首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
2.
After removal of tightly bound NAD(+) by using charcoal, a preparation of d-glucose 6-phosphate-1 l-myoinositol 1-phosphate cyclase catalysed the reduction of 5-keto-d-glucitol 6-phosphate and 5-keto-d-glucose 6-phosphate by [4-(3)H]NADH to give [5-(3)H]-glucitol 6-phosphate and [5-(3)H]glucose 6-phosphate respectively. The position of the tritium atom in the latter was shown by degradation. Both enzyme-catalysed reductions were strongly inhibited by 2-deoxy-d-glucose 6-phosphate, a powerful competitive inhibitor of inositol cyclase. The charcoal-treated enzyme preparation also converted 5-keto-d-glucose 6-phosphate into [(3)H]myoinositol 1-phosphate in the presence of [4-(3)H]NADH, but less effectively. These partial reactions of inositol cyclase are interpreted as providing strong evidence for the formation of 5-keto-d-glucose 6-phosphate as an enzyme-bound intermediate in the conversion of d-glucose 6-phosphate into 1 l-myoinositol 1-phosphate. The enzyme was partially inactivated by NaBH(4) in the presence of NAD(+). Glucose 6-phosphate did not increase the inactivation, and there was no inactivation in the absence of NAD(+). There was no evidence for Schiff base formation during the cyclization. d-Glucitol 6-phosphate (l-sorbitol 1-phosphate) was a good inhibitor of the overall reaction. It did not inactivate the enzyme. The apparent molecular weight of inositol cyclase as determined by Sephadex chromatography was 2.15x10(5).  相似文献   

3.
Incubation of the nonphosphorylated form of maize-leaf phosphoenolpyruvate carboxylase (orthophosphate: oxaloacetate carboxy-lyase (phosphorylating), PEPC, EC 4.1.1.31) with the reagent pyridoxal 5′-phosphate (PLP) resulted in time-dependent, reversible inactivation and desensitization to the activator glucose 6-phosphate (Glc6P) and other related phosphorylated compounds. Both processes are not connected, since (i) when the PLP-modification was carried out in the presence of saturating ligands of the active site, which prevents inactivation, the desensitization to Glc6P is still observed, and (ii) under some experimental conditions the desensitization reaction is 4-times faster than the inactivation. Desensitization to Glc6P is first order with respect to PLP and has a second-order forward rate constant of 4.7±0.3 s−1 M−1 and a first-order reverse rate constant of 0.0046±0.0002 s−1. Correlation studies between the remaining Glc6P sensitivity and mol of PLP residues incorporated per mol of enzyme subunit indicate that one lysyl group for enzyme monomer is involved in the sensitivity of the enzyme to Glc6P. The reactivity of this group is increased by polyethylene glycol and glycerol, while the reactivity of the lysyl group of the active site is not affected by these organic cosolutes. In the presence but not in the absence of the organic cosolutes, Glc6P by itself offers significant protection against desensitization, while increases the extent of inactivation. Free PEP or PEP-Mg have opposite effects, protecting the enzyme against inactivation and increasing the degree of desensitization. They also increases the protection against desensitization afforded by Glc6P. Finally, the PEPC inhibitor malate provides some protection against both inactivation and desensitization. Taken together, these results are consistent with PLP-modification of a highly reactive lysyl group at or near the allosteric Glc6P-site.  相似文献   

4.
The first synthesis of 1-deaza-pyridoxal 5′-phosphate (2-formyl-3-hydroxy-4-methylbenzyl phosphate) is described. The chemoenzymatic approach described here is a reliable route to this important isosteric pyridoxal phosphate analogue. This work enables elucidation of the role of the pyridine nitrogen in pyridoxal 5′-phosphate dependent enzymes.  相似文献   

5.
6.
A rapid and convenient chemical assay for the enzyme d-glucose 6-phosphate-1l-myoinositol 1-phosphate cyclase is described. The 1l-myoinositol 1-phosphate formed enzymically was oxidized with periodic acid liberating inorganic phosphate, which was assayed. myoInositol 2-phosphate can be assayed in the same way. Glucose 6-phosphate and other primary phosphate esters gave only very small quantities of inorganic phosphate under the conditions described. The K(m) of the enzyme for d-glucose 6-phosphate, 7.5+/-2.5x10(-4)m, was identical with that measured by the radiochemical method. 2-Deoxy-d-glucose 6-phosphate was a powerful competitive inhibitor, K(i) 2.0+/-0.5x10(-5)m, but was not a substrate for the enzyme.  相似文献   

7.
Reaction of glucose-6-phosphate dehydrogenase from human erythrocytes with pyridoxal-5′-phosphate causes 80% loss of activity. The substrate glucose-6-phosphate fully protects the enzyme against this inhibition, which is reversible upon dilution, but becomes irreversible after treatment with NaBH4. We presume that pyridoxal-5′-phosphate forms with the enzyme a Schiff base which is reduced by NaBH4. One mole of N-?-pyridoxyl-lysine is formed per mole of enzyme subunit when the remaining activity reaches its minimal level of 20%.  相似文献   

8.
Comparison of the initial (3)H/(14)C ratios in specifically labelled d-glucose 6-phosphates with the final ratios in myo-inositol produced by glucose 6-phosphate-d-myo-inositol 1-phosphate cyclase from rat testis showed that, during the conversion, the hydrogen atoms at C-1 and C-3 were fully retained, one hydrogen atom was lost from C-6, and that at C-5 was apparently retained to the extent of 80-90%. The loss of (3)H could not be stimulated by addition of unlabelled NADH, and when unlabelled substrate was used (3)H from [(3)H]NADH and [(3)H]water was not incorporated. Treatment of the enzyme with charcoal abolished the activity, and this was restored to 25-50% of the original activity by NAD(+). The charcoal-treated enzyme again apparently gave 85% retention of hydrogen with [5-(3)H]glucose 6-phosphate as substrate in the presence of NAD(+) alone, but the retention was decreased to 65% with excess of NADH. The results are interpreted as indicating that the cyclization proceeds by an aldol condensation in which C-5 is oxidized by NAD(+) in a tightly-bound ternary complex, and that the apparent loss of (3)H when untreated enzyme is used is due to an isotope effect. It is suggested that after treatment with charcoal some exchange of NADH with an external pool may take place.  相似文献   

9.
10.
Uptake activities for both glycerol andl-α-glycerol-3-phosphate inPseudomonas aeruginosa strain PAO were induced during growth in the presence of either glycerol ordl-α-glycerol-3-phosphate. Succinate, malate, and glucose exerted catabolite repression control over induction of both uptake activities. Glycerol uptake exhibited saturation kinetics with an apparentK m of 13 μM and aV max of 73 nmol/min/mg cell protein. The uptake ofl-α-glycerol-3-phosphate was inhibited by the presence of glycerol, but uptake of glycerol was unaffected by exogenousl-α-glycerol-3-phosphate. Uptake of both substrates by starved, induced cells was stimulated by exogenously providedd-glucose, 2-deoxy-d-glucose,d-gluconate, orl-malate. In a mutant deficient in gluconate uptake and glucose dehydrogenase (EC 1.1.1.47) activities,d-glucose, 2-deoxy-d-glucose, andd-gluconate exerted little or no effect on the uptake of either substrate, butl-malate markedly stimulated the processes. The uptake of both glycerol andl-α-glycerol-3-phosphate, by either starved or unstarved cells, was inhibited by a number of metabolic poisons, including arsenate, azide, cyanide, 2,4-dinitrophenol, and iodoacetate.  相似文献   

11.
Summary Template-directed oligomerization of an activated derivative of 3-isoadenosine 5-phosphate (piA) on polyuridylic acid [poly(U)] was studied. The reaction of ImpiA is more efficient than the corresponding reaction of ImpA, and produces 3–5-linked oligomers while the reaction of ImpA gives only 2–5-linked oligomers. The base pairing between piA and poly(U) in this system is probably of the Hoogsteen type (involving the 6-amino group and N7 of 3-isoadenosine) rather than of the Watson-Crick type.  相似文献   

12.
Pyridoxal-5′-phosphate was synthesized in excellent yield by phosphorylation of 1-secondaryammo-l,3-dihydro-7-hydroxy-6-methyl-furo(3,4-c)pyridine which was readily obtained by a condensation reaction between pyridoxal and a secondary amine.  相似文献   

13.
Pyridoxamine (pyridoxine) 5′-phosphate oxidase (EC 1.4.3.5) purified from rabbit liver is competitively inhibited by the reaction product, pyridoxal 5′-phosphate. The Ki, 3 μM, is considerably lower than the Km for either natural substrate (18 and 24 μM for pyridoxamine 5′-phosphate and 25 and 16 μM for pyridoxine 5′-phosphate in 0.2 M potassium phosphate at pH 8 and 7, respectively). The Ki determined using a 10% rabbit liver homogenate is the same as that for the pure enzyme; hence, product inhibition invivo is probably not diminished significantly by other cellular components. Similar determinations for a 10% rat liver homogenate also show strong inhibition by pyridoxal 5′-phosphate. Since the reported liver content of free or loosely bound pyridoxal 5′-phosphate is greater than Ki, the oxidase in liver is probably associated with pyridoxal 5′-phosphate. These results also suggest that product inhibition of pyridoxamine-P oxidase may regulate the invivo rate of pyridoxal 5′-phosphate formation.  相似文献   

14.
15.
We hereby present a simple yet novel chemical synthesis of a family of γ-modified ATPs bearing functional groups on the γ-phosphate that are amenable to further derivatization by highly selective chemical manipulations (e.g., click chemistry, Staudinger ligations). A preliminary screen of these compounds as phosphate donors with a typical wild type protein kinase (cdk2) and one of its known substrates p27kip1 is also presented.  相似文献   

16.
Acetylcholinesterase activity was assayed in the absence and presence of pyridoxal 5−phosphate. If substrate hydrolysis was measured by the pH-stat method, its rate was not significantly affected by pyridoxal 5′-phosphate. In the spectrophotometric assay, however, this compound led to an apparent decrease in rate. The discrepancy between the two assays is explained by stray-light artefacts produced by pyridoxal 5′-phosphate at the wavelenghts of the spectrophotometric assay.  相似文献   

17.
Microbial biolipid production has become an important part of making biofuel production economically feasible. Genetic engineering has been used to improve the ability of Yarrowia lipolytica, an oleaginous yeast, to produce lipids using glucose-based media. However, few studies have examined lipid accumulation by Y. lipolytica׳s ability to utilize other hexose sugars, and as of yet, the rate-limiting steps in this process are unidentified. In this study, we investigated the de novo accumulation of lipids by Y. lipolytica when grown in glucose, fructose, and sucrose. Three Y. lipolytica wild-type (WT) strains of varied origin differed significantly in their lipid production, growth, and fructose utilization. Hexokinase (ylHXK1p) activity partially explained these differences. Overexpression of the ylHXK1 gene led to increased hexokinase activity (6.5–12 times higher) in the mutants versus the WT strains; a pronounced reduction in cell filamentation in mutants grown in fructose-based media; and improved biomass production, particularly in the mutant whose parent had shown the lowest growth capacity in fructose (French strain W29). All mutants showed improved lipid yield and production when grown on fructose, although the effect was strain dependent (23–55% improvement). Finally, we overexpressed ylHXK1 in a highly modified strain of Y. lipolytica W29 engineered to optimize oil production. This modification was combined with Saccharomyces cerevisiae invertase gene expression to evaluate the resulting mutant׳s ability to produce lipids using cheap industrial substrates, namely sucrose (a major component of molasses). Sucrose turned out to be a better substrate than either of its building blocks, glucose or fructose. Over its 96 h of growth in the bioreactors, this highly modified strain produced 9.15 g L−1 of lipids, yielding 0.262 g g−1 of biomass.  相似文献   

18.
19.
Fructose1,6diphosphate (FDP) is a glycolytic intermediate which has been theorized to increase the metabolic activity of ischemic tissues. Here we examine the effects of externally applied FDP on cardiomyocyte uptake and metabolism. Adult rat cardiomyocytes were isolated and exposed to varying concentrations (0, 5, 25 and 50 mM) of FDP for either 1, 16 or 24 h of hypoxia (95% N2/5% CO2), each time period followed by a 1 h reoxygenation (95% air/5% CO2). The uptake of FDP by rat cardiomyocytes was more concentrationdependent than timedependent. Furthermore, the uptake of FDP by the cardiomyocytes was similar in the hypoxia and normoxia treated cells. Alamar Blue, a redox indicator that is sensitive to metabolic activity, was used to monitor the effects of the FDP on cardiomyocyte metabolism. In the 1 h hypoxia or normoxia group, the 5, 10 and 25 mM FDP showed a significant increase in metabolism compared to the control cells. When the length of hypoxia was extended to 16 h, all doses of FDP were greater than control. And at the 24 h hypoxia or normoxia time period, only the 10, 25 and 50 mM FDP groups were greater than control. The results indicate a non-linear trend between the external concentration of FDP and the changes noted in metabolism. The findings from this study indicate that a narrow concentration range between 5–10 mM augments cardiomyocyte metabolism, but higher or lower doses may have little additional affect.  相似文献   

20.
RNA 3′-phosphate cyclase (Rtc) enzymes are a widely distributed family that catalyze the synthesis of RNA 2′,3′ cyclic phosphate ends via an ATP-dependent pathway comprising three nucleotidyl transfer steps: reaction of Rtc with ATP to form a covalent Rtc-(histidinyl-N)-AMP intermediate and release PPi; transfer of AMP from Rtc1 to an RNA 3′-phosphate to form an RNA(3′)pp(5′)A intermediate; and attack by the terminal nucleoside O2′ on the 3′-phosphate to form an RNA 2′,3′ cyclic phosphate product and release AMP. Here we used the crystal structure of Escherichia coli RtcA to guide a mutational analysis of the human RNA cyclase Rtc1. An alanine scan defined seven conserved residues as essential for the Rtc1 RNA cyclization and autoadenylylation reactions. Structure–activity relationships were clarified by conservative substitutions. Our results are consistent with a mechanism of adenylate transfer in which attack of the Rtc1 His320 nucleophile on the ATP α phosphorus is facilitated by proper orientation of the PPi leaving group via contacts to Arg21, Arg40, and Arg43. We invoke roles for Tyr294 in binding the adenine base and Glu14 in binding the divalent cation cofactor. We find that Rtc1 forms a stable binary complex with a 3′-phosphate terminated RNA, but not with an otherwise identical 3′-OH terminated RNA. Mutation of His320 had little impact on RNA 3′-phosphate binding, signifying that covalent adenylylation of Rtc1 is not a prerequisite for end recognition.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号