting an increase in pulmonary vascular resistance. We hypothesized that a portion of the elevated pulmonary vascular resistance following chronic hypoxia (CH) is due to the development of myogenic tone. Isolated, pressurized small pulmonary arteries from control (barometric pressure congruent with 630 Torr) and CH (4 wk, barometric pressure = 380 Torr) rats were loaded with fura 2-AM and perfused with warm (37 degrees C), aerated (21% O(2)-6% CO(2)-balance N(2)) physiological saline solution. Vascular smooth muscle (VSM) intracellular Ca(2+) concentration ([Ca(2+)](i)) and diameter responses to increasing intraluminal pressure were determined. Diameter and VSM cell [Ca(2+)](i) responses to KCl were also determined. In a separate set of experiments, VSM cell membrane potential responses to increasing luminal pressure were determined in arteries from control and CH rats. VSM cell membrane potential in arteries from CH animals was depolarized relative to control at each pressure step. VSM cells from both groups exhibited a further depolarization in response to step increases in intraluminal pressure. However, arteries from both control and CH rats distended passively to increasing intraluminal pressure, and VSM cell [Ca(2+)](i) was not affected. KCl elicited a dose-dependent vasoconstriction that was nearly identical between control and CH groups. Whereas KCl administration resulted in a dose-dependent increase in VSM cell [Ca(2+)](i) in arteries taken from control animals, this stimulus elicited only a slight increase in VSM cell [Ca(2+)](i) in arteries from CH animals. We conclude that the pulmonary circulation of the rat does not demonstrate pressure-induced vasoconstriction.  相似文献   

6.
Epoxyeicosatrienoic acids (EETs) are considered to be endothelium-derived hyperpolarizing factors, and are potent activators of the large-conductance, Ca(2+)-activated K(+) (BK(Ca)) channel in vascular smooth muscle. Here, we investigate the signal transduction pathway involved in the activation of BK(Ca) channels by 11,12-EET and 11,12-EET stable analogs in rat mesenteric vascular smooth muscle cells. 11,12-EET and the 11,12-EET analogs, 11-nonyloxy-undec-8(Z)-enoic acid (11,12-ether-EET-8-ZE), 11-(9-hydroxy-nonyloxy)-undec-8(Z)-enoic acid (11,12-ether-EET-8-ZE-OH) and 11,12-trans-oxidoeicosa-8(Z)-enoic acid (11,12-tetra-EET-8-ZE), caused vasorelaxation of mesenteric resistance arteries. Mesenteric myocyte whole-cell (perforated-patch) currents were substantially (approximately 150%) increased by 11,12-EET and 11,12-EET analogs. Single-channel recordings were conducted to identify the target for 11,12-EET. 11,12-EET and 11,12-EET analogs also increased mesenteric myocyte BK(Ca) channel activity in cell-attached patches. Similar results were obtained in cell-free patches. Baseline mesenteric myocyte BK(Ca) channel activity (NPo) in cell-free patches averaged less than 0.001 at +50 mV and 11,12-EET (1 micromol/L) increased NPo to 0.03+/-0.02 and 11,12-EET analogs (1 micromol/L) increased NPo to 0.09+/-0.006. Inhibition of protein phosphatase 2A (PP2A) activity with okadaic acid (10 nmol/L) completely reversed 11,12-EET stimulated BK(Ca) channel activity and greatly attenuated 11,12-ether-EET-8-ZE mesenteric resistance artery vasorelaxation. 11,12-EET and 11,12-EET analogs increased mesenteric myocyte PP2A activity by 3.5-fold. Okadaic acid and the EET inhibitor, 14,15-epoxyeicosa-5(Z)-enoic acid (14,15-EEZE) inhibited the 11,12-EET mediated increase in PP2A activity. These findings provide initial evidence that PP2A activity contributes to 11,12-EET and 11,12-EET analog activation of mesenteric resistant artery BK(Ca) channels and vasorelaxation.  相似文献   

7.
Communication between vascular smooth muscle (VSM) cells via low-resistance gap junctions may facilitate vascular function by synchronizing the contractile state of individual cells within the vessel wall. We hypothesized that inhibition of gap junctional communication would impair constrictor responses of mesenteric resistance arteries. Immunohistochemical experiments revealed positive staining for connexin 37 (Cx37) in both endothelium and smooth muscle of rat mesenteric arterioles, whereas connexin 43 (Cx43) immunoreactivity was not detected in the mesenteric vasculature. Administration of the gap junction inhibitory peptide Gap27, which targets Cx37 and Cx43, significantly diminished myogenic vasoconstriction (8.6 +/- 3.8% of passive diameter at 100 Torr) and changes in vessel wall intracellular [Ca2+] of mesenteric resistance arteries compared with vessels treated with either vehicle (physiological saline solution) (33.5 +/- 6.1%) or a control peptide (32.1 +/- 6.5%). Administration of 18alpha-glycyrrhetinic acid, structurally distinct from Gap27, also significantly attenuated myogenic constriction compared with its vehicle control (DMSO) (9.6 +/- 3.2% vs. 23.8 +/- 4.6%). In contrast, phenylephrine-induced vasoconstriction was not altered by gap junction blockers. Attenuated myogenic vasoconstriction resulting from inhibition of gap junctions persisted after disruption of the endothelium. In additional experiments, VSM cell membrane potential was recorded in mesenteric resistance arteries pressurized to 20 or 100 Torr. VSM membrane potential was depolarized at 100 Torr compared with 20 Torr. However, VSM cells in arteries treated with Gap27 were significantly hyperpolarized (-48.6 +/- 1.4 mV) at the higher pressure compared with vehicle (-41.4 +/- 1.5 mV) and Gap20-treated (-38.4 +/- 0.7 mV) vessels. Our findings suggest that inhibition of smooth muscle gap junctions attenuates pressure-induced VSM cell depolarization and myogenic vasoconstriction.  相似文献   

8.
Little information is available regarding the vasoactive effects of epoxyeicosatrienoic acids (EETs) in the lung. We demonstrate that 5, 6-, 8,9-, 11,12-, and 14,15-EETs contract pressurized rabbit pulmonary arteries in a concentration-dependent manner. Constriction to 5,6-EET methyl ester or 14,15-EET is blocked by indomethacin or ibuprofen (10(-5) M), SQ-29548, endothelial denuding, or submaximal preconstriction with the thromboxane mimetic U-46619. Constriction of pulmonary artery rings to phenylephrine is blunted by treatment with the epoxygenase inhibitor N-methylsulfonyl-6-(2-propargyloxyphenyl)hexanamide. Pulmonary arteries and peripheral lung microsomes metabolize arachidonate to products that comigrate on reverse-phrase HPLC with authentic regioisomers of 5,6-, 8,9-, 11,12-, and 14,15-EETs, but no cyclooxygenase products of EETs could be demonstrated. Proteins of the CYP2B, CYP2E, CYP2J, CYP1A, and CYP2C subfamilies are present in pulmonary artery and peripheral lung microsomes. Constriction of isolated rabbit pulmonary arteries to EETs is nonregioselective and depends on intact endothelium and cyclooxygenase, consistent with the formation of a pressor prostanoid compound. These data raise the possibility that EETs may contribute to regulation of pulmonary vascular tone.  相似文献   

9.
In the systemic circulation, 11,12-epoxyeicosatrienoic acid (11,12-EET) elicits nitric oxide (NO)- and prostacyclin-independent vascular relaxation, partially through the activation of large conductance Ca2+-activated potassium (BK) channels. However, in the lung 11,12-EET contributes to hypoxia-induced pulmonary vasoconstriction. Since pulmonary artery smooth muscle cells also express BK channels, we assessed the consequences of BKβ1 subunit deletion on pulmonary responsiveness to 11,12-EET as well as to acute hypoxia. In buffer-perfused mouse lungs, hypoxia increased pulmonary artery pressure and this was significantly enhanced in the presence of NO synthase (NOS) and cyclooxygenase (COX) inhibitors. Under these conditions the elevation of tissue EET levels using an inhibitor of the soluble epoxide hydrolase (sEH-I), further increased the hypoxic contraction. Direct administration of 11,12-EET also increased pulmonary artery pressure, and both the sEH-I and 11,12-EET effects were prevented by iberiotoxin and absent in BKβ1 −/− mice. In pulmonary artery smooth muscle cells treated with NOS and COX inhibitors and loaded with the potentiometric dye, di-8-ANEPPS, 11,12-EET induced depolarization while the BK channel opener NS1619 elicited hyperpolarization indicating there was no effect of the EET on classical plasma membrane BK channels. In pulmonary artery smooth muscle cells a subpopulation of BK channels is localized in mitochondria. In these cells, 11,12-EET elicited an iberiotoxin-sensitive loss of mitochondrial membrane potential (JC-1 fluorescence) leading to plasma membrane depolarization, an effect not observed in BKβ1 −/− cells. Mechanistically, stimulation with 11,12-EET time-dependently induced the association of the BK α and β1 subunits. Our data indicate that in the absence of NO and prostacyclin 11,12-EET contributes to pulmonary vasoconstriction by stimulating the association of the α and β1 subunits of mitochondrial BK channels. The 11,12-EET-induced activation of BK channels results in loss of the mitochondrial membrane potential and depolarization of the pulmonary artery smooth muscle cells.  相似文献   

10.
Epoxyeicosatrienoic acids (EETs), the cytochrome P-450 epoxygenase metabolites of arachidonic acid, are candidates of endothelium-derived hyperpolarizing factors. We have previously reported that EETs are potent activators of cardiac ATP-sensitive K(+) (K(ATP)) channels, but their effects on the vascular K(ATP) channels are unknown. With the use of whole cell patch-clamp techniques with 0.1 mM ATP in the pipette and holding at -60 mV, freshly isolated smooth muscle cells from rat mesenteric arteries had small glibenclamide-sensitive currents at baseline (13.1 +/- 3.9 pA, n = 5) that showed a 7.2-fold activation by 10 microM pinacidil (94.1 +/- 21.9 pA, n = 7, P < 0.05). 11,12-EET dose dependently activated the K(ATP) current with an apparent EC(50) of 87 nM. Activation of the K(ATP) channels by 500 nM 11,12-EET was inhibited by inclusion of the PKA inhibitor peptide (5 microM) but not by the inclusion of the PKC inhibitor peptide (100 microM) in the pipette solution. These results were corroborated by vasoreactivity studies. 11,12-EET produced dose-dependent vasorelaxation in isolated small mesenteric arteries, and this effect was reduced by 50% with glibenclamide (1 microM) preincubation. The 11,12-EET effects on vasorelaxation were also significantly attenuated by preincubation with cell-permeant PKA inhibitor myristoylated PKI(14-22), and, in the presence of PKA inhibitor, glibenclamide had no additional effects. These results suggest that 11,12-EET is a potent activator of the vascular K(ATP) channels, and its effects are dependent on PKA activities.  相似文献   

11.
Acid-sensing ion channel 1 (ASIC1) is a newly characterized contributor to store-operated Ca(2+) entry (SOCE) in pulmonary vascular smooth muscle (VSM). Since SOCE is implicated in elevated basal VSM intracellular Ca(2+) concentration ([Ca(2+)](i)) and augmented vasoconstriction in chronic hypoxia (CH)-induced pulmonary hypertension, we hypothesized that ASIC1 contributes to these responses. To test this hypothesis, we examined effects of the specific pharmacologic ASIC1a inhibitor, psalmotoxin 1 (PcTX1), on vasoconstrictor and vessel wall [Ca(2+)](i) responses to UTP and KCl (depolarizing stimulus) in fura-2-loaded, pressurized small pulmonary arteries from control and CH (4 wk at 0.5 atm) Wistar rats. PcTX1 had no effect on basal vessel wall [Ca(2+)](i), but attenuated vasoconstriction and increases in vessel wall [Ca(2+)](i) to UTP in arteries from control and CH rats; normalizing responses between groups. In contrast, responses to the depolarizing stimulus, KCl, were unaffected by CH exposure or PcTX1. Upon examining potential Ca(2+) influx mechanisms, we found that PcTX1 prevented augmented SOCE following CH. Exposure to CH resulted in a significant increase in pulmonary arterial ASIC1 protein. This study supports a novel role of ASIC1 in elevated receptor-stimulated vasoconstriction following CH which is likely mediated through increased ASIC1 expression and SOCE.  相似文献   

12.
Nitric oxide (NO) is an inhibitor of hemoproteins including cytochrome P-450 enzymes. This study tested the hypothesis that NO inhibits cytochrome P-450 epoxygenase-dependent vascular responses in kidneys. In rat renal pressurized microvessels, arachidonic acid (AA, 0.03-1 microM) or bradykinin (BK, 0.1-3 microM) elicited NO- and prostanoid-independent vasodilation. Miconazole (1.5 microM) or 6-(2-propargyloxyphenyl)hexanoic acid (30 microM), both of which are inhibitors of epoxygenase enzymes, or the fixing of epoxide levels with 11,12-epoxyeicosatrienoic acid (11,12-EET; 1 and 3 microM) inhibited these responses. Apamin (1 microM), which is a large-conductance Ca2+-activated K+ (BKCa) channel inhibitor, or 18alpha-glycyrrhetinic acid (30 microM), which is an inhibitor of myoendothelial gap junctional electromechanical coupling, also inhibited these responses. NO donors spermine NONOate (1 and 3 microM) or sodium nitroprusside (0.3 and 3 microM) but not 8-bromo-cGMP (100 microM), which is an analog of cGMP (the second messenger of NO), blunted the dilation produced by AA or BK in a reversible manner without affecting that produced by hydralazine. However, the non-NO donor hydralazine did not affect the dilatory effect of AA or BK. Spermine NONOate did not affect the dilation produced by 11,12-EET, NS-1619 (a BKCa channel opener), or cromakalim (an ATP-sensitive K+ channel opener). AA and BK stimulated EET production, whereas hydralazine had no effect. On the other hand, spermine NONOate (3 microM) attenuated basal (19 +/- 7%; P < 0.05) and AA stimulation (1 microM, 29 +/- 9%; P < 0.05) of renal preglomerular vascular production of all regioisomeric EETs: 5,6-; 8,9-; 11,12-; and 14,15-EET. These results suggest that NO directly and reversibly inhibits epoxygenase-dependent dilation of rat renal microvessels without affecting the actions of epoxides on K+ channels.  相似文献   

13.
Sodium reabsorption via the epithelial Na(+) channel (ENaC) in the aldosterone-sensitive distal nephron plays a central role in the regulation of body fluid volume. Previous studies have indicated that arachidonic acid (AA) and its metabolite 11,12-EET but not other regioisomers of EETs inhibit ENaC activity in the collecting duct. The goal of this study was to investigate the endogenous metabolism of AA in cultured mpkCCD(c14) principal cells and the effects of these metabolites on ENaC activity. Liquid chromatography/mass spectrometry analysis of the mpkCCD(c14) cells indicated that these cells produce prostaglandins, 8,9-EET, 11,12-EET, 14,15-EET, 5-HETE, 12/8-HETE, and 15-HETE, but not 20-HETE. Single-channel patch-clamp experiments revealed that 8,9-EET, 14,15-EET, and 11,12-EET all decrease ENaC activity. Neither 5-, 12-, nor 15-HETE had any effect on ENaC activity. Diclofenac and ibuprofen, inhibitors of cyclooxygenase, decreased transepithelial Na(+) transport in the mpkCCD(c14) cells. Inhibition of cytochrome P-450 (CYP450) with MS-PPOH activated ENaC-mediated sodium transport when cells were pretreated with AA and diclofenac. Coexpression of CYP2C8, but not CYP4A10, with ENaC in Chinese hamster ovary cells significantly decreased ENaC activity in whole-cell experiments, whereas 11,12-EET mimicked this effect. Thus both endogenously formed EETs and their exogenous application decrease ENaC activity. Downregulation of ENaC activity by overexpression of CYP2C8 was PKA dependent and was prevented by myristoylated PKI treatment. Biotinylation experiments and single-channel analysis revealed that long-term treatment with 11,12-EET and overexpression of CYP2C8 decreased the number of channels in the membrane. In contrast, the acute inhibitory effects are mediated by a decrease in the open probability of the ENaC. We conclude that 11,12-EET, 8,9-EET, and 14,15-EET are endogenously formed eicosanoids that modulate ENaC activity in the collecting duct.  相似文献   

14.
15.
We assessed the effect of epoxyeicosatrienoic acids (EETs) in intact mesenteric arteries and Ca(2+)-activated K(+) (BK(Ca)) channels of isolated vascular smooth muscle cells from control and insulin-resistant (IR) rats. The response to 11,12-EET and 14,15-EET was assessed in small mesenteric arteries from control and IR rats in vitro. Mechanistic studies were performed in endothelium intact or denuded arteries and in the presence of pharmacological inhibitors. Moreover, EET-induced activation of the BK(Ca) channel was assessed in myocytes in both the cell-attached and the inside-out (I/O) patch-clamp configurations. In control arteries, both EET isomers induced relaxation. Relaxation was impaired by endothelium denudation, N(omega)-nitro-L-arginine, or iberiotoxin (IBTX), whereas it was abolished by IBTX + apamin or charybdotoxin + apamin. In contrast, the EETs did not relax IR arteries. In control myocytes, the EETs increased BK(Ca) activity in both configurations. Conversely, in the cell-attached mode, EETs had no effect on BK(Ca) channel activity in IR myocytes, whereas in the I/O configuration, BK(Ca) channel activity was enhanced. EETs induce relaxation in small mesenteric arteries from control rats through K(Ca) channels. In contrast, arteries from IR rats do not relax to the EETs. Patch-clamp studies suggest impaired relaxation is due to altered regulatory mechanisms of the BK(Ca) channel.  相似文献   

16.
Pulmonary vascular smooth muscle (VSM) sensitivity to nitric oxide (NO) is enhanced in pulmonary arteries from rats exposed to chronic hypoxia (CH) compared with controls. Furthermore, in contrast to control arteries, relaxation to NO following CH is not reliant on a decrease in VSM intracellular free calcium ([Ca(2+)](i)). We hypothesized that enhanced NO-dependent pulmonary vasodilation following CH is a function of VSM myofilament Ca(2+) desensitization via inhibition of the RhoA/Rho kinase (ROK) pathway. To test this hypothesis, we compared the ability of the NO donor, spermine NONOate, to reverse VSM tone generated by UTP, the ROK agonist sphingosylphosphorylcholine, or the protein kinase C (PKC) activator phorbol 12-myristate 13-acetate in Ca(2+)-permeabilized, endothelium-denuded pulmonary arteries (150- to 300-microm inner diameter) from control and CH (4 wk at 0.5 atm) rats. Arteries were loaded with fura-2 AM to continuously monitor VSM [Ca(2+)](i). We further examined effects of NO on levels of GTP-bound RhoA and ROK membrane translocation as indexes of enzyme activity in arteries from each group. We found that spermine NONOate reversed Y-27632-sensitive Ca(2+) sensitization and inhibited both RhoA and ROK activity in vessels from CH rats but not control animals. In contrast, spermine NONOate was without effect on PKC-mediated vasoconstriction in either group. We conclude that CH mediates a shift in NO signaling to promote pulmonary VSM Ca(2+) desensitization through inhibition of RhoA/ROK.  相似文献   

17.
Ma J  Zhang L  Han W  Shen T  Ma C  Liu Y  Nie X  Liu M  Ran Y  Zhu D 《Journal of lipid research》2012,53(6):1093-1105
Pulmonary artery endothelial plexiform lesion is responsible for pulmonary vascular remodeling (PVR), a basic pathological change of pulmonary arterial hypertension (PAH). Recent evidence suggests that epoxyeicosatrienoic acid (EET), which is derived from arachidonic acid by cytochrome p450 (CYP) epoxygenase, has an essential role in PAH. However, until now, most research has focused on pulmonary vasoconstriction; it is unclear whether EET produces mitogenic and angiogenic effects in pulmonary artery endothelial cells (PAEC). Here we found that 500 nM/l 8,9-EET, 11,12-EET, and 14,15-EET markedly augmented JNK and c-Jun activation in PAECs and that the activation of c-Jun was mediated by JNK, but not the ERK or p38 MPAK pathway. Moreover, treatment with 8,9-EET, 11,12-EET, and 14,15-EET promoted cell proliferation and cell-cycle transition from the G0/G1 phase to S phase and stimulated tube formation in vitro. All these effects were reversed after blocking JNK with Sp600125 (a JNK inhibitor) or JNK1/2 siRNA. In addition, the apoptotic process was alleviated by three EET region isomers through the JNK/c-Jun pathway. These observations suggest that 8,9-EET, 11,12-EET, and 14,15-EET stimulate PAEC proliferation and angiogenesis, as well as protect the cells from apoptosis, via the JNK/c-Jun pathway, an important underlying mechanism that may promote PAEC growth and angiogenesis during PAH.  相似文献   

18.
Activation of endothelial proteinase-activated receptor 2 (PAR-2) relaxes vascular smooth muscle (VSM) and causes hypotension by nitric oxide (NO)-prostanoid-dependent and -independent mechanisms. We investigated whether endothelium-dependent hyperpolarization of VSM was the mechanism whereby resistance caliber arteries vasodilated independently of NO. VSM membrane potentials and isometric tension were measured concurrently to correlate the electrophysiological and mechanical changes in murine small caliber mesenteric arteries. In uncontracted arteries, the PAR-2 agonist, SLIGRL-NH2 (0.1 to 10 micromol/L), hyperpolarized the VSM membrane potential only in endothelium-intact arterial preparations. This response was unaltered by treatment of arteries with inhibitors of NO synthases (L-NAME), soluble guanylyl cyclase (ODQ), and cyclooxygenases (indomethacin). L-NAME, ODQ, and indomethacin also failed to inhibit SLIGRL-NH2-induced hyperpolarization and of cirazoline-contracted mesenteric arteries. However, in blood vessels that were depolarized and contracted with 30 mmol/L KCl, the effects of the SLIGRL-NH2 on membrane potential and tension were not observed. SLIGRL-NH2-induced hyperpolarization and relaxation was inhibited completely by the combination of apamin plus charybdotoxin, but only partially inhibited after treatment with the combination of barium plus ouabain, suggesting an important role for SKCa and IKCa channels and a lesser role for Kir channels and Na+/K+ ATPases in the hyperpolarization response. We concluded that activation of endothelial PAR-2 hyperpolarized the vascular smooth muscle (VSM) cells of small caliber arteries, without requiring the activation of NO synthases, cyclooxygenases, or soluble guanylyl cyclase. Indeed, this hyperpolarization may be a primary mechanism for PAR-2-induced hypotension in vivo.  相似文献   

19.
We recently reported that cADP-ribose (cADPR) and ADP-ribose (ADPR) play an important role in the regulation of the Ca(2+)-activated K(+) (K(Ca)) channel activity in coronary arterial smooth muscle cells (CASMCs). The present study determined whether these novel signaling nucleotides participate in 11,12-epoxyeicosatrienoic acid (11,12-EET)-induced activation of the K(Ca) channels in CASMCs. HPLC analysis has shown that 11,12-EET increased the production of ADPR but not the formation of cADPR. The increase in ADPR production was due to activation of NAD glycohydrolase as measured by a conversion rate of NAD into ADPR. The maximal conversion rate of NAD into ADPR in coronary homogenate was increased from 2.5 +/- 0.2 to 3.4 +/- 0.3 nmol*(-1) *mg protein(-1) by 11,12-EET. The regioisomers of 8,9-EET, 11,12-EET, and 14,15-EET also significantly increased ADPR production from NAD. Western blot analysis and immunoprecipitation demonstrated the presence of NAD glycohydrolase, which mediated 11,12-EET-activated production of ADPR. In cell-attached patches, 11,12-EET (100 nM) increases K(Ca) channel activity by 5.6-fold. The NAD glycohydrolase inhibitor cibacron blue 3GA (3GA, 100 microM) significantly attenuated 11,12-EET-induced increase in the K(Ca) channel activity in CASMCs. However, 3GA had no effect on the K(Ca) channels activity in inside-out patches. 11,12-EET produced a concentration-dependent relaxation of precontracted coronary arteries. This 11,12-EET-induced vasodilation was substantially attenuated by 3GA (30 microM) with maximal inhibition of 57%. These results indicate that 11,12-EET stimulates the production of ADPR and that intracellular ADPR is an important signaling molecule mediating 11,12-EET-induced activation of the K(Ca) channels in CASMCs and consequently results in vasodilation of coronary artery.  相似文献   

20.
Arachidonic acid is metabolized to four regioisomeric epoxyeicosatrienoic acids (EETs) by cytochrome P-450. 5,6-, 8,9-, 11,12-, and 14,15-EET are equipotent in relaxing bovine coronary arteries (BCAs). Vasorelaxant effects of EETs are nonselectively antagonized by 14,15-epoxyeicosa-5(Z)-enoic acid. The 11,12-EET analogs, 20-hydroxy-11,12-epoxyeicosa-8(Z)-enoic acid (20-H-11,12-EE8ZE) and 11,12,20-trihydroxyeicosa-8(Z)-enoic acid (11,12,20-THE8ZE) were synthesized and tested for antagonist activity against EET-induced relaxations in BCAs. In U-46619-preconstricted arterial rings, 5,6-, 8,9-, 11,12-, and 14,15-EET caused concentration-dependent relaxations with maximal relaxations ranging from 80 to 96%. Preincubation of arteries with 20-H-11,12-EE8ZE (10(-5) M) inhibited relaxations to 14,15- and 11,12-EET, but not 5,6- and 8,9-EET; however, greatest inhibitory effect was against 11,12-EET (maximal relaxation = 80.6 ± 4.6 vs. 26.7 ± 7.4% without and with 20-H-11,12-EE8ZE, respectively). Preincubation with the soluble epoxide hydrolase inhibitor (tAUCB, 10(-6) M) significantly enhanced the antagonist effect of 20-H-11,12-EE8ZE against 14,15-EET-induced relaxations (maximal relaxation = 86.6 ± 4.4 vs. 27.8 ± 3.3%, without and with 20-H-11,12-EE8ZE and tAUCB) without any change in its effect against 11,12-EET-induced relaxations. In contrast to the parent compound, the metabolite, 11,12,20-THE8ZE (10(-5) M), significantly inhibited relaxations to 11,12-EET and was without effect on other EET regioisomers. Mass spectrometric analysis revealed conversion of 20-H-11,12-EE8ZE to 11,12,20-THE8ZE by incubation with BCA. The conversion was blocked by tAUCB. 14,15-Dihydroxy-eicosa-5Z-enoic acid (a 14,15-EET antagonist), but not 11,12,20-THE8ZE (an 11,12-EET antagonist), inhibited BCA relaxations to arachidonic acid and flow-induced dilation in rat mesenteric arteries. These results indicate that 11,12,20-THE8ZE is a selective antagonist of 11,12-EET relaxations and a useful pharmacological tool to elucidate the function of 11,12-EET in the cardiovascular system.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号