首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 953 毫秒
1.
Dynamic light scattering (DLS) and rheological measurements were performed on aqueous silk fibroin solutions extracted from the middle division of Bombyx mori silkworm over a wide range of polymer concentration C from 0.08 to 27.5 wt %. DLS results obtained in the dilute region of C less than 1 wt % are consistent with a model that an elementary unit is a large protein complex consisting of silk fibroin and P25 with a 6:1 molar ratio. Rheological measurements in the dilute C region reveal that those units (or clusters) with the hydrodynamic radius of about 100 nm form a network extending over the whole sample volume with small pseudoplateau modulus mainly by ionic bonding between COO(-) ions of the fibroin molecules and divalent metallic ions such as Ca(2+) or Mg(2+) ions present in the sample and also that, after a yield stress is reached, steady plastic flow is induced with viscosity much lower than the zero-shear viscosity estimated from creep and creep recovery measurements by 4-6 orders of magnitude. Angular frequency omega dependencies of the storage and the loss shear moduli, G'(omega) and G' '(omega), measured in the linear viscoelastic region, indicate that all solutions possess the pseudoplateau modulus in the low omega region and samples become highly viscoleastic for C greater, similar 4.2 wt %. Above C = 11.2 wt % another plateau appears at the high omega end accompanied by a distinct maximum of G' ' in the intermediate omega region. The relaxation motion with tau = 0.5 s corresponding to the maximum of G' ' is one of characteristic properties of the fibroin solutions in the high C region. Thermorheological behaviors of the solution with C = 27.5 wt % show that the network structure formed in the MM part of the silk gland is susceptible to temperature and a more stable homogeneous network is realized by raising the temperature up to T = 65 degrees C.  相似文献   

2.
Ultracentrifugal analyses of the native silk proteins extracted from the various parts of the middle silk gland of the mature silkworm have revealed that there exist four components with S°20,w values of 10S, 9–10S, 9S, and 4S in the extract. It is suggested that the fastest 10S component is the native fibroin synthesized in the posterior silk gland and transferred to the middle silk gland to be stored there, while the slower three components probably correspond to inner, middle, and outer sericins which were synthesized in the posterior, middle, and anterior portion of the middle silk gland, respectively. Native fibroin solution was prepared from the most posterior part of the middle silk gland. Ultracentrifugal analyses have shown that the solution contains considerable amounts of aggregates in addition to the main 10S component. Treatment with lithium bromide (LiBr), urea, or guanidine hydrochloride solution up to 6 M all have failed to dissociate the 10S component. From the sedimentation equilibrium analyses and partial specific volume of 0.716, the molecular weight of the 10S component of the native fibroin solution was found to be between 3.2 – 4.2 x 105, with a tendency to lie fairly close to 3.7 x 105.  相似文献   

3.
Chen X  Shao Z  Knight DP  Vollrath F 《Proteins》2007,68(1):223-231
Time-resolved FTIR analysis was used to monitor the conformation transition induced by treating regenerated Bombyx mori silk fibroin films and solutions with different concentrations of ethanol. The resulting curves showing the kinetics of the transition for both films and fibroin solutions were influenced by the ethanol concentration. In addition, for silk fibroin solutions the protein concentration also had an effect on the kinetics. At low ethanol concentrations (for example, less than 40% v/v in the case of film), films and fibroin solutions showed a phase in which beta-sheets slowly formed at a rate dependent on the ethanol concentration. Reducing the concentration of the fibroin in solutions also slowed the formation of beta-sheets. These observations suggest that this phase represents a nucleation step. Such a nucleation phase was not seen in the conformation transition at ethanol concentrations > 40% in films or > 50% in silk fibroin solutions. Our results indicate that the ethanol-induced conformation transition of silk fibroin in films and solutions is a three-phase process. The first phase is the initiation of beta-sheet structure (nucleation), the second is a fast phase of beta-sheet growth while the third phase represents a slow perfection of previously formed beta-sheet structure. The nucleation step can be very fast or relatively slow, depending on factors that influence protein chain mobility and intermolecular hydrogen bond formation. The findings give support to the previous evidence that natural silk spinning in silkworms is nucleation-dependent, and that silkworms (like spiders) use concentrated silk protein solutions, and careful control of the pH value and metallic ion content of the processing environment to speed up the nucleation step to produce a rapid conformation transition to convert the water soluble spinning dope to a tough solid silk fiber.  相似文献   

4.
The rheological properties of fibroin silk solutions extracted from the middle division of Bombyx mori silkworms were examined. Acidification of the solutions with acetic acid vapor gelled the material, a process which at short time scales could be reversed by exposure to ammonia vapor. The solution could also be converted to sol from the gel state by the addition of EDTA. The possible mechanisms for gel formation in fibroin solutions is discussed as are the implications for the process of spinning silk fibers.  相似文献   

5.
The flow stability of silk fibroin (SF) aqueous solutions with different concentrations under different temperatures was investigated. It was found that the flow stability decreased quickly with the increase of solution concentration and temperature. X-ray diffraction, Fourier transform infrared (FTIR) and Raman spectroscopy analysis showed that silk fibroin in aqueous solution was mainly in random coil and alpha-helix conformation. However, it turned into alpha-helix and beta-sheet conformation after gelation, and both silk I and silk II crystalline structures appeared accordingly. The investigation implies that the original dilute regenerated SF aqueous solution should be stored under low temperature and concentrated just before spinning.  相似文献   

6.
Structure and properties of silk hydrogels   总被引:8,自引:0,他引:8  
Control of silk fibroin concentration in aqueous solutions via osmotic stress was studied to assess relationships to gel formation and structural, morphological, and functional (mechanical) changes associated with this process. Environmental factors potentially important in the in vivo processing of aqueous silk fibroin were also studied to determine their contributions to this process. Gelation of silk fibroin aqueous solutions was affected by temperature, Ca(2+), pH, and poly(ethylene oxide) (PEO). Gelation time decreased with increase in protein concentration, decrease in pH, increase in temperature, addition of Ca(2+), and addition of PEO. No change of gelation time was observed with the addition of K(+). Upon gelation, a random coil structure of the silk fibroin was transformed into a beta-sheet structure. Hydrogels with fibroin concentrations >4 wt % exhibited network and spongelike structures on the basis of scanning electron microscopy. Pore sizes of the freeze-dried hydrogels were smaller as the silk fibroin concentration or gelation temperature was increased. Freeze-dried hydrogels formed in the presence of Ca(2+) exhibited larger pores as the concentration of this ion was increased. Mechanical compressive strength and modulus of the hydrogels increased with increase in protein concentration and gelation temperature. The results of these studies provide insight into the sol-gel transitions that silk fibroin undergoes in glands during aqueous processing while also providing important insight in the in vitro processing of these proteins into useful new materials.  相似文献   

7.
Zhou L  Chen X  Shao Z  Zhou P  Knight DP  Vollrath F 《FEBS letters》2003,554(3):337-341
Evidence is presented here that cupric ions play a part in the natural spinning of Bombyx mori silk. Proton induced X-ray emission studies revealed that the copper content increased from the posterior part to the anterior part of silk gland, and then further increased in the silk fiber. Spectrophotometric analysis demonstrated that cupric ions formed coordination complexes with silk fibroin chains while Raman spectroscopy indicated that they induced a conformation transition from random coil/helix to beta-sheet. Taken together these findings indicate that copper could play a role in the natural spinning process in silkworms.  相似文献   

8.
Protein structural transitions and beta-sheet formation are a common problem both in vivo and in vitro and are of critical relevance in disparate areas such as protein processing and beta-amyloid and prion behavior. Silks provide a "databank" of well-characterized polymorphic sequences, acting as a window onto structural transitions. Peptides with conformationally polymorphic silk-like sequences, expected to exhibit an intractable beta-sheet form, were characterized using Fourier transform infrared spectroscopy, circular dichroism, and electron diffraction. Polymorphs resembling the silk I, silk II (beta-sheet), and silk III (threefold polyglycine II-like helix) crystal structures were identified for the peptide fibroin C (GAGAGS repetitive sequence). Two peptides based on silk amorphous sequences, fibroin A (GAGAGY) and fibroin V (GDVGGAGATGGS), crystallized as silk I under most conditions. Methanol treatment of fibroin A resulted in a gradual transition from silk I to silk II, with an intermediate state involving a high proportion of beta-turns. Attenuated total reflectance Fourier transform infrared spectroscopy has been used to observe conformational changes as the peptides adsorb from solution onto a hydrophobic surface. Fibroin C has a beta-strand structure in solution but adopts a silk I-like structure upon adsorption, which when dried on the ZnSe crystal contains silk III crystallites.  相似文献   

9.
Silk fibroin demonstrates great biocompatibility and is suitable for many biomedical applications, including tissue engineering and regenerative medicine. Current research focuses on manipulating the physico‐chemical properties of fibroin, and examining the effect of this manipulation on firobin's biocompatibility. Regenerated silk fibroin was modified by in vitro enzymatic phosphorylation and cast into films. Films were produced by blending, at several ratios, the phosphorylated and un‐phosphorylated fibroin solutions. Fourier transform infra‐red spectroscopy was used to determine the specific P–OH vibration peak, confirming the phosphorylation of the regenerated silk fibroin solution. Differential scanning calorimetry showed that phosphorylation altered the intra‐ and inter‐molecular interactions. Further experiments demonstrated that phosphorylation can be used to tailor the hydrophylicity/hydrophobicity ratio as well as the crystalinity of silk fibroin films. Release profiling of a model drug was highly dependent on silk modification level. Cytotoxicity assays showed that exposure to lixiviates of phosphorylated films only slightly affected cellular metabolism and proliferation, although direct contact resulted in a strong direct correlation between phosphorylation level and cell proliferation. This new method for tuning silk biomaterials to obtain specific structural and biochemical features can be adapted for a wide range of applications. Phosphorylation of silk fibroins may be applied to improve the cytocompatibility of any silk‐based device that is considered to be in contact with live animals or human tissues.  相似文献   

10.
A procedure has been developed to obtain native fibroin in a pure state from the reservoir part of the silk gland. The purified protein has a sedimentation coefficient of 10 S as determined on sucrose density gradients and the amino acid composition is similar to that reported for fibroin from the cocoons. The effects of various solvents has been studied; lithium thiocyanate was found to be the solvent of choice. By in vivo labeling of fibroin with [3H]glycine and [14C]alanine it was demonstrated that fibroin synthesized in the posterior part of the gland and that stored in the reservoir part are identical.  相似文献   

11.
13C NMR of Nephila clavipes major ampullate silk gland.   总被引:1,自引:0,他引:1       下载免费PDF全文
The major ampullate glands of the spider Nephila clavipes contain approximately 0.2 microliter each of a highly concentrated (approximately 50%) solution of silk fibroin. Therefore, the reservoir of silk in these glands presents an ideal opportunity to observe prefolded conformations of a protein in its native state. To this end, the structure and conformation of major ampullate gland silk fibroin within the glands of the spider N. clavipes were examined by 13C NMR spectroscopy. These results were compared to those from silk protein first drawn from the spinneret and then denatured. The 13C NMR chemical shifts, along with infrared and circular dichroism data, suggest that the silk fibroin in the glands exists in dynamically averaged helical conformations. Furthermore, there is no evidence of proline residues in U-(13)C-D-glucose-labeled silk. This transient prefolded "molten fibril" state may correspond to the silk I form found in Bombyx mori silk. There is no evidence of the final beta-sheet structure in the ampullate gland silk fibroin before final silk processing. However, the conformation of silk in the glands appears to be in a highly metastable state, as plasticization with water produces the beta-sheet structure. Therefore, the ducts connecting the ampullate glands to the spinnerets play a larger role in silk processing than previously thought.  相似文献   

12.
Single crystals of Bombyx mori silk fibroin in the metastable silk I polymorph have been produced using a new foaming technique. Foams of silk protein are generated by bubbling pure nitrogen gas through an aqueous solution of regenerated silk fibroin. The foamed material is collected, dried, and then sonicated to yield individual crystals which were examined using transmission electron microscopy and electron diffraction. It is found that slightly acidic conditions in the solution from which the foam was generated favor the formation of silk II while neutral to slightly basic solutions favor silk I formation. More dilute solutions favor the formation of silk II while more concentrated solutions (about 7 wt.% or greater) favor the formation of silk I. X-ray powder diffraction patterns from the dried silk I foams displayed features highly indicative of silk I. We also report the first single crystal electron diffraction patterns of silk I. These patterns indicate a large unit cell, possibly 22.66 x 5.70 x 20.82 A. with six chains of six residues, Gly-Ala-Gly-Ala-Gly-Ser. Although we have not fully characterized this complex structure it appears that the chain is nearly fully extended and thus our data is consistent with models possessing general features similar to those proposed by Fossey SA, Nemethy G, Gibson KD, Scheraga HA. (Biopolymers 1991;31:1529-1541).  相似文献   

13.
Regenerated silk fibroin materials show properties dependent on the methods used to process them. The molecular structures of B. mori silk fibroin both in solution and in solid states were studied and compared using X-ray diffraction, FTIR, and (13)C NMR spectroscopy. Some portion of fibroin protein molecules dissolved in formic acid already have a beta-sheet structure, whereas those dissolved in TFA have some helical conformation. Moreover, fibroin molecules were spontaneously assembled into an ordered structure as the acidic solvents were removed from the fibroin-acidic solvent systems. This may be responsible for the improved physical properties of regenerated fibroin materials from acidic solvents. Regenerated fibroin materials have shown poor mechanical properties and brittleness compared to their original form. These problems were technically solved by improving the fiber forming process according to a method reported here. The regenerated fibroin fibers showed much better mechanical properties compared to the native silk fiber and their physical and chemical properties were characterized by X-ray diffraction, solid state (13)C NMR spectroscopy, SinTech tensile testing, and SEM.  相似文献   

14.
Bombyx mori (silkworm) silk proteins are being utilized as unique biomaterials for medical applications. Chemical modification or post-conjugation of bioactive ligands expand the applicability of silk proteins; however, the processes are elaborate and costly. In this study, we used transgenic silkworm technology to develop single-chain variable fragment (scFv)-conjugated silk fibroin. The cocoons of the transgenic silkworm contain fibroin L-chain linked with scFv as a fusion protein. After dissolving the cocoons in lithium bromide, the silk solution was dialyzed, concentrated, freeze-dried, and crushed into powder. Immunoprecipitation analyses demonstrate that the scFv domain retains its specific binding activity to the target molecule after multiple processing steps. These results strongly suggest the promise of scFv-conjugated silk fibroin as an alternative affinity reagent, which can be manufactured using transgenic silkworm technology at lower cost than traditional affinity carriers.  相似文献   

15.
Antheraea pernyi silk fibroin fibers were dissolved by aqueous lithium thiocyanate to obtain regenerated A. pernyi silk fibroin solution. By means of circular dichroism, 13C NMR and Raman spectroscopy, the molecular conformation of regenerated A. pernyi silk fibroin in aqueous solution was investigated. The relationship of environmental factors and sol–gel transformation behavior of regenerated A. pernyi silk fibroin was also studied. The molecular conformations of regenerated A. pernyi silk fibroin mainly were -helix and random coil in solution. There also existed a little β-sheet conformation. It was obviously different with Bombyx mori silk fibroin, whose molecular conformation in solution was only random coil but no -helix existence. With the increase of temperature and solution concentration and with the decrease of solution pH value, the gelation velocity of regenerated A. pernyi silk fibroin solution increased. Especially, it showed that A. pernyi silk fibroin was more sensitive to temperature than B. mori silk fibroin during the sol–gel transformation. The velocity increased obviously when the temperature was above 30 °C. During the sol–gel transformation, the molecular conformation of regenerated A. pernyi silk fibroin changed from random coil to β-sheet structure. The results of these studies provided important insight into the preparation of new biomaterials by silk fibroin protein.  相似文献   

16.
L-asparaginase (ASNase) is one basic drug in the treatment of acute lymphoblastic leukemia (ALL). Because its half-life time is too short and it is easy to arouse allergic reaction, use in practical clinic is considerably limited. Silk fibroin (SF) with different molecular mass from 40 to 120 kDa is a natural biocompatible protein and could be used as a novel bioconjugate for enzyme modification to overcome its usual shortcomings mentioned above. When the enzyme was bioconjugated covalently with the water-soluble fibroin by glutaraldehyde, the enzyme kinetic properties and immune characteristics in vivo of the resulting silk fibroin-L-asparaginase (SF-ASNase) bioconjugates were investigated in detail. The results show that the modified ASNase was characterized by its higher residual activity (nearly 80%), increased heat and storage stability and resistance to trypsin digestion, and its longer half-life (63 h) than that of intact ASNase (33 h). The abilities of intact and modified ASNases to arouse allergic reaction are 2(4) and 2(1) antibody titers, respectively. Bioconjugation of silk fibroin significantly helps to reduce the immunogenicity and antigenicity of the enzyme. The apparent Michaelis constants of the modified ASNase (K(m(app))=0.844 x 10(-3)mol L(-1)) was approximately six times lower than that of enzyme alone, which suggests that the affinity of the enzyme to substrate l-asparagine elevated when bioconjugated covalently with silk fibroin. SF-ASNase bioconjugates could overcome the common shortcomings of the native form. Therefore, the modified ASNase coupled with silk fibroin has the potential values of being studied and developed as a new bioconjugate drug.  相似文献   

17.
A synthetic gene encoding a chimeric silklike protein was constructed that combined a polyalanine encoding region (Ala)(18), a sequence slightly longer than the (Ala)(12-13) found in the silk fibroin from the wild silkworm Samia cynthia ricini, and a sequence encoding GVGAGYGAGAGYGVGAGYGAGVGYGAGAGY, found in the silk fibroin from the silkworm Bombyx mori. A tetramer of the chimeric repeat sequence encoding a approximately 29 kDa protein was expressed as a fusion protein in Escherichia coli. In comparison to S. c. ricini silk, the chimeric protein demonstrated improved solubility because it could be dissolved in 8 M urea. The purified protein assumed an alpha-helical structure based on solid-state (13)C CP/MAS NMR and was less prone to conformational transition to a beta-sheet, unlike native silk proteins from S. c. ricini. Model peptides representing the crystalline region of S. c. ricini silk fibroin, (Ala)(12) and (Ala)(18), formed beta-sheet structures. Therefore, the solubility and structural transitions of the chimeric protein were significantly altered through the formation of this chimeric silk. This experimental strategy to the study of silk structure and function can be used to develop an improved understanding of the contributions of protein domains in repetitive silkworm and spider silk sequences to structure development and structural transitions.  相似文献   

18.
Radioactive iodinated silk fibroin messenger RNA and ribosomal RNA have been used as probes to localize their genes in tissue sections of Bombyx mori by in situ hybridization. From filter hybridization experiments it is inferred that the majority of the grains produced by in situ hybridization with fibroin mRNA represents specific hybridization to fibroin genes. Sections of the posterior silk gland where silk is synthesized have been compared with those of the middle gland which does not synthesize fibroin. Glands have been analyzed from the second through the fifth (last) larval instar during feeding and moulting periods. During later stages when the gland cells increase their DNA content by polyploidization, serial sections were required to follow the distribution of grains through entire nuclei. At all stages, both ribosomal DNA and fibroin genes are distributed randomly throughout the nuclei without a preferred relationship to any nuclear structure.  相似文献   

19.
Yang Y  Shao Z  Chen X  Zhou P 《Biomacromolecules》2004,5(3):773-779
Fluorescence and circular dichroism spectroscopy were used to monitor the conformational transition of regenerated Bombyx mori silk fibroin (RSF) in aqueous solutions under different conditions. According to the analysis of fluorescence spectra using anilinonaphthalene-8-sulfonic acid magnesium salt (ANS) as an external probe, the destruction of the hydrophobic core prior to the secondary structure change suggests that this collapse may initiate the conformational transition from random coil to beta-sheet for RSF. The temperature dependence of the structural changes of RSF, detected by both fluorescence spectroscopy and circular dichroism, shows a reversible process upon heating and recooling, with the midpoint around 45 degrees C. The results also indicate that most of the tryptophan (Trp) residues contained in silk fibroin are concentrated on the surface of the unfolded protein. However, they will change their location in the highly ordered structure (e.g., becoming more homogeneous) with the conformational transition of silk fibroin. Moreover, our studies also suggest that the presence of water plays a crucial role during the structure changes of fibroin.  相似文献   

20.
Degradation mechanism and control of silk fibroin   总被引:1,自引:0,他引:1  
Lu Q  Zhang B  Li M  Zuo B  Kaplan DL  Huang Y  Zhu H 《Biomacromolecules》2011,12(4):1080-1086
Controlling the degradation process of silk is an important and interesting subject in the field of biomaterials. In the present study, silk fibroin films with different secondary conformations and nanostructures were used to study degradation behavior in buffered protease XIV solution. Different from previous studies, silk fibroin films with highest β-sheet content achieved the highest degradation rate in our research. A new degradation mechanism revealed that degradation behavior of silk fibroin was related to not only crystal content but also hydrophilic interaction and then crystal-noncrystal alternate nanostructures. First, hydrophilic blocks of silk fibroin were degraded. Then, hydrophobic crystal blocks that were formerly surrounded and immobilized by hydrophilic blocks became free particles and moved into solution. Therefore, on the basis of the mechanism, which enables the process to be more controllable and flexible, controlling the degradation behavior of silk fibroin without affecting other performances such as its mechanical or hydrophilic properties becomes feasible, and this would greatly expand the applications of silk as a biomedical material.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号