首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
Two-dimensional gel electrophoresis (2-DE) is currently the method of choice for separating complex mixtures of proteins for visual comparison in proteome analysis. This technology, however, is biased against certain classes of proteins including low abundance and hydrophobic proteins. Proteins with extremely alkaline isoelectric points (pI) are often very poorly represented using 2-DE technology, even when complex mixtures are separated using commercially available pH 6-11 or pH 7-10 immobilized pH gradients. The genome of the human gut pathogen, Helicobacter pylori, is dominated by genes encoding basic proteins, and is therefore a useful model for examining methodology suitable for separating such proteins. H. pylori proteins were separated on pH 6-11 and novel pH 9-12 immobilized pH gradients and 65 protein spots were subjected to matrix-assisted laser desorption/ionization-time of flight mass spectrometry, leading to the identification of 49 unique proteins. No proteins were characterized with a theoretical pI of greater than 10.23. A second approach to examine extremely alkaline proteins (pI > 9.0) utilized a prefractionation isoelectric focusing. Proteins were separated into two fractions using Gradiflow technology, and the extremely basic fraction subjected to both sodium dodecyl sulphate-polyacrylamide gel electrophoresis and liquid chromatography (LC) - tandem mass spectrometry post-tryptic digest, allowing the identification of 17 and 13 proteins, respectively. Gradiflow separations were highly specific for proteins with pI > 9.0, however, a single LC separation only allowed the identification of peptides from highly abundant proteins. These methods and those encompassing multiple LC 'dimensions' may be a useful complement to 2-DE for 'near-to-total' proteome coverage in the alkaline pH range.  相似文献   

2.
The Gradiflow trade mark, a preparative electrophoresis instrument capable of separating proteins on the basis of their size or charge, was used to separate whole cell lysates, prepared from bakers yeast (Saccharomyces cerevisiae) and Chinese snow pea seeds (Pisum sativum macrocarpon), into protein fractions of different pH regions. Both broad and narrow range (with a difference of approximately 1 pH unit) pH fractions were obtained. Analysis of the protein fractions by isoelectric focusing gels and two-dimensional (2-D) polyacrylamide gel electrophoresis indicated minimal overlap between the pH fractions. Further, when the prefractionated acidic samples were analyzed on pH 4-7 immobilized pH gradient 2-D gels, improved resolution of the proteins within the chosen pH region was achieved compared to the unfractionated samples. This study demonstrates that the Gradiflow could be used as a preparative electrophoresis tool for the isolation of proteins into distinct pH fractions.  相似文献   

3.
The Gradiflow, a preparative electrophoresis instrument, which separates proteins on the basis of charge or size, was used to purify the basic protein avidin, pI 10, from chicken egg white. Using a charge based separation at pH 9.0, the high pI of avidin and lysozyme (pI 10.7) allows them to be easily separated from remaining egg white proteins, as these are the only positively charged proteins. In a second step at pH 10.2, the negatively charged avidin is separated from the positively charged lysozyme. This sequential two-step protocol was complete within 4.5h. Enzyme immunoassay of avidin fractions obtained indicated recoveries of 60-65% from one egg white with minimal lysozyme activity detected.  相似文献   

4.
Two-dimensional liquid chromatography separation (2-DL), based on chromatofocusing for first dimension and hydrophobicity for second, can be used as a complementary method to two-dimensional gel electrophoresis (2-DE). A platform now available, ProteomeLab PF 2D provided by Beckman Coulter, (Fullerton, CA, USA), assembles these methods in automation. This system was applied to resolve large numbers of urine proteins. Reproducibility and sensitivity in protein resolution were evaluated in this study using urines collected from male blood donors. About 1000 peaks were detected at a pH range of 4.0-8.5 by applying 1 mg of proteins. Furthermore, the same fractions showing peaks with high absorbance intensities in second dimension were collected and subjected to matrix-assisted laser desorption/ionization-time of flight/mass spectrometry analysis for identification. The results showed that the 2-DL provides high reproducibility of two-dimensional protein map, and lends fractions to subsequent mass spectrometry analysis without the further need for extraction or solubilization of samples as required for spots excised from 2-DE gels. In addition, this system also allows to separate particularly proteins with 40-9 kDa molecular weight.  相似文献   

5.
Two-dimensional electrophoresis (2-DE) is a highly resolving technique for arraying proteins by isoelectric point and molecular mass. To date, the resolving ability of 2-DE for protein separation is unsurpassed, thus ensuring its use as the fundamental separation method for proteomics. When immobilized pH gradients (IPGs) are used for isoelectric focusing in the first dimension, excellent reproducibility and high protein load capacity can be achieved. While this has been beneficial for separations of soluble and mildly hydrophobic proteins, separations of membrane proteins and other hydrophobic proteins with IPGs have often been poor. Stimulated by the growing interest in proteomics, recent developments in 2-DE methodology have been aimed at rectifying this situation. Improvements have been made in the area of protein solubilization and sample fractionation, leading to a revamp of traditional approaches for 2-DE of membrane proteins. This review explores these developments.  相似文献   

6.
We describe methods for broad characterization of the human plasma proteome. The combination of stepwise immunoglobulin G (IgG) and albumin protein depletion by affinity chromatography and ultrahigh-efficiency capillary liquid chromatography separations coupled to ion trap-tandem mass spectrometry enabled identification of 2392 proteins from a single plasma sample with an estimated confidence level of > 94%, and an additional 2198 proteins with an estimated confidence level of 80%. The relative abundances of the identified proteins span a range of over eight orders of magnitude in concentration (< 30 pg/mL to approximately 30 mg/mL), facilitated by the attomole-level sensitivity of the analysis methods. More than 80% of the observed proteins demonstrate interactions with IgG and/or albumin, and the human plasma protein loss in the affinity chromatography/strong cation exchange/reversed-phase liquid chromatography-tandem mass spectrometry methodology was investigated in detail. The results of this study provide a basis for a wide range of plasma proteomics studies, including broad quantitation of relative abundances in comparative studies of the identification of novel protein disease markers, as well as further studies of protein-protein interactions.  相似文献   

7.
Purification of recombinant human growth hormone (rhGH) from Chinese hamster ovary (CHO) cell culture supernatant by Gradiflow large-scale electrophoresis is described. Production of rhGH in CHO cells is an alternative to production in Escherichia coli, with the advantage that rhGH is secreted into protein-free production media, facilitating a more simple purification and avoiding resolubilization of inclusion bodies and protein refolding. As an alternative to conventional chromatography, rhGH was purified in a one-step procedure using Gradiflow technology. Clarified culture supernatant containing rhGH was passed through a Gradiflow BF200 and separations were performed over 60 min using three different buffers of varying pH. Using a 50 mM Tris/Hepes buffer at pH 7.5 together with a 50 kDa separation membrane, rhGH was purified to approximately 98% purity with a yield of 90%. This study demonstrates the ability of Gradiflow preparative electrophoresis technology to purify rhGH from mammalian cell culture supernatant in a one-step process with high purity and yield. As the Gradiflow is directly scalable, this study also illustrates the potential for the inclusion of the Gradiflow into bioprocesses for the production of clinical grade rhGH and other therapeutic proteins.  相似文献   

8.
The serum proteome of Equus caballus   总被引:1,自引:0,他引:1  
We constructed a reference two-dimensional protein map for horse (Equus caballus) serum. The serum proteins were separated by two-dimensional electrophoresis (2-DE); 29 different gene products were identified. Proteins represented by 25 spots/spot groups were identified by tandem nanoelectrospray mass spectrometry (MS), four by matrix-assisted laser desorption ionization time-of-flight (TOF) MS and one was sequenced by TOF-TOF technology. The identities of four proteins were deduced by similarity to the human plasma protein database. In selected cases, i.e. the immunoglobulins, immunoblotting with specific antibodies provided additional information about the respective proteins. Albumin was detected as the full-length protein and as fragments of various sizes. Spots representing products of different mass and charge were also detected for alpha1-antitrypsin, haptoglobin and transthyretin. Thus, despite the fact that the Equus caballus genome is incompletely characterized, we were able to identify almost all moderate to high abundance proteins stained in the serum 2-DE pattern.  相似文献   

9.
The development of tools for the analysis of global gene expression is vital for the optimal exploitation of the data on parasite genomes that are now being generated in abundance. Recent advances in two-dimensional electrophoresis (2-DE), mass spectrometry and bioinformatics have greatly enhanced the possibilities for mapping and characterisation of protein populations. We have employed these developments in a proteomics approach for the analysis of proteins expressed in the tachyzoite stage of Toxoplasma gondii. Over 1000 polypeptides were reproducibly separated by high-resolution 2-DE using the pH ranges 4-7 and 6-11. Further separations using narrow range gels suggest that at least 3000-4000 polypeptides should be resolvable by 2-DE using multiple single pH unit gels. Mass spectrometry was used to characterise a variety of protein spots on the 2-DE gels. Peptide mass fingerprints, acquired by matrix-assisted laser desorption/ionisation-(MALDI) mass spectrometry, enabled unambiguous protein identifications to be made where full gene sequence information was available. However, interpretation of peptide mass fingerprint data using the T. gondii expressed sequence tag (EST) database was less reliable. Peptide fragmentation data, acquired by post-source decay mass spectrometry, proved a more successful strategy for the putative identification of proteins using the T. gondii EST database and protein databases from other organisms. In some instances, several protein spots appeared to be encoded by the same gene, indicating that post-translational modification and/or alternative splicing events may be a common feature of functional gene expression in T. gondii. The data demonstrate that proteomic analyses are now viable for T. gondii and other protozoa for which there are good EST databases, even in the absence of complete genome sequence. Moreover, proteomics is of great value in interpreting and annotating EST databases.  相似文献   

10.
The abundance profile of the human urinary proteome is known to change as a result of diseases or drug toxicities, particularly of those affecting the kidney and the urogenital tract. A consequence of such insults is the ability to identify proteins in urine, which may be useful as quantitative biomarkers. To succeed in discovering them, reproducible urine sample preparation methods and good protein resolution in two-dimensional electrophoresis (2-DE) gels for parallel semiquantitative protein measurements are desirable. Here, we describe a protein fractionation strategy enriching proteins of molecular masses (M(r)) lower than 30 kDa in a fraction separate from larger proteins. The fraction containing proteins with M(r)s higher than 30 kDa was subsequently subjected to immunoaffinity subtraction chromatography removing most of the highly abundant albumin and immunoglobulin G. Following 2-DE display, superior protein spot resolution was observed. Subsequent high-throughput mass spectrometry analysis of ca. 1400 distinct spots using matrix-assisted laser desorption/ionization-time of flight peptide mass fingerprinting and liquid chromatography-electrospray ionization tandem mass spectrometry lead to the successful identification of 30% of the proteins. As expected from high levels of post-translational modifications in most urinary proteins and the presence of proteolytic products, ca. 420 identified spots collapsed into 150 unique protein annotations. Only a third of the proteins identified in this study are described as classical plasma proteins in circulation, which are known to be relatively abundant in urine despite their retention to a large extent in the glomerular blood filtration process. As a proof of principle that our urinary proteome display effort holds promise for biomarker discovery, proteins isolated from the urine of a renal cell carcinoma patient were profiled prior to and after nephrectomy. Particularly, the decrease in abundance of the kininogen 2-DE gel spot train in urine after surgery was striking.  相似文献   

11.
Listeria monocytogenes is the causative agent of listeriosis, one of the most significant foodborne diseases in industrialized countries. The complete genome of the L. monocytogenes EGDe strain, belonging to the serogroup 1/2a, has been sequenced and is comprised of 2853 open reading frames. The objective of the current study was to construct a two-dimensional (2-D) database of the proteome of this strain. The soluble protein fractions of the microorganism were recovered either in the mid-log or in the stationary phase of growth at 37 degrees C. These fractions were analyzed by 2-D electrophoresis (2-DE), using immobilized pH gradient strips of various pH values (3-10, 3-6, and 5-8) for the first-dimensional separations and 12.5% acrylamide gels for sodium dodecyl sulfate-polyacrylamide gel electrophoresis (SDS-PAGE). 201 protein spots corresponding to 126 different proteins were identified by matrix assisted laser desorption/ionization-time of flight-mass spectrometry (MALDI-TOF-MS). The 2-DE maps presented here provide a first basis for further investigations of protein expression in L. monocytogenes. In this way, the comparison of proteome between cells in the exponential or stationary phase of growth at 37 degrees C allowed us to characterize 161 variations in protein spot intensity, of which 38 were identified. Among the differentially expressed proteins were ribosomal proteins (RpsF, RplJ, and RpmE), proteins involved in cellular metabolism (GlpD, PdhD, Pgm, Lmo1372, Lmo2696, and Lmo2743) or in stress adaptation (GroES and ferritin), a fructose-specific phosphotransferase enzyme IIB (Lmo0399) and different post-translational modified forms of listeriolysin (LLO).  相似文献   

12.
BACKGROUND AND OBJECTIVES: Recent experimental evidence from rodent models suggests a potential risk for transmissible spongiform encephalopathy (TSE) transmission by blood. The emergence of a new variant Creutzfeldt-Jakob disease (vCJD) has raised increased concerns about the safety of blood components and plasma products derived from vCJD-infected donors. Recent risk-minimisation strategies have included a ban on the use of UK-sourced plasma for the preparation of licensed blood products and leukodepletion of blood donations for fear of possible transmission of the human TSE via blood or blood components. The aim of this study was to investigate the capability and efficacy of a preparative electrophoresis system (Gradiflow) in the removal of TSE contaminants during the separation of plasma products. MATERIALS AND METHODS: Using hamster adapted scrapie 263 K as a model for TSE agent, albumin and IgG separation from human plasma by Gradiflow were performed separately by spiking a 263 K scrapie microsomal fraction to the feed material at each process step. Samples from pre- and post-Gradiflow separation process were titrated to the end-point for the detection of the disease-associated, proteinase K resistant form of the pathogenic prion protein (PrP(Sc)) by Western blot. RESULTS: Under all conditions tested, a greater than 3 log(10) reduction was achieved with no PrP(Sc) detected in any of the pooled products for either of the IgG or albumin separations. These data show that Gradiflow processing has clear advantages for concurrent purification of plasma products and in-process TSE removal. CONCLUSIONS: Our findings suggest that Gradiflow process is a viable alternative to remove causative TSE agents during plasma products separation, potentially eliminating the risk of TSE agents transmission.  相似文献   

13.
As a first approach in establishing the holm oak leaf proteome, we have optimised a protocol for this plant and tissue which includes the following steps: trichloroacetic acid-acetone extraction, two-dimensional gel electrophoresis (2-DE) on pH 5 to 8 linear gradient immobilised pH gradient strips as the first dimension, and sodium dodecyl sulfate-polyacrylamide gel electrophoresis on 13% polyacrylamide gels as the second one. Proteins were detected by Coomassie staining. Gel images were recorded and digitalized, and the protein spots quantified by using a linear regression equation of protein quantity on spot volume obtained against standard proteins. Analytical variance was calculated for one-hundred protein spots from three replicate 2-DE gels of the same protein extract. Biological variance was determined for the same protein spots from independent tissue extracts corresponding to leaves from different trees, or the same tree at different orientations or sampling times during a day. Values of 26% for the analytical variance and 58.6% for the biological variance among independent trees were obtained. These values provide a quantified and statistical basis for the evaluation of protein expression changes in comparative proteomic investigations with this species. A representative set of the major proteins, covering the isoelectric point range of 5 to 8 and the relative molecular mass(r) range of 14 to 78 kDa, were subjected to liquid chromatography-tandem mass spectrometry analysis. Due to the absence of Quercus DNA or protein sequence databases, a method based on the procedure reported by Liska and Shevchenko including de novo sequencing and BLAST similarity searching against other plant species databases was used for protein identification. Out of 43 analysed spots, 35 were positively identified. The identified proteins mainly corresponded to enzymes involved in photosynthesis and energetic metabolism, with a significant number corresponding to RubisCO.  相似文献   

14.
We describe the preparation of Echinococcus granulosus metacestode protein extracts for two-dimensional electrophoresis (2-DE). Protoscoleces and hydatid fluid were prepared by precipitation using trichloroacetic acid (TCA) to remove nonprotein contaminants. Compared to the untreated control, TCA precipitation improved the 2-DE gel profile of the protoscoleces proteins. Comparison of 2-DE gels from insoluble and soluble fractions of the protoscoleces protein extract showed that most proteins are insoluble after lysis by sonication. Host serum proteins, especially albumin and globulins, caused horizontal streaking problems on the hydatid fluid 2-DE gels due to their high content in this sample. Even after the preparation of a hydatid fluid parasite enriched fraction, the high amount of bovine serum albumin and globulins made parasite-specific proteins difficult to detect by 2-DE. Despite the absence of an E. granulosus genome sequencing or expressed sequence tag (EST) projects, it was possible to identify 15 prominent protein spots from a whole protein protoscoleces 2-DE gel by peptide mass fingerprinting. These include actins, tropomyosin, paramyosin, thioredoxin reductase, antigen P-29, cyclophilin, and the heat shock proteins hsp70 and hsp20. This work demonstrates that 2-DE and PMF are important tools to identify proteins from the hydatid fluid and protoscoleces and for the comparative analysis of cysts from different hosts or between active and resting cysts.  相似文献   

15.
Zhan X  Desiderio DM 《Proteomics》2003,3(5):699-713
In order to compare the proteomes from different cell types of pituitary adenomas for our long-term goal to clarify the molecular mechanisms that participate in the formation of pituitary adenoma, and to detect any tumor-related marker for an "early-stage" diagnosis, the two-dimensional gel electrophoresis (2-DE) reference map of a pituitary adenoma tissue proteome is described here. A vertical, two-dimensional (2-D) polyacrylamide gel electrophoresis system and PDQuest image analysis software have been used to provide a high level of between-gel reproducibility and to accurately array each protein expressed in a pituitary adenoma tissue. Mass spectrometry (matrix-assisted laser desorption/ionization-time of flight MALDI-TOF and liquid chromatography-electrospray ionization-quadrupole-ion trap LC-ESI-Q-IT) and protein databases were used to characterize each protein in the 2-D gel. The results demonstrate that a good reproducibility of the 2-D gel pattern was attained. The position deviation of matched spots among four 2-D gels was 1.95 +/- 0.45 mm in the isoelectric focusing direction, and 1.70 +/- 0.53 mm in the sodium dodecyl sulfate-polyacrylamide gel electrophoresis direction. A total of ca. 1000 protein spots were separated by 2-DE, and 135 protein spots that represent 111 proteins were characterized with mass spectrometry (96 spots for MALDI-TOF, 39 spots for LC-ESI-Q-IT). The characterized proteins include pituitary hormones, cellular signals, enzymes, cellular-defense proteins, cell-structure proteins, transport proteins, etc. Those proteins were located in the cytoplasmic, cellular membrane, mitochondrial, endoplasmic reticulum, nuclear, ribonucleosome, extracellular fractions, or were secreted in plasma, etc. Those identified proteins contribute to a functional profile of the pituitary adenoma proteome. These data will be used to expand the proteome database of the human pituitary, which can be accessed in the website http://www.utmem.edu /proteomics.  相似文献   

16.
Ihling C  Sinz A 《Proteomics》2005,5(8):2029-2042
The basic problem of complexity poses a significant challenge for proteomic studies. To date two-dimensional gel electrophoresis (2-DE) followed by enzymatic in-gel digestion of the peptides, and subsequent identification by mass spectrometry (MS) is the most commonly used method to analyze complex protein mixtures. However, 2-DE is a slow and labor-intensive technique, which is not able to resolve all proteins of a proteome. To overcome these limitations gel-free approaches are developed based on high performance liquid chromatography (HPLC) and Fourier transform ion cyclotron resonance mass spectrometry (FT-ICR MS). The high resolution and excellent mass accuracy of FT-ICR MS provides a basis for simultaneous analysis of numerous compounds. In the present study, a small protein subfraction of an Escherichia coli cell lysate was prepared by size-exclusion chromatography and proteins were analyzed using C4 reversed phase (RP)-HPLC for pre-separation followed by C18 RP nanoHPLC/nanoESI FT-ICR MS for analysis of the peptide mixtures after tryptic digestion of the protein fractions. We identified 231 proteins and thus demonstrated that a combination of two RP separation steps - one on the protein and one on the peptide level - in combination with high-resolution FT-ICR MS has the potential to become a powerful method for global proteomics studies.  相似文献   

17.
The conventional approach for analyzing the protein complement of a genome involves the combination of two-dimensional gel electrophoresis (2-DE) and mass spectrometric based protein identification technologies. While 2-DE is a powerful separation technique, it is severely limited by the insolubility of certain classes of proteins (e.g. hydrophobic membrane proteins), as well as the amount of protein that can be processed. Here, we describe a simple procedure for resolving complex mixtures of proteins that involves a combination of free flow electrophoresis (FFE), a liquid-based isoelectric focussing (IEF) method, and sodium dodecylsulfate-polyacrylamide gel electrophoresis (SDS-PAGE). Resolved proteins were identified by peptide fragment sequencing using capillary column reversed-phase high performance liquid chromatography (RP-HPLC)/mass spectrometry (MS). An initial demonstration of the method was performed using digitonin/ethylenediaminetetraacetic acid EDTA extracted cytosolic proteins from the human colon carcinoma cell line, LIM 1215. Cytosolic proteins were separated by liquid-based IEF (pH range 3-10) into 96 fractions, and each FFE fraction was further fractionated by SDS-PAGE. Selected protein bands were excised from the SDS-PAGE gel, digested in situ with trypsin, and subsequently identified by on-line RP-HPLC/electrospray-ionization ion trap MS. Our results indicate that FFE is: (i) an extremely powerful liquid-based IEF method for resolving proteins; (ii) not limited by the amount of sample that can be loaded onto the instrument; and (iii) capable of fractionating intact protein complexes (a potentially powerful tool for cell-mapping proteomics). An up-to-date list of cytosolic proteins from the human colorectal carcinoma cell line LIM 1215 can be found in the Joint Protein Structure Laboratory (JPSL) proteome database. This information will provide an invaluable resource for future proteomics-based biological studies of colon cancer. The JPSL proteome database can be accessed through the World Wide Web (WWW) network (http://www.ludwig.edu.au/jpsl/jpslhome.html).  相似文献   

18.
19.
We compared the use of wet and dry two-dimensional electrophoresis (2-DE) gels for in-gel tryptic digestion and subsequent analysis by mass spectrometry, first using bovine serum albumin (BSA) as a model protein and then using unknown proteins from an extract of the silkworm midgut. The gel was either dried at 80 degrees C or left wet. Upon analysis of BSA, there was little difference in peptide recovery from 2-DE or in mass spectrum between the dry and the wet gels. The midgut extract was resolved into more than 1,100 protein spots by 2-DE, and 40 of these spots were sampled for further analysis. For all of the 40 proteins, the results obtained from dry and wet gels were quite similar in mass spectra and protein identification, although the relative amounts of peptides from tryptic digestion ranged from 45 to 146%. Based on these results, we confirmed the utility of dry electrophoretic gels for proteomics of insect extracts.  相似文献   

20.
In order to discover novel protein markers indicative of disease processes or drug effects, the proteomics technology platform most commonly used consists of high resolution protein separation by two-dimensional electrophoresis (2-DE), mass spectrometric identification of proteins from stained gel spots and a bioinformatic data analysis process supported by statistics. This approach has been more successful in profiling proteins and their disease- or treatment-related quantitative changes in tissue homogenates than in plasma samples. Plasma protein display and quantitation suffer from several disadvantages: very high abundance of a few proteins; high heterogeneity of many proteins resulting in long charge trains; crowding of 2-DE separated protein spots in the molecular mass range between 45-80 kD and in the isoelectric point range between 4.5 and 6. Therefore, proteomic technologies are needed that address these problems and particularly allow accurate quantitation of a larger number of less abundant proteins in plasma and other body fluids. The immunoaffinity-based protein subtraction chromatography (IASC) described here removes multiple proteins present in plasma and serum in high concentrations effectively and reproducibly. Applying IASC as an upfront plasma sample preparation process for 2-DE, the protein spot pattern observed in gels changes dramatically and at least 350 additional lower abundance proteins are visualized. Affinity-purified polyclonal antibodies (pAbs) are the immunoaffinity reagents used to specifically remove the abundant proteins such as albumin, immunoglobulin G, immunoglobulin A, transferrin, haptoglobin, alpha-1-antitrypsin, hemopexin, transthyretin, alpha-2-HS glycoprotein, alpha-1-acid glycoprotein, alpha-2-macroglobulin and fibrinogen from human plasma samples. To render the immunoaffinity subtraction procedure recyclable, the pAbs are immobilized and cross-linked on chromatographic matrices. Antibody-coupled matrices specific for one protein each can be pooled to form mixed-bed IASC columns. We show that up to ten affinity-bound plasma proteins with similar solubility characteristics are eluted from a mixed-bed column in one step. This facilitates automated chromatographic processing of plasma samples in high throughput, which is desirable in proteomic disease marker discovery projects.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号