首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
2.
New approaches to chromatin function   总被引:12,自引:0,他引:12  
  相似文献   

3.
4.
5.
Transcriptional transgene silencing and chromatin components   总被引:19,自引:0,他引:19  
  相似文献   

6.
7.
Recent genetic and biochemical studies have revealed critical information concerning the role of nucleosomes in eukaryotic gene regulation. Nucleosomes package DNA into a dynamic chromatin structure, and by assuming defined positions in chromatin, influence gene regulation. Nucleosomes can serve as repressors, presumably by blocking access to regulatory elements; consequently, the positions of nucleosomes relative to the location of cis-acting elements are critical. Some genes have a chromatin structure that is “preset,” ready for activation, while others require “remodeling” for activation. Nucleosome positioning may be determined by multiple factors, including histone–DNA interactions, boundaries defined by DNA structure or protein binding, and higher-order chromatin structure. © 1994 Wiley-Liss, Inc.  相似文献   

8.
9.
We used the white gene as an enhancer trap and reporter of chromatin structure. We collected white+ transgene insertions presenting a peculiar pigmentation pattern in the eye: white expression is restricted to the dorsal half of the eye, with a clear-cut dorsal/ventral (D/V) border. This D/V pattern is stable and heritable, indicating that phenotypic expression of the white reporter reflects positional information in the developing eye. Localization of these transgenes led us to identify a unique genomic region encompassing 140 kb in 69D1-3 subject to this D/V effect. This region contains at least three closely related homeobox-containing genes that are constituents of the iroquois complex (IRO-C). IRO-C genes are coordinately regulated and implicated in similar developmental processes. Expression of these genes in the eye is regulated by the products of the Polycomb-group (Pc-G) and trithorax-group (trx-G) genes but is not modified by classical modifiers of position-effect variegation. Our results, together with the report of a Pc-G binding site in 69D, suggest that we have identified a novel cluster of target genes for the Pc-G and trx-G products. We thus propose that ventral silencing of the whole IRO-C in the eye occurs at the level of chromatin structure in a manner similar to that of the homeotic gene complexes, perhaps by local compaction of the region into a heterochromatin-like structure involving the Pc-G products.  相似文献   

10.
Within the nucleus of each cell lies DNA—an unfathomably long, twisted, and intricately coiled molecule—segments of which make up the genes that provide the instructions that a cell needs to operate. As we near the 60th anniversary of the discovery of the DNA double helix, crucial questions remain about how the physical arrangement of the DNA in cells affects how genes work. For example, how a cell stores the genetic information inside the nucleus is complicated by the necessity of maintaining accessibility to DNA for genetic processing. In order to gain insight into the roles played by various proteins in reading and compacting the genome, we have developed new methodologies to simulate the dynamic, three-dimensional structures of long, fluctuating, protein-decorated strands of DNA. Our a priori approach to the problem allows us to determine the effects of individual proteins and their chemical modifications on overall DNA structure and function. Here, we present our recent treatment of the communication between regulatory proteins attached to precisely constructed stretches of chromatin. Our simulations account for the enhancement in communication detected experimentally on chromatin compared to protein-free DNA of the same chain length, as well as the critical roles played by the cationic ‘tails’ of the histone proteins in this signaling. The states of chromatin captured in the simulations offer new insights into the ways that the DNA, histones, and regulatory proteins contribute to long-range communication along the genome.  相似文献   

11.
12.
13.
14.
15.
16.
Linker histone H1 plays an important role in chromatin folding in vitro. To study the role of H1 in vivo, mouse embryonic stem cells null for three H1 genes were derived and were found to have 50% of the normal level of H1. H1 depletion caused dramatic chromatin structure changes, including decreased global nucleosome spacing, reduced local chromatin compaction, and decreases in certain core histone modifications. Surprisingly, however, microarray analysis revealed that expression of only a small number of genes is affected. Many of the affected genes are imprinted or are on the X chromosome and are therefore normally regulated by DNA methylation. Although global DNA methylation is not changed, methylation of specific CpGs within the regulatory regions of some of the H1 regulated genes is reduced. These results indicate that linker histones can participate in epigenetic regulation of gene expression by contributing to the maintenance or establishment of specific DNA methylation patterns.  相似文献   

17.
18.
19.
20.
Double-strand breaks represent an extremely cytolethal form of DNA damage and thus pose a serious threat to the preservation of genetic and epigenetic information. Though it is well-known that double-strand breaks such as those generated by ionising radiation are among the principal causative factors behind mutations, chromosomal aberrations, genetic instability and carcinogenesis, significantly less is known about the epigenetic consequences of double-strand break formation and repair for carcinogenesis. Double-strand break repair is a highly coordinated process that requires the unravelling of the compacted chromatin structure to facilitate repair machinery access and then restoration of the original undamaged chromatin state. Recent experimental findings have pointed to a potential mechanism for double-strand break-induced epigenetic silencing. This review will discuss some of the key epigenetic regulatory processes involved in double-strand break (DSB) repair and how incomplete or incorrect restoration of chromatin structure can leave a DSB-induced epigenetic memory of damage with potentially pathological repercussions.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号