首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Thrombospondin-1 (TSP) induces endothelial cell (EC) actin reorganization and focal adhesion disassembly and influences multiple EC functions. To determine whether TSP might regulate EC-EC interactions, we studied the effect of exogenous TSP on the movement of albumin across postconfluent EC monolayers. TSP increased transendothelial albumin flux in a dose-dependent manner at concentrations >/=1 microg/ml (2.2 nM). Increases in albumin flux were observed as early as 1 h after exposure to 30 microg/ml (71 nM) TSP. Inhibition of tyrosine kinases with herbimycin A or genistein protected against the TSP-induced barrier dysfunction by >80% and >50%, respectively. TSP-exposed monolayers exhibited actin reorganization and intercellular gap formation, whereas pretreatment with herbimycin A protected against this effect. Increased staining of phosphotyrosine-containing proteins was observed in plaque-like structures and at the intercellular boundaries of TSP-treated cells. In the presence of protein tyrosine phosphatase inhibition, TSP induced dose- and time-dependent increments in levels of phosphotyrosine-containing proteins; these TSP dose and time requirements were compatible with those defined for EC barrier dysfunction. Phosphoproteins that were identified include the adherens junction proteins focal adhesion kinase, paxillin, gamma-catenin, and p120(Cas). These combined data indicate that TSP can modulate endothelial barrier function, in part, through tyrosine phosphorylation of EC proteins.  相似文献   

2.
Diperoxovanadate (DPV), a potent tyrosine kinase activator and protein tyrosine phosphatase inhibitor, was utilized to explore bovine pulmonary artery endothelial cell barrier regulation. DPV produced dose-dependent decreases in transendothelial electrical resistance (TER) and increases in permeability to albumin, which were preceded by brief increases in TER (peak TER effect at 10-15 min). The significant and sustained DPV-mediated TER reductions were primarily the result of decreased intercellular resistance, rather than decreased resistance between the cell and the extracellular matrix, and were reduced by pretreatment with the tyrosine kinase inhibitor genistein but not by inhibition of p42/p44 mitogen-activating protein kinases. Immunofluorescent analysis after DPV challenge revealed dramatic F-actin polymerization and stress-fiber assembly and increased colocalization of tyrosine phosphoproteins with F-actin in a circumferential pattern at the cell periphery, changes that were abolished by genistein. The phosphorylation of focal adhesion and adherens junction proteins on tyrosine residues was confirmed in immunoprecipitates of focal adhesion kinase and cadherin-associated proteins in which dramatic dose-dependent tyrosine phosphorylation was observed after DPV stimulation. We speculate that DPV enhances endothelial cell monolayer integrity via focal adhesion plaque phosphorylation and produces subsequent monolayer destabilization of adherens junctions initiated by adherens junction protein tyrosine phosphorylation catalyzed by p60(src) or Src-related tyrosine kinases.  相似文献   

3.
4-Hydroxy-2-nonenal (4-HNE), one of the major biologically active aldehydes formed during inflammation and oxidative stress, has been implicated in a number of cardiovascular and pulmonary disorders. 4-HNE has been shown to increase vascular endothelial permeability; however, the underlying mechanisms are unclear. Hence, in the current study, we tested our hypothesis that 4-HNE-induced changes in cellular thiol redox status may contribute to modulation of cell signaling pathways that lead to endothelial barrier dysfunction. Exposure of bovine lung microvascular endothelial cells (BLMVECs) to 4-HNE induced reactive oxygen species generation, depleted intracellular glutathione, and altered cell-cell adhesion as measured by transendothelial electrical resistance. Pretreatment of BLM-VECs with thiol protectants, N-acetylcysteine and mercaptopropionyl glycine, attenuated 4-HNE-induced decrease in transendothelial electrical resistance, reactive oxygen species generation, Michael protein adduct formation, protein tyrosine phosphorylation, activation of ERK, JNK, and p38 MAPK, and actin cytoskeletal rearrangement. Treatment of BLMVECs with 4-HNE resulted in the redistribution of FAK, paxillin, VE-cadherin, beta-catenin, and ZO-1, and intercellular gap formation. Western blot analyses confirmed the formation of 4-HNE-derived Michael adducts with the focal adhesion and adherens junction proteins. Also, 4-HNE decreased tyrosine phosphorylation of FAK without affecting total cellular FAK contents, suggesting the modification of integrins, which are natural FAK receptors. 4-HNE caused a decrease in the surface integrin in a time-dependent manner without altering total alpha5 and beta3 integrins. These results, for the first time, revealed that 4-HNE in redox-dependent fashion affected endothelial cell permeability by modulating cell-cell adhesion through focal adhesion, adherens, and tight junction proteins as well as integrin signal transduction that may lead dramatic alteration in endothelial cell barrier dysfunction during heart infarction, brain stroke, and lung diseases.  相似文献   

4.
Cell-cell adhesion regulates processes important in embryonal development, normal physiology, and cancer progression. It is regulated by various mechanisms including tyrosine phosphorylation. We have previously shown that the protein tyrosine phosphatase Pez is concentrated at intercellular junctions in confluent, quiescent monolayers but is nuclear in cells lacking cell-cell contacts. We show here with an epithelial cell model that Pez localizes to the adherens junctions in confluent monolayers. A truncation mutant lacking the catalytic domain acts as a dominant negative mutant to upregulate tyrosine phosphorylation at adherens junctions. We identified beta-catenin, a component of adherens junctions, as a substrate of Pez by a "substrate trapping" approach and by in vitro dephosphorylation with recombinant Pez. Consistent with this, ectopic expression of the dominant negative mutant caused an increase in tyrosine phosphorylation of beta-catenin, demonstrating that Pez regulates the level of tyrosine phosphorylation of adherens junction proteins, including beta-catenin. Increased tyrosine phosphorylation of adherens junction proteins has been shown to decrease cell-cell adhesion, promoting cell migration as a result. Accordingly, the dominant negative Pez mutant enhanced cell motility in an in vitro "wound" assay. This suggests that Pez is also a regulator of cell motility, most likely through its action on cell-cell adhesion.  相似文献   

5.
The endothelial adherens junction is formed by complexes of transmembrane adhesive proteins, of which beta-catenin is known to connect the junctional protein vascular endothelial (VE)-cadherin to the cytoskeleton and to play a signaling role in the regulation of junction-cytoskeleton interaction. In this study, we investigated the effect of neutrophil activation on endothelial monolayer integrity and on beta-catenin and VE-cadherin modification. Treatment of cultured bovine coronary endothelial monolayers with C5a-activated neutrophils resulted in an increase in permeability as measured by albumin clearance across the monolayer. Furthermore, large scale intercellular gap formation was observed in coincidence with the hyperpermeability response. Immunofluorescence analysis showed that beta-catenin and VE-cadherin staining changed from a uniform distribution along the membrane of control cells to a diffuse pattern for both proteins and finger-like projections for beta-catenin in neutrophil-exposed monolayers. Correlatively, there was an increase in actin stress fiber formation in treated cells. Finally, beta-catenin and VE-cadherin from neutrophil-treated endothelial cells showed a significant increase in tyrosine phosphorylation. Our results are the first to link neutrophil-mediated changes in adherens junctions with intercellular gap formation and hyperpermeability in microvascular endothelial cells. These data suggest that neutrophils may regulate endothelial barrier function through a process conferring conformational changes to beta-catenin and VE-cadherin.  相似文献   

6.
Tumor necrosis factor (TNF)-alpha is a key mediator of sepsis-associated multiorgan failure, including the acute respiratory distress syndrome. We examined the role of protein tyrosine phosphorylation in TNF-alpha-induced pulmonary vascular permeability. Postconfluent human lung microvascular and pulmonary artery endothelial cell (EC) monolayers exposed to human recombinant TNF-alpha displayed a dose- and time-dependent increase in transendothelial [(14)C]albumin flux in the absence of EC injury. TNF-alpha also increased tyrosine phosphorylation of EC proteins, and several substrates were identified as the zonula adherens proteins vascular endothelial (VE)-cadherin, and beta-catenin, gamma-catenin, and p120 catenin (p120(ctn)). Prior protein tyrosine kinase (PTK) inhibition protected against the TNF-alpha effect. TNF-alpha activated multiple PTKs, including src family PTKs. Prior PTK inhibition with the src-selective agents PP1 and PP2 each protected against approximately 60% of the TNF-alpha-induced increment in [(14)C]albumin flux. PP2 also blocked TNF-alpha-induced tyrosine phosphorylation of VE-cadherin, gamma-catenin, and p120(ctn). To identify which src family kinase(s) was required for TNF-alpha-induced vascular permeability, small interfering RNA (siRNA) targeting each of the three src family PTKs expressed in human EC, c-src, fyn, and yes, were introduced into the barrier function assay. Only fyn siRNA protected against the TNF-alpha effect, whereas the c-src and yes siRNAs did not. These combined data suggest that TNF-alpha regulates the pulmonary vascular endothelial paracellular pathway, in part, through fyn activation.  相似文献   

7.
Breakdown of the inner blood-retinal barrier and the blood-brain barrier is associated with changes in tight and adherens junction-associated proteins that link vascular endothelial cells. This study aimed to test the hypothesis that transforming growth factor (TGF)-β1 increases the paracellular permeability of vascular endothelial monolayers through tyrosine phosphorylation of VE-cadherin and claudin-5. Bovine retinal and human brain capillary endothelial cells were grown as monolayers on coated polycarbonate membranes. Paracellular permeability was studied by measuring the equilibration of (14)C-inulin or fluorescence-labelled dextran. Changes in VE-cadherin and claudin-5 expression were studied by immunocytochemistry (ICC) and quantified by cell-based enzyme linked immunosorbent assays (ELISA). Tyrosine phosphorylation of VE-cadherin and claudin-5 was studied by ICC, immunoprecipitation and Western blotting. We found that exposure of endothelial cells to TGF-β1 caused a dose-dependent increase in paracellular permeability as reflected by increases in the equilibration of (14)C-inulin. This effect was enhanced by the tyrosine phosphatase inhibitor orthovanadate and attenuated by the tyrosine kinase inhibitor lavendustin A. ICC and cell-based ELISA revealed that TGF-β1 induced both dose- and time-dependent decreases in VE-cadherin and claudin-5 expression. Assessment of cell viability indicated that changes in these junction-associated proteins were not due to endothelial death or injury. ICC revealed that tyrosine phosphorylation of endothelial monolayers was greatly enhanced by TGF-β1 treatment, and immunoprecipitation of cell lysates showed increased tyrosine phosphorylation of VE-cadherin and claudin-5. Our results suggest that tyrosine phosphorylation of VE-cadherin and claudin-5 is involved in the increased paracellular permeability of central nervous system-derived vascular endothelium induced by TGF-β1.  相似文献   

8.
Leukocyte transendothelial migration (TEM) has been modeled as a multistep process beginning with rolling adhesion, followed by firm adhesion, and ending with either transcellular or paracellular passage of the leukocyte across the endothelial monolayer. In the case of paracellular TEM, endothelial cell (EC) junctions are transiently disassembled to allow passage of leukocytes. Numerous lines of evidence demonstrate that tyrosine phosphorylation of adherens junction proteins, such as vascular endothelial cadherin (VE-cadherin) and beta-catenin, correlates with the disassembly of junctions. However, the role of tyrosine phosphorylation in the regulation of junctions during leukocyte TEM is not completely understood. Using human leukocytes and EC, we show that ICAM-1 engagement leads to activation of two tyrosine kinases, Src and Pyk2. Using phospho-specific Abs, we show that engagement of ICAM-1 induces phosphorylation of VE-cadherin on tyrosines 658 and 731, which correspond to the p120-catenin and beta-catenin binding sites, respectively. These phosphorylation events require the activity of both Src and Pyk2. We find that inhibition of endothelial Src with PP2 or SU6656 blocks neutrophil transmigration (71.1 +/- 3.8% and 48.6 +/- 3.8% reduction, respectively), whereas inhibition of endothelial Pyk2 also results in decreased neutrophil transmigration (25.5 +/- 6.0% reduction). Moreover, overexpression of the nonphosphorylatable Y658F or Y731F mutants of VE-cadherin impairs transmigration of neutrophils compared with overexpression of wild-type VE-cadherin (32.7 +/- 7.1% and 38.8 +/- 6.5% reduction, respectively). Our results demonstrate that engagement of ICAM-1 by leukocytes results in tyrosine phosphorylation of VE-cadherin, which is required for efficient neutrophil TEM.  相似文献   

9.
A novel hypoxically regulated intercellular junction protein (claudin-like protein of 24 kDa, CLP24) has been identified that shows homology to the myelin protein 22/epithelial membrane protein 1/claudin family of cell junction proteins, which are involved in the modulation of paracellular permeability. The CLP24 protein contains four predicted transmembrane domains and a C-terminal protein-protein interaction domain. These domains are characteristic of the four transmembrane spanning (tetraspan) family of proteins, which includes myelin protein 22, and are involved in cell adhesion at tight, gap and adherens junctions. Expression profiling analyses show that CLP24 is highly expressed in lung, heart, kidney and placental tissues. Cellular studies confirm that the CLP24 protein localizes to cell-cell junctions and co-localizes with the beta-catenin adherens junction-associated protein but not with tight junctions. Over-expression of CLP24 results in decreased adhesion between cells, and functional paracellular flux studies confirm that over-expression of the CLP24 protein modulates the junctional barrier function. These data therefore suggest that CLP24 is a novel, hypoxically regulated tetraspan adherens junction protein that modulates cell adhesion, paracellular permeability and angiogenesis.  相似文献   

10.
Lee HZ  Yeh FT  Wu CH 《Life sciences》2004,74(17):2085-2096
Vascular permeability is a proof of vascular endothelial cell dysfunction induced by diabetes. Vascular permeability is directly related to the width of intercellular endothelial cells junctions, which may become permeable to macromolecules as a result of a change in endothelial cell shape. To determine the role of hyperglycemia in endothelial cell shape, the study examined the effect of high concentrations of glucose on the shape of cultured rat heart endothelial cells. This result indicated that the high-glucose-induced changes in the morphology of endothelial cells, via the glucose-mediated reorganization of F-actin. In endothelial cells, the actin cytoskeleton is tethered to the zonula adherens and focal adhesions, which mediate cell-cell and cell-matrix interactions respectively. The present study demonstrated that the high-glucose-induced changes in the actin-binding protein such as filamin, zonula adherens proteins such as alpha-, beta-, and gamma-catenin, focal adhesions proteins such as focal adhesion kinase, paxillin, and tyrosine phosphorylation of paxillin. It appears that differences in expression of adherens junctions molecules on rat heart endothelial cells in response to high glucose reflect endothelial glucose toxicity, which may also induce endothelial dysfunction in diabetes.  相似文献   

11.
The majority of cell adhesion molecules are N-glycosylated, but the role of N-glycans in intercellular adhesion in epithelia remains ill-defined. Reducing N-glycan branching of cellular glycoproteins by swainsonine, the inhibitor of N-glycan processing, tightens and stabilizes cell-cell junctions as detected by a 3-fold decrease in the paracellular permeability and a 2-3-fold increase in the resistance of the adherens junction proteins to extraction by non-ionic detergent. In addition, exposure of cells to swainsonine inhibits motility of MDCK cells. Mutagenic removal of N-glycosylation sites from the Na,K-ATPase beta(1) subunit impairs cell-cell adhesion and decreases the effect of swainsonine on the paracellular permeability of the cell monolayer and also on detergent resistance of adherens junction proteins, indicating that the extent of N-glycan branching of this subunit is important for intercellular adhesion. The N-glycans of the Na,K-ATPase beta(1) subunit and E-cadherin are less complex in tight renal epithelia than in the leakier intestinal epithelium. The complexity of the N-glycans linked to these proteins gradually decreases upon the formation of a tight monolayer from dispersed MDCK cells. This correlates with a cell-cell adhesion-induced increase in expression of GnT-III (stops N-glycan branching) and a decrease in expression of GnTs IVC and V (promote N-glycan branching) as detected by real-time quantitative PCR. Consistent with these results, partial silencing of the gene encoding GnT-III increases branching of N-glycans linked to the Na,K-ATPase beta(1) subunit and other glycoproteins and results in a 2-fold increase in the paracellular permeability of MDCK cell monolayers. These results suggest epithelial cells can regulate tightness of cell junctions via remodeling of N-glycans, including those linked to the Na,K-ATPase beta(1)-subunit.  相似文献   

12.
Cell-cell adhesion is critical to the development and maintenance of multicellular organisms. The stability of many adhesions is regulated by protein tyrosine phosphorylation of cell adhesion molecules and their associated components, with high levels of phosphorylation promoting disassembly. The level of tyrosine phosphorylation reflects the balance between protein-tyrosine kinase and protein-tyrosine phosphatase activity. Many protein-tyrosine phosphatases associate with the cadherin-catenin complex, directly regulating the phosphorylation of these proteins, thereby affecting their interactions and the integrity of cell-cell junctions. Tyrosine phosphatases can also affect cell-cell adhesions indirectly by regulating the signaling pathways that control the activities of Rho family G proteins. In addition, receptor-type tyrosine phosphatases can mediate outside-in signaling through both ligand binding and dimerization of their extracellular domains. This review will discuss the role of protein-tyrosine phosphatases in cell-cell interactions, with an emphasis on cadherin-mediated adhesions.  相似文献   

13.
Endothelial cells respond to fluid shear stress through mechanotransduction responses that affect their cytoskeleton and cell-cell contacts. Here, endothelial cells were grown as monolayers on arrays of microposts and exposed to laminar or disturbed flow to examine the relationship among traction forces, intercellular forces, and cell-cell junctions. Cells under laminar flow had traction forces that were higher than those under static conditions, whereas cells under disturbed flow had lower traction forces. The response in adhesion junction assembly matched closely with changes in traction forces since adherens junctions were larger in size for laminar flow and smaller for disturbed flow. Treating the cells with calyculin-A to increase myosin phosphorylation and traction forces caused an increase in adherens junction size, whereas Y-27362 cause a decrease in their size. Since tugging forces across cell-cell junctions can promote junctional assembly, we developed a novel approach to measure intercellular forces and found that these forces were higher for laminar flow than for static or disturbed flow. The size of adherens junctions and tight junctions matched closely with intercellular forces for these flow conditions. These results indicate that laminar flow can increase cytoskeletal tension while disturbed flow decreases cytoskeletal tension. Consequently, we found that changes in cytoskeletal tension in response to shear flow conditions can affect intercellular tension, which in turn regulates the assembly of cell-cell junctions.  相似文献   

14.
The plasma membranes of endothelial cells reaching confluence undergo profound structural and functional modifications, including the formation of adherens junctions, crucial for the regulation of vascular permeability and angiogenesis. Adherens junction formation is accompanied by the tyrosine dephosphorylation of adherens junctions proteins, which has been correlated with the strength and stability of adherens junctions. Here we show that cholesterol is a critical determinant of plasma membrane remodeling in cultures of growing cow pulmonary aortic endothelial cells. Membrane cholesterol increased dramatically at an early stage in the formation of confluent cow pulmonary aortic endothelial cell monolayers, prior to formation of intercellular junctions. This increase was accompanied by the redistribution of caveolin from a high density to a low density membrane compartment, previously shown to require cholesterol, and increased binding of the annexin II-p11 complex to membranes, consistent with other studies indicating cholesterol-dependent binding of annexin II to membranes. Furthermore, partial depletion of cholesterol from confluent cells with methyl-beta-cyclodextrin both induced tyrosine phosphorylation of multiple membrane proteins, including adherens junctions proteins, and disrupted adherens junctions. Both effects were dramatically reduced by prior complexing of methyl-beta-cyclodextrin with cholesterol. Our results reveal a novel physiological role for cholesterol regulating the formation of adherens junctions and other plasma membrane remodeling events as endothelial cells reach confluence.  相似文献   

15.
Rat lung microvascular endothelial cell monolayers were exposed to donor plasma from burned rats (25% total body surface area) at 1:3 dilution for 30 min. Immunofluorescence analysis revealed that concomitant with gap formation alterations were seen in the adherens junction (AJ) proteins beta-catenin and vascular endothelial-cadherin. Both of these components were shown to exist in a smooth, uniform arrangement at the cell periphery in untreated cells. However, upon exposure to burn plasma, this uniformity was lost, and the AJ proteins showed a disrupted, zipper-like pattern at the cells' edge. In addition, these proteins were absent from areas of gap formation between the cells, and an increase in punctate staining throughout the cells suggests they were internalized in response to burn plasma. Measurements of both transendothelial electrical resistance and FITC-albumin flux across the cell monolayer were used to assess barrier integrity. Our study found that exposure to burn plasma rapidly caused the electrical resistance across confluent monolayers to decrease and albumin flux to increase, phenomena associated with barrier dysfunction. Furthermore, all the above responses to burn plasma were attenuated when cells were pretreated with the PKC inhibitor bisindolylmaleimide, suggesting that PKC is required for burn-induced pulmonary endothelial dysfunction.  相似文献   

16.
Several pathways are involved in the control of endothelial cell morphology, endothelial permeability and function in order to maintain vascular homeostasis. Here we report that protein kinase N3 (PKN3) appears to play a pivotal role in maintaining endothelial cell morphology, cell-cell junctions and motility. An RNAi-based cell biological approach in cultured human endothelial cells (HUVEC) revealed that knockdown of PKN3 expression gave rise to cells with divergent cell morphology, impaired locomotion, disturbed adherens junctions (AJ) integrity and irregular actin organization. Notably, knockdown of PKN3 cells led to improper stress fiber formation and marked adhesiveness of intercellular adherens junctions when cells became stimulated with the pro-inflammatory cytokine TNF-α. Moreover, TNF-α-induced ICAM-1 expression on the cell surface was reduced in cells with suppressed PKN3 expression. Finally, loss-of-function for PKN3 appeared to affect Pyk2 phosphorylation in endothelial cells. These observations suggest that PKN3 can be considered a novel protein implicated in remodeling the actin-adherens junction, possibly by linking ICAM-1-signaling with actin/AJ dynamics. We propose that loss of PKN3 function and concomitant aberrations in actin rearrangement may attenuate pro-inflammatory activation of endothelial cells.  相似文献   

17.
The mechanisms regulating neutrophil transmigration of vascular endothelium are not fully elucidated, but involve neutrophil firm attachment and passage through endothelial cell-cell junctions. The goal of this study was to characterize the tangential forces exerted by neutrophils during transendothelial migration at cell-cell junctions using an in vitro laminar shear flow model in which confluent activated endothelium is grown on a microfabricated pillar substrate. The tangential forces are deduced from the measurement of pillar deflection beneath the endothelial cell-cell junction as neutrophils transmigrate. The force diagram displays an initial force increase, which coincides with neutrophil penetration into the intercellular space and formation of a gap in VE-cadherin staining. This is followed by a rapid and large increase of traction forces exerted by endothelial cells on the substrate in response to the transmigration process and the disruption of cell-cell contacts. The average maximum force exerted by an actively transmigrating neutrophil is three times higher than the force generated by an adherent neutrophil that does not transmigrate. Furthermore, we show that substrate rigidity can modify the mechanical forces induced by the transmigration of a neutrophil through the endothelium. Our data suggest that the force induced by neutrophil transmigration plays a key role in the disruption of endothelial adherens junctions.  相似文献   

18.
Desmosomes are intercellular junctions responsible for strong cell-cell adhesion in epithelia and cardiac muscle. Numerous studies have shown that the other major type of epithelial cell adhesion, the adherens junction, is destabilized by src-induced tyrosine phosphorylation of two of its principal components, E-cadherin and β-catenin. Here we show that treatment of epithelial cells with the potent tyrosine phosphatase inhibitor sodium pervanadate causes tyrosine phosphorylation of the major desmosomal components desmoglein 2 and plakoglobin in both the non-ionic detergent soluble and insoluble cell fractions and, surprisingly, stabilizes desmosomal adhesion, inducing the hyper-adhesive form normally found in tissues and confluent cell sheets. Taken together with the few other studies on desmosomes these results suggest that the effects of tyrosine phosphorylation on desmosomal adhesion are complex.Key words: desmosome, cell-cell adhesion, intercellular junction, tyrosine phosphorylation, pervanadate, desmoglein, plakoglobin  相似文献   

19.
In the Madin-Darby canine kidney epithelial cell line, the proteins occludin and ZO-1 are structural components of the tight junctions that seal the paracellular spaces between the cells and contribute to the epithelial barrier function. In Ras-transformed Madin-Darby canine kidney cells, occludin, claudin-1, and ZO-1 were absent from cell-cell contacts but were present in the cytoplasm, and the adherens junction protein E-cadherin was weakly expressed. After treatment of the Ras-transformed cells with the mitogen-activated protein kinase kinase (MEK1) inhibitor PD98059, which blocks the activation of mitogen-activated protein kinase (MAPK), occludin, claudin-1, and ZO-1 were recruited to the cell membrane, tight junctions were assembled, and E-cadherin protein expression was induced. Although it is generally believed that E-cadherin-mediated cell-cell adhesion is required for tight junction assembly, the recruitment of occludin to the cell-cell contact area and the restoration of epithelial cell morphology preceded the appearance of E-cadherin at cell-cell contacts. Both electron microscopy and a fourfold increase in the transepithelial electrical resistance indicated the formation of functional tight junctions after MEK1 inhibition. Moreover, inhibition of MAPK activity stabilized occludin and ZO-1 by differentially increasing their half-lives. We also found that during the process of tight junction assembly after MEK1 inhibition, tyrosine phosphorylation of occludin and ZO-1, but not claudin-1, increased significantly. Our study demonstrates that down-regulation of the MAPK signaling pathway causes the restoration of epithelial cell morphology and the assembly of tight junctions in Ras-transformed epithelial cells and that tyrosine phosphorylation of occludin and ZO-1 may play a role in some aspects of tight junction formation.  相似文献   

20.
The hyperpermeability response of microvessels in inflammation involves complex signaling reactions and structural modifications in the endothelium. Our goal was to determine the role of Src-family kinases (Src) in neutrophil-mediated venular hyperpermeability and possible interactions between Src and endothelial barrier components. We found that inhibition of Src abolished the increases in albumin permeability caused by C5a-activated neutrophils in intact, perfused coronary venules, as well as in cultured endothelial monolayers. Activated neutrophils increased Src phosphorylation at Tyr416, which is located in the catalytic domain, and decreased phosphorylation at Tyr527 near the carboxyl terminus, events consistent with reports that phosphorylating and transforming activities of Src are upregulated by Tyr416 phosphorylation and negatively regulated by Tyr527 phosphorylation. Furthermore, neutrophil stimulation resulted in association of Src with the endothelial junction protein beta-catenin and beta-catenin tyrosine phosphorylation. These phenomena were abolished by blockage of Src activity. Taken together, our studies link for the first time neutrophil-induced hyperpermeability to a pathway involving Src kinase activation, Src/beta-catenin association, and beta-catenin tyrosine phosphorylation in the microvascular endothelium.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号