首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The development of second-generation bioethanol involves minimizing the energy input throughout the processing steps. We report here that efficient ionic liquid pretreatments of cellulose can be achieved with short duration times (20min) at mild temperature (45°C) with [Emim](+)[MeO(H)PO(2)](-) and at room temperature (25°C) with [Emim](+)[CH(3)COO](-). In these conditions, yields of glucose were increased by a factor of 3. In addition, the recycling of these two imidazolium-based ILs can be performed in maintaining their efficiency to pretreat cellulose. The short time and mild temperature of cellulose solubilization allowed a one-batch processing of [Emim](+)[MeO(H)PO(2)](-) IL-pretreatment and saccharification. In the range from 0 to 100% IL in an aqueous enzymatic medium, the glucose yields were improved at IL proportions between 10 and 40%. The maximum yield at 10% IL is very promising to consider one batch process as efficient as two-step process.  相似文献   

2.
Rheological properties of sulfoacetate derivatives of cellulose   总被引:1,自引:0,他引:1  
Water-soluble cellulose acetate sulfate derivatives (CAS) have been prepared through chemical reaction involving sulfuric acid as a catalyst. These CAS have been obtained from cellulosic materials of different origins (pure cellulose, wheat bran, maize bran) and their rheological behavior in salt-free aqueous solution has been estimated in dilute and semi-dilute regime using dynamic viscoelastic and viscosity measurements. Influence of concentration, temperature of solubilization and temperature of measurement has been investigated. Weak gel-like properties were exhibited at elevated concentration (typically above 7-8 g/L). These systems also exhibited thixotropic properties: the structure was partly broken down upon shearing and recovered at rest. They also displayed thermoreversibility with large hysteresis, the melting temperature being approximately 15 degrees C higher than the temperature at which gelation took place. These overall observations clearly indicate that these distinctive properties arise from intermolecular association of the macromolecular chains of the cellulose derivative.  相似文献   

3.
A comparison of the ligninolytic, cellulolytic and hemicellulolytic abilities of an alkaliphilic white-rot fungus. Coprinus fimetarius, on wheat straw under varying conditions of solid-substrate fermentation is presented. The extent of fractional degradation (percentage of the original dry weight of the fraction) of straw under an optimized set of cultural conditions (pH 9·0, moisture 65%, temperature 37°C, period 21 days) was in the following order: lignin (45%), cellulose (42%), hemicellulose (27%). Urea nitrogen favoured the degradation of lignin as well as cellulose and hemicellulose up to a certain level (1·5% sterile urea or 3% unsterile urea on a dry weight basis) beyond which the degradation of lignin was relatively more adversely affected than cellulose. The addition of phosphorus and sulphur was found essential for selective lignin removal. Increasing the C:N ratio by addition of free carbohydrates resulted in an overall decrease in the degradation wherein cellulose utilization was the most affected event. The pre-treatment (physical or chemical) of the substrate caused a general increase in biodegradation of lignin, cellulose and hemicellulose. The degrading activity of the fungus declined with the scaling-up of the fermentation particularly under non-sterile conditions.  相似文献   

4.
Unique gelation behavior of cellulose in NaOH/urea aqueous solution   总被引:11,自引:0,他引:11  
Cai J  Zhang L 《Biomacromolecules》2006,7(1):183-189
A transparent cellulose solution was prepared by mixing 7 wt % NaOH with 12 wt % urea aqueous solution which was precooled to below -10 degrees C and which was able to rapidly dissolve cellulose at ambient temperature. The rheological properties and behavior of the gel-formed cellulose solution were investigated by using dynamic viscoelastic measurement. The effects of temperature, time, cellulose molecular weight, and concentrations on both the shear storage modulus (G') and the loss modulus (G") were analyzed. The cellulose solution having a viscosity-average molecular weight (M(eta)) of 11.4 x 10(4) had its sol-gel transition temperature decreased from 60.3 to 30.5 degrees C with an increase of its concentration from 3 to 5 wt %. The gelation temperature of a 4 wt % cellulose solution dropped from 59.4 to 30.5 degrees C as the M(eta) value was increased from 4.5 x 10(4) to 11.4 x 10(4). Interestingly, at either higher temperature (above 30 degrees C), or lower temperature (below -3 degrees C), or for longer gelation time, gels could form in the cellulose solutions. However, the cellulose solution remains a liquid state for a long time at the temperature range from 0 to 5 degrees C. For the first time, we revealed an irreversible gelation in the cellulose solution system. The gel having been formed did not dissolve even when cooled to the temperature of -10 degrees C, at which it was dissolved previously. Therefore, this indicates that either heating or cooling treatment could not break such stable gels. A high apparent activation energy (E(a)) of the cellulose solution below 0 degrees C was obtained and was used to explain the gel formation under the cooling process.  相似文献   

5.
Cellulose with properties suitable for films and absorbents has been extracted from corn kernels and DDGS. Although DDGS is an inexpensive and abundant co-product that contains valuable components, it is currently not being used for industrial applications. DDGS contains about 9–16% cellulose by weight but the properties of cellulose in DDGS or even in corn kernels such as degree of polymerization (DP), morphology and crystallinity of cellulose have not been studied. In this study, cellulose was extracted from corn kernels and DDGS using alkali and enzymes. A minimum crude cellulose yield of 1.7% and 7.2% with cellulose content of 72% and 81% was obtained from corn kernels and DDGS, respectively. The solids obtained after extraction with cellulose contents ranging from 35% to 81% were made into films with tensile strength and elongation up to 42.5 MPa and 3.3%, respectively, using water and without any additional chemicals. The cellulose obtained holds water up to 9 times its weight and could therefore be used as an absorbent. The cellulose could also be used as paper, composites, lubricant and nutritional supplement.  相似文献   

6.
The properties of enzyme-hydrolyzed cellulose in aqueous sodium hydroxide   总被引:2,自引:0,他引:2  
Cao Y  Tan H 《Carbohydrate research》2002,337(16):1453-1457
Pure natural cellulose (softwood pulp) modified with cellulase is allowed to react with sodium hydroxide in a muller, and changes in structure and properties are investigated by FTIR and DSC. The reactivity of cellulose for some dissolving and derivatization processes is shown to be improved by an enzymatic hydrolysis and admixture with sodium hydroxide. The modified cellulose dissolved at 9% (wt) sodium hydroxide at -10 degrees C at 6% pulp consistency, while the DP of cellulose is >350.  相似文献   

7.
Cellulases containing a family 9 catalytic domain and a family 3c cellulose binding module (CBM3c) are important components of bacterial cellulolytic systems. We measured the temperature dependence of the activities of three homologs: Clostridium cellulolyticum Cel9G, Thermobifida fusca Cel9A, and C. thermocellum Cel9I. To directly compare their catalytic activities, we constructed six new versions of the enzymes in which the three GH9-CBM3c domains were fused to a dockerin both with and without a T. fusca fibronectin type 3 homology module (Fn3). We studied the activities of these enzymes on crystalline cellulose alone and in complex with a miniscaffoldin containing a cohesin and a CBM3a. The presence of Fn3 had no measurable effect on thermostability or cellulase activity. The GH9-CBM3c domains of Cel9A and Cel9I, however, were more active than the wild type when fused to a dockerin complexed to scaffoldin. The three cellulases in complex have similar activities on crystalline cellulose up to 60°C, but C. thermocellum Cel9I, the most thermostable of the three, remains highly active up to 80°C, where its activity is 1.9 times higher than at 60°C. We also compared the temperature-dependent activities of different versions of Cel9I (wild type or in complex with a miniscaffoldin) and found that the thermostable CBM is necessary for activity on crystalline cellulose at high temperatures. These results illustrate the significant benefits of working with thermostable enzymes at high temperatures, as well as the importance of retaining the stability of all modules involved in cellulose degradation.  相似文献   

8.
An enzyme hydrolyzing beta-1,4 bonds in cellulose acetate was purified 10.5-fold to electrophoretic homogeneity from a culture supernatant of Neisseria sicca SB, which assimilate cellulose acetate as the sole carbon and energy source. The enzyme was an endo-1,4-beta-glucanase, to judge from the substrate specificity and hydrolysis products of cellooligosaccharides, we named it endo-1,4-beta-glucanase I (EG I). Its molecular mass was 50 kDa, 9 kDa larger than EG II from this strain, and its isoelectric point was 5.0. Results of N-terminal and inner-peptide sequences of both enzymes, and a similarity search, suggested that EG I contained a carbohydrate-binding module at the N-terminus and that EG II lacked this module. The pH and temperature optima of EG I were 5.0-6.0 and 45 degrees C. It hydrolyzed water-soluble cellulose acetate (degree of substitution, 0.88) and carboxymethyl cellulose. The Km and Vmax for these compounds were 0.296% and 1.29 micromol min(-1) mg(-1), and 0.448% and 13.6 micromol min(-1) mg(-1), respectively. Both glucanases and cellulose acetate esterase from this strain degraded water-insoluble cellulose acetate synergistically.  相似文献   

9.
Application of bacterial cellulose pellets in enzyme immobilization   总被引:1,自引:0,他引:1  
Over recent years, there has been a growing interest in the use of cellulose materials in bioprocessing technologies. Bacterial cellulose which is the pure cellulose has unique physical properties which differ from those of plant cellulose and has therefore attracted attention as a new functional material. The applications of bacterial cellulose rarely use the pellet type but it has potential in enzyme immobilization since pellet form is usually used in this field. In this research, Glucoamylase which is widely used in the food industry was immobilized on bacterial cellulose beads after testing using various activation procedures. The results showed that the epoxy method with glutaraldehyde coupling was the best method. After comparison of the different types of bacterial cellulose beads for glucoamylase immobilization, the wet bacterial cellulose beads of the smallest size (0.5–1.5 mm) were the best support. The immobilization of enzyme enhances its stability against changes in the pH value and temperature especially in the lower temperature region. The relative activity of the immobilized glucoamylase was still above 77% at pH 2.0 and it was the highest value in the literature. The relative activities were more than 68% in the lower temperature region even at 20 °C. Thus, bacterial cellulose beads are a practical potential support for the preparation of immobilized enzymes in industrial applications.  相似文献   

10.
Metagenomics, a new research field developed over the past decade, aims to identify potential enzymes from nonculturable microbes. In this study, genes encoding three glycoside hydrolase family (GHF) 9 endoglucanases and one GHF 5 endoglucanase were cloned and identified from the metagenome of the compost soils. The shared identities between the predicted amino acid sequences of these genes and their closest homologues in the database were less than 70%. One GHF 9 endoglucanase, Umcel9B, was further characterized. The recombinant protein, Umcel9B, showed activity against carboxymethyl cellulose, indicating that Umcel9B is an endoactive enzyme. Enzymatic activity occurs optimally at a pH of 7.0 and a temperature of 25°C. Electronic supplementary material  The online version of this article (doi:) contains supplementary material, which is available to authorized users.  相似文献   

11.
Thermophilic (50 degrees C) and obligately thermophilic (60 degrees C) anaerobic carbohydrate- and protein-digesting and methanogenic bacterial populations were enumerated in a mesophilic (35 degrees C) fermentor anaerobically digesting municipal primary sludge. Of the total bacterial population in the mesophilic fementor, 9% were thermophiles (36 x 10(6)/ml) and 1% were obligate thermophiles (4.5 x 10(6)/ml). Of these 10%, the percentages of bacteria (thermophiles and obligate thermophiles, respectively) able to use specific substrates were further enumerated as follows: bacteria able to digest albumin, casein, starch, and mono- and disaccharides, 30 and 10%; pectin degraders, 10 and 0.2%; cellulose degraders, 2 and 0.06%; methanogens that grow with H2 and CO2, methanol, and dimethylamine, 9 and 1%; methanogens that grow with formate, 8 and 5%; and methanogens that grow with acetate, 25 and less than 0.8%. Shortly after the temperature was elevated from 35 to 50 or 60 degrees C, the digestion of albumin, casein, starch, and mono- and disaccharides was detected, and methane was produced from H2 and CO2. Methane produced from acetate was not delayed at 50 degrees C, but was delayed by 29 days at 60 degrees C. Methane produced from formate was delayed by 3 days, from methanol by 7 days, and from dimethylamine by 5 days at 50 and 60 degrees C. A 10- and 20-day acclimation period was required for hydrolysis of pectin and cellulose, respectively, at 50 degrees C. Digestion of pectin required 20 days and cellulose longer than 85 days when the temperature was elevated abruptly from 35 to 60 degrees C. The acclimation period for the digestion of pectin and cellulose at 60 degrees C was shortened to 3 and 15 days, respectively, by seeding with a small amount of a culture acclimated to 50 degrees C. The data suggest that enrichment of cellulolytic, pectinolytic, and acetate-utilizing bacteria is crucial for the digestion of sewage sludge at 60 degrees C.  相似文献   

12.
M Chen 《Applied microbiology》1983,45(4):1271-1276
Thermophilic (50 degrees C) and obligately thermophilic (60 degrees C) anaerobic carbohydrate- and protein-digesting and methanogenic bacterial populations were enumerated in a mesophilic (35 degrees C) fermentor anaerobically digesting municipal primary sludge. Of the total bacterial population in the mesophilic fementor, 9% were thermophiles (36 x 10(6)/ml) and 1% were obligate thermophiles (4.5 x 10(6)/ml). Of these 10%, the percentages of bacteria (thermophiles and obligate thermophiles, respectively) able to use specific substrates were further enumerated as follows: bacteria able to digest albumin, casein, starch, and mono- and disaccharides, 30 and 10%; pectin degraders, 10 and 0.2%; cellulose degraders, 2 and 0.06%; methanogens that grow with H2 and CO2, methanol, and dimethylamine, 9 and 1%; methanogens that grow with formate, 8 and 5%; and methanogens that grow with acetate, 25 and less than 0.8%. Shortly after the temperature was elevated from 35 to 50 or 60 degrees C, the digestion of albumin, casein, starch, and mono- and disaccharides was detected, and methane was produced from H2 and CO2. Methane produced from acetate was not delayed at 50 degrees C, but was delayed by 29 days at 60 degrees C. Methane produced from formate was delayed by 3 days, from methanol by 7 days, and from dimethylamine by 5 days at 50 and 60 degrees C. A 10- and 20-day acclimation period was required for hydrolysis of pectin and cellulose, respectively, at 50 degrees C. Digestion of pectin required 20 days and cellulose longer than 85 days when the temperature was elevated abruptly from 35 to 60 degrees C. The acclimation period for the digestion of pectin and cellulose at 60 degrees C was shortened to 3 and 15 days, respectively, by seeding with a small amount of a culture acclimated to 50 degrees C. The data suggest that enrichment of cellulolytic, pectinolytic, and acetate-utilizing bacteria is crucial for the digestion of sewage sludge at 60 degrees C.  相似文献   

13.
Cellulolytic and hemicellulolytic enzymes usually have a domain composition. The mutual influence of a cellulose-binding domain and a catalytic domain was investigated with cellobiohydrolase CelK and xylanase XynZ from Clostridium thermocellum. CelK is composed of an N-terminal family IV cellulose-binding domain (CBDIV(CelK)), a family 9 glycosyl hydrolase domain (Gh9(CelK)) and a dockerin domain (DD). CelK without the DD, (CBDIV-Gh9)(CelK) and CBDIV(CelK) bound cellulose. The thermostability of (CBDIV-Gh9)(CelK) was significantly higher than that of CBDIV(CelK) and Gh9(CelK). The temperature optima of (CBDIV-Gh9)(CelK) and Gh9(CelK) were 65 and 45 degrees C, respectively. XynZ consists of an N-terminal feruloyl esterase domain (FAE(XynZ)), a linker (L), a family VI CBD (CBDVI(XynZ)), a DD and a xylanase domain. FAE(XynZ) and (FAE-L-CBDVI)(XynZ), used in the present study did not bind cellulose, but both were highly thermostable. Replacement of CBDVI(XynZ) with CBDIV(CelK) resulted in chimeras with feruloyl esterase activity and the ability to bind cellulose. CBDIV(CelK)-FAE(XynZ) bound cellulose with parameters similar to that of (CBDIV-Gh9)(CelK). (FAE-L)(XynZ)-CBDIV(CelK) and FAE(XynZ)-CBDIV(CelK) had lower relative affinities and binding capacities than those of (CBDIV-Gh9)(CelK). The three chimeras were much less thermostable than FAE(XynZ) and (FAE-L-CBDVI)(XynZ). The results indicate that domains of glycosyl hydrolases are not randomly combined and that domain interactions affect properties of these domain-structured enzymes.  相似文献   

14.
Softwood is an interesting raw material for the production of fuel ethanol as a result of its high content of hexoses, and it has attracted attention especially in the Northern hemisphere. However, the enzymatic hydrolysis of softwood is not sufficiently efficient for the complete conversion of cellulose to glucose. Since an improvement in the glucose yield is of great importance for the overall economy of the process, the influence of various parameters on the cellulose conversion of steam-pretreated spruce has been investigated. The addition of beta-glucosidase up to 50 IU g(-)(1) cellulose to the enzymatic hydrolysis process resulted in increased cellulose conversion at a cellulase loading up to 48 FPU g(-)(1) cellulose. Despite very high enzyme loading (120 FPU g(-)(1) cellulose) only about 50% of the cellulose in steam-pretreated spruce was converted to glucose when all of the material following pretreatment was used in the hydrolysis step. The influence of temperature, residence time, and pH were investigated for washed pretreated spruce at a dry matter (DM) content of 5% and a cellulase activity of 18.5 FPU g(-)(1) cellulose. The optimal temperature was found to be dependent on both residence time and pH, and the maximum degree of cellulose conversion, 69.2%, was obtained at 38 degrees C and pH 4.9 for a residence time of 144 h. However, when the substrate concentration was changed from 5% to 2% DM, the cellulose conversion increased to 79.7%. An increase from 5% to 10% DM resulted, however, in a similar degree of cellulose conversion, despite a significant increase in the glucose concentration from 23 g L(-)(1) to 45 g L(-)(1). The deactivation of beta-glucosidase increased with increasing residence time and was more pronounced with vigorous agitation.  相似文献   

15.
Cotton-rapeseed or cotton-wheat double cropping systems are popular in the Yangtze River Valley and Yellow River Valley of China. Due to the competition of temperature and light resources during the growing season of double cropping system, cotton is generally late-germinating and late-maturing and has to suffer from the coupling of declining temperature and low light especially in the late growth stage. In this study, late planting (LP) and shading were used to fit the coupling stress, and the coupling effect on fiber cellulose synthesis was investigated. Two cotton (Gossypium hirsutum L.) cultivars were grown in the field in 2010 and 2011 at three planting dates (25 April, 25 May and 10 June) each with three shading levels (normal light, declined 20% and 40% PAR). Mean daily minimum temperature was the primary environmental factor affected by LP. The coupling of LP and shading (decreased cellulose content by 7.8%–25.5%) produced more severe impacts on cellulose synthesis than either stress alone, and the effect of LP (decreased cellulose content by 6.7%–20.9%) was greater than shading (decreased cellulose content by 0.7%–5.6%). The coupling of LP and shading hindered the flux from sucrose to cellulose by affecting the activities of related cellulose synthesis enzymes. Fiber cellulose synthase genes expression were delayed under not only LP but shading, and the coupling of LP and shading markedly postponed and even restrained its expression. The decline of sucrose-phosphate synthase activity and its peak delay may cause cellulose synthesis being more sensitive to the coupling stress during the later stage of fiber secondary wall development (38–45 days post-anthesis). The sensitive difference of cellulose synthesis between two cultivars in response to the coupling of LP and shading may be mainly determined by the sensitiveness of invertase, sucrose-phosphate synthase and cellulose synthase.  相似文献   

16.
Genetic modification of plant cell walls has been posed to reduce lignocellulose recalcitrance for enhancing biomass saccharification. Since cellulose synthase (CESA) gene was first identified, several dozen CESA mutants have been reported, but almost all mutants exhibit the defective phenotypes in plant growth and development. In this study, the rice (Oryza sativa) Osfc16 mutant with substitutions (W481C, P482S) at P‐CR conserved site in CESA9 shows a slightly affected plant growth and higher biomass yield by 25%–41% compared with wild type (Nipponbare, a japonica variety). Chemical and ultrastructural analyses indicate that Osfc16 has a significantly reduced cellulose crystallinity (CrI) and thinner secondary cell walls compared with wild type. CESA co‐IP detection, together with implementations of a proteasome inhibitor (MG132) and two distinct cellulose inhibitors (Calcofluor, CGA), shows that CESA9 mutation could affect integrity of CESA4/7/9 complexes, which may lead to rapid CESA proteasome degradation for low‐DP cellulose biosynthesis. These may reduce cellulose CrI, which improves plant lodging resistance, a major and integrated agronomic trait on plant growth and grain production, and enhances biomass enzymatic saccharification by up to 2.3‐fold and ethanol productivity by 34%–42%. This study has for the first time reported a direct modification for the low‐DP cellulose production that has broad applications in biomass industries.  相似文献   

17.
Tang LR  Huang B  Ou W  Chen XR  Chen YD 《Bioresource technology》2011,102(23):10973-10977
Cellulose nanocrystals (CNC) were prepared from microcrystalline cellulose (MCC) by hydrolysis with cation exchange resin (NKC-9) or 64% sulfuric acid. The cation exchange resin hydrolysis parameters were optimized by using the Box–Behnken design and response surface methodology. An optimum yield (50.04%) was achieved at a ratio of resin to MCC (w/w) of 10, a temperature of 48 °C and a reaction time of 189 min. Electron microscopy (EM) showed that the diameter of CNCs was about 10–40 nm, and the length was 100–400 nm. Regular short rod-like CNCs were obtained by sulfuric acid hydrolysis, while long and thin crystals of cellulose were obtained with the cation exchange resin. X-ray diffraction (XRD) showed that, compared with MCC, the crystallinity of H2SO4-CNC and resin-CNC increased from 72.25% to 77.29% and 84.26%, respectively. The research shows that cation exchange resin-catalyzed hydrolysis of cellulose could be an excellent method for manufacturing of CNC in an environmental-friendly way.  相似文献   

18.
The cellulolytic bacterium Ruminococcus albus 8 adheres tightly to cellulose, but the molecular biology underpinning this process is not well characterized. Subtractive enrichment procedures were used to isolate mutants of R. albus 8 that are defective in adhesion to cellulose. Adhesion of the mutant strains was reduced 50% compared to that observed with the wild-type strain, and cellulose solubilization was also shown to be slower in these mutant strains, suggesting that bacterial adhesion and cellulose solubilization are inextricably linked. Two-dimensional polyacrylamide gel electrophoresis showed that all three mutants studied were impaired in the production of two high-molecular-mass, cell-bound polypeptides when they were cultured with either cellobiose or cellulose. The identities of these proteins were determined by a combination of mass spectrometry methods and genome sequence data for R. albus 8. One of the polypeptides is a family 9 glycoside hydrolase (Cel9B), and the other is a family 48 glycoside hydrolase (Cel48A). Both Cel9B and Cel48A possess a modular architecture, Cel9B possesses features characteristic of the B(2) (or theme D) group of family 9 glycoside hydrolases, and Cel48A is structurally similar to the processive endocellulases CelF and CelS from Clostridium cellulolyticum and Clostridium thermocellum, respectively. Both Cel9B and Cel48A could be recovered by cellulose affinity procedures, but neither Cel9B nor Cel48A contains a dockerin, suggesting that these polypeptides are retained on the bacterial cell surface, and recovery by cellulose affinity procedures did not involve a clostridium-like cellulosome complex. Instead, both proteins possess a single copy of a novel X module with an unknown function at the C terminus. Such X modules are also present in several other R. albus glycoside hydrolases and are phylogentically distinct from the fibronectin III-like and X modules identified so far in other cellulolytic bacteria.  相似文献   

19.
20.
An impulse method of nuclear magnetic resonance was used for measuring the times of spin-lattice relaxation in the rotating system of coordinates (RSC) for water molecules adsorbed on cottone cellulose. It has been shown that within the temperature region -10 divided by -40 degrees C the spin-lattice relaxation of water in RSC is conditioned by intermolecular interactions modulated with translation movement. The selfdiffusion coefficient of adsorbed water for the sample with 55% humidity at -10 degrees C is determined as 2.0.10(-9) cm2/s and decreases to 0.3.10(-9) cm2s at -40 degrees C, with activation energy of diffusion equalling 8.1 kcal/mol.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号