首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The mechanisms used by insulin to activate the multifunctional intracellular effectors, extracellular signal-regulated kinases 1 and 2 (ERK1/2), are only partly understood and appear to vary in different cell types. Presently, in rat adipocytes, we found that insulin-induced activation of ERK was blocked (a) by chemical inhibitors of both phosphatidylinositol 3-kinase (PI3K) and protein kinase C (PKC)-zeta, and, moreover, (b) by transient expression of both dominant-negative Deltap85 PI3K subunit and kinase-inactive PKC-zeta. Further, insulin effects on ERK were inhibited by kinase-inactive 3-phosphoinositide-dependent protein kinase-1 (PDK-1), and by mutation of Thr-410 in the activation loop of PKC-zeta, which is the target of PDK-1 and is essential for PI3K/PDK-1-dependent activation of PKC-zeta. In addition to requirements for PI3K, PDK-1, and PKC-zeta, we found that a tyrosine kinase (presumably the insulin receptor), the SH2 domain of GRB2, SOS, RAS, RAF, and MEK1 were required for insulin effects on ERK in the rat adipocyte. Our findings therefore suggested that PDK-1 and PKC-zeta serve as a downstream effectors of PI3K, and act in conjunction with GRB2, SOS, RAS, and RAF, to activate MEK and ERK during insulin action in rat adipocytes.  相似文献   

2.
Recent studies have indicated that insulin activates endothelial nitric-oxide synthase (eNOS) by protein kinase B (PKB)-mediated phosphorylation at Ser1177 in endothelial cells. Because hyperglycemia contributes to endothelial dysfunction and decreased NO availability in types 1 and 2 diabetes mellitus, we have studied the effects of high glucose (25 mM, 48 h) on insulin signaling pathways that regulate NO production in human aortic endothelial cells. High glucose inhibited insulin-stimulated NO synthesis but was without effect on NO synthesis stimulated by increasing intracellular Ca2+ concentration. This was accompanied by reduced expression of IRS-2 and attenuated insulin-stimulated recruitment of PI3K to IRS-1 and IRS-2, yet insulin-stimulated PKB activity and phosphorylation of eNOS at Ser1177 were unaffected. Inhibition of insulin-stimulated NO synthesis by high glucose was unaffected by an inhibitor of PKC. Furthermore, high glucose down-regulated the expression of CAP and Cbl, and insulin-stimulated Cbl phosphorylation, components of an insulin signaling cascade previously characterized in adipocytes. These data suggest that high glucose specifically inhibits insulin-stimulated NO synthesis and down-regulates some aspects of insulin signaling, including the CAP-Cbl signaling pathway, yet this is not a result of reduced PKB-mediated eNOS phosphorylation at Ser1177. Therefore, we propose that phosphorylation of eNOS at Ser1177 is not sufficient to stimulate NO production in cells cultured at 25 mM glucose.  相似文献   

3.
Zhao X  Li X  Trusa S  Olson SC 《Regulatory peptides》2005,132(1-3):113-122
We previously demonstrated that angiotensin II (Ang II) stimulates an increase in nitric oxide synthase (NOS) mRNA levels, eNOS protein expression and NO production via the type 2 (AT2) receptor, whereas signaling via the type 1 (AT1) receptor negatively regulates NO production in bovine pulmonary artery endothelial cells (BPAECs). In the present study, we investigated the components of the AT1 receptor-linked signaling pathway(s) that are involved in the downregulation of eNOS protein expression in BPAECs. Treatment of BPAECs with either AT1 receptor antagonists or an anti-AT1 receptor antibody induced eNOS protein expression. Furthermore, intracellular delivery of GP-Antagonist-2A, an inhibitor of Galphaq proteins, and treatment of BPAECs with U73122, a phosphatidylinositol-phospholipase C (PLC)-specific inhibitor, enhanced eNOS protein expression. Treatment of BPAECs with the cell-permeable calcium chelator, BAPTA/AM, increased eNOS protein expression at 8 h, while increasing intracellular calcium with either thapsigargin or A23187 prevented Ang II-induced eNOS protein expression. Phorbol myristate acetate (PMA), a protein kinase C (PKC) activator, completely prevented Ang II-stimulated eNOS protein expression at 8 h, whereas depletion of PKC by long-term treatment with PMA, induced eNOS protein expression. Treatment of BPAECs with a PKCalpha-specific inhibitor or transfection of BPAECs with an anti-PKCalpha neutralizing antibody stimulated eNOS protein expression. Conversely, rottlerin, a PKCdelta specific isoform inhibitor had no effect on basal or Ang II-stimulated eNOS protein expression. Moreover, treatment of BPAECs with U73122, BAPTA/AM and PKCalpha-specific inhibitors increased NO production at 8 h. In conclusion, Ang II downregulates eNOS protein expression via an AT1 receptor-linked pathway involving Galphaq/PLC/calcium/PKCalpha signaling pathway in BPAECs.  相似文献   

4.
Chen H  Nystrom FH  Dong LQ  Li Y  Song S  Liu F  Quon MJ 《Biochemistry》2001,40(39):11851-11859
Phosphoinositide-dependent kinase-1 (PDK-1) is a serine-threonine kinase downstream from PI 3-kinase that phosphorylates and activates other important kinases such as Akt that are essential for cell survival and metabolism. Previous reports have suggested that PDK-1 has constitutive catalytic activity that is not regulated by stimulation of cells with growth factors. We now show that insulin stimulation of NIH-3T3(IR) cells or rat adipose cells may significantly increase the intrinsic catalytic activity of PDK-1. Insulin treatment of NIH-3T3(IR) fibroblasts overexpressing PDK-1 increased both phosphorylation of recombinant PDK-1 in intact cells and PDK-1 kinase activity in an immune-complex kinase assay. Insulin stimulation of rat adipose cells also increased catalytic activity of endogenous PDK-1 immunoprecipitated from the cells. Both insulin-stimulated phosphorylation and activity of PDK-1 were inhibited by wortmannin and reversed by treatment with the phosphatase PP-2A. A mutant PDK-1 with a disrupted PH domain (W538L) did not undergo phosphorylation or demonstrate increased kinase activity in response to insulin stimulation. Similarly, a PDK-1 phosphorylation site point mutant (S244A) had no increase in kinase activity in response to insulin stimulation. Thus, the insulin-stimulated increase in PDK-1 catalytic activity may involve PI 3-kinase- and phosphorylation-dependent mechanisms. We conclude that the basal constitutive catalytic activity of PDK-1 in NIH-3T3(IR) cells and rat adipose cells can be significantly increased upon insulin stimulation.  相似文献   

5.
The bioavailability of endothelial nitric oxide (NO) is regulated by transition metals but their mechanisms of action on NO synthesis and degradation are not clearly understood. Using differential pulse amperometry and NO microelectrodes, local NO concentration was measured at the surface of cultured human umbilical vein endothelial cells (HUVECs) stimulated by histamine or thrombin in the presence of transition metal chelators. The agonist-activated NO release required both extracellular Ca2+ and transition metals. In the presence of 1 mM external Ca2+, a low concentration of EGTA (5 microM) inhibited by 40% the NO release from stimulated HUVECs. In the presence of extracellular L-arginine, the inhibitory effect of EGTA was even more marked and, in its absence, it was suppressed by adding exogenous superoxide dismutase. The decrease in NO release induced by the copper chelators, cuprizone and DETC, suggests that extracellular traces of Cu2+ could regulate NO availability.  相似文献   

6.
Kininase I-type carboxypeptidases convert native kinin agonists for B(2) receptors into B(1) receptor agonists by specifically removing the COOH-terminal Arg residue. The membrane localization of carboxypeptidase M (CPM) and carboxypeptidase D (CPD) make them ideally situated to regulate kinin activity. Nitric oxide (NO) release from human lung microvascular endothelial cells (HLMVEC) was measured directly in real time with a porphyrinic microsensor. Bradykinin (1-100 nM) elicited a transient (5 min) peak of generation of NO that was blocked by the B(2) antagonist HOE 140, whereas B(1) agonist des-Arg(10)-kallidin caused a small linear increase in NO over 20 min. Treatment of HLMVEC with 5 ng/ml interleukin-1beta and 200 U/ml interferon-gamma for 16 h upregulated B(1) receptors as shown by an approximately fourfold increase in prolonged (>20 min) output of NO in response to des-Arg(10)-kallidin, which was blocked by the B(1) antagonist des-Arg(10)-Leu(9)-kallidin. B(2) receptor agonists bradykinin or kallidin also generated prolonged NO production in treated HLMVEC, which was significantly reduced by either a B(1) antagonist or carboxypeptidase inhibitor, and completely abolished with a combination of B(1) and B(2) receptor antagonists. Furthermore, CPM and CPD activities were increased about twofold in membrane fractions of HLMVEC treated with interleukin-1beta and interferon-gamma compared with control cells. Immunostaining localized CPD primarily in a perinuclear/Golgi region, whereas CPM was on the cell membrane. These data show that cellular kininase I-type carboxypeptidases can enhance kinin signaling and NO production by converting B(2) agonists to B(1) agonists, especially in inflammatory conditions.  相似文献   

7.
8.
Although cellular levels of arginine greatly exceed the apparent K(m) for endothelial nitric-oxide synthase, current evidence suggests that the bulk of this arginine may not be available for nitric oxide (NO) production. We propose that arginine regeneration, that is the recycling of citrulline back to arginine, defines the essential source of arginine for NO production. To support this proposal, RNA interference analysis was used to selectively reduce the expression of argininosuccinate synthase (AS), because the only known metabolic role for AS in endothelial cells is in the regeneration of l-arginine from l-citrulline. Western blot analysis demonstrated a significant and dose-dependent reduction of AS protein as a result of AS small interfering RNA treatment with a corresponding diminished capacity to produce basal or stimulated levels of NO, despite saturating levels of arginine in the medium. Unanticipated, however, was the finding that the viability of AS small interfering RNA-treated endothelial cells was significantly decreased when compared with control cells. Trypan blue exclusion analysis suggested that the loss of viability was not because of necrosis. Two indicators, reduced expression of Bcl-2 and an increase in caspase activity, which correlated directly with reduced expression of AS, suggested that the loss of viability was because of apoptosis. The exposure of cells to an NO donor prevented apoptosis associated with reduced AS expression. Overall, these results demonstrate the essential role of AS for endothelial NO production and cell viability.  相似文献   

9.
Insulin stimulates production of nitric oxide via ERK in osteoblast cells   总被引:6,自引:0,他引:6  
We explored to determine if iNOS could be induced by insulin in osteoblast-like UMR-106 cells. Insulin (100 nM) stimulated nitric oxide production by twofold and significantly increased iNOS mRNA and protein levels. Insulin also increased collagen synthesis, but had little effect on alkaline phosphatase activity. In contrast, IGF-1 had little effect on NO production below 10 nM and it stimulated NO production by only 57% at 100 nM. IGF-1 had little effect on collagen levels, whereas it inhibited alkaline phosphatase activities in a dose-dependent manner. When an MEK inhibitor was preincubated, insulin failed to stimulate NO production, whereas insulin dramatically increased NO production in the ERK1 overexpressed cells. Taken together, it is proposed that insulin increases iNOS mRNA, iNOS protein, and NO production, possibly via activation of ERK. These may play an important role in osteoblast functions such as collagen synthesis.  相似文献   

10.
Adiponectin is secreted by adipose cells and mimics many metabolic actions of insulin. However, mechanisms by which adiponectin acts are poorly understood. The vascular action of insulin to stimulate endothelial production of nitric oxide (NO), leading to vasodilation and increased blood flow is an important component of insulin-stimulated whole body glucose utilization. Therefore, we hypothesized that adiponectin may also stimulate production of NO in endothelium. Bovine aortic endothelial cells in primary culture loaded with the NO-specific fluorescent dye 4,5-diaminofluorescein diacetate (DAF-2 DA) were treated with lysophosphatidic acid (LPA) (a calcium-releasing agonist) or adiponectin (10 microg/ml bacterially produced full-length adiponectin). LPA treatment increased production of NO by approximately 4-fold. Interestingly, adiponectin treatment significantly increased production of NO by approximately 3-fold. Preincubation of cells with wortmannin (phosphatidylinositol 3-kinase inhibitor) blocked only adiponectin- but not LPA-mediated production of NO. Using phospho-specific antibodies, we observed that either adiponectin or insulin treatment (but not LPA treatment) caused phosphorylation of both Akt at Ser473 and endothelial nitric-oxide synthase (eNOS) at Ser1179 that was inhibitable by wortmannin. We next transfected bovine aortic endothelial cells with dominant-inhibitory mutants of Akt (Akt-AAA) or AMP-activated protein kinase (AMPK) (AMPKK45R). Neither mutant affected production of NO in response to LPA treatment. Importantly, only AMPKK45R, but not Akt-AAA, caused a significant partial inhibition of NO production in response to adiponectin. Moreover, AMPK-K45R inhibited phosphorylation of eNOS at Ser1179 in response to adiponectin but not in response to insulin. We conclude that adiponectin has novel vascular actions to directly stimulate production of NO in endothelial cells using phosphatidylinositol 3-kinase-dependent pathways involving phosphorylation of eNOS at Ser1179 by AMPK. Thus, the effects of adiponectin to augment metabolic actions of insulin in vivo may be due, in part, to vasodilator actions of adiponectin.  相似文献   

11.
12.
NaCl hyperosmolarity increases intestinal blood flow during food absorption due in large part to increased NO production. We hypothesized that in vivo, sodium ions enter endothelial cells during NaCl hyperosmolarity as the first step to stimulate an increase in intestinal endothelial NO production. Perivascular NO concentration ([NO]) and blood flow were determined in the in vivo rat intestinal microvasculature at rest and under hyperosmotic conditions, 330 and 380 mosM, respectively, before and after application of bumetanide (Na(+)-K(+)-2Cl(-) cotransporter inhibitor) or amiloride (Na(+)/H(+) exchange channel inhibitor). Suppressing amiloride-sensitive Na(+)/H(+) exchange channels diminished hypertonicity-linked increases in vascular [NO], whereas blockade of Na(+)-K(+)-2Cl(-) channels greatly suppressed increases in vascular [NO] and intestinal blood flow. In additional experiments we examined the effect of sodium ion entry into endothelial cells. We proposed that the Na(+)/Ca(2+) exchanger extrudes Na(+) in exchange for Ca(2+), thereby leading to the calcium-dependent activation of endothelial nitric oxide synthase (eNOS). We blocked the activity of the Na(+)/Ca(2+) exchanger during 360 mosM NaCl hyperosmolarity with KB-R7943; complete blockade of increased vascular [NO] and intestinal blood flow to hyperosmolarity occurred. These results indicate that during NaCl hyperosmolarity, sodium ions enter endothelial cells predominantly through Na(+)-K(+)-2Cl(-) channels. The Na(+)/Ca(2+) exchanger then extrudes Na(+) and increases endothelial Ca(2+). The increase in endothelial Ca(2+) causes an increase in eNOS activity, and the resultant increase in NO increases intestinal arteriolar diameter and blood flow during NaCl hyperosmolarity. This appears to be the major mechanism by which intestinal nutrient absorption is coupled to increased blood flow.  相似文献   

13.
The Chinese herb Salvia miltiorrhiza (SM) has been found to have beneficial effects on the circulatory system. In the present study, we investigated the effects of cryptotanshinone (derived from SM) on endothelin-1 (ET-1) expression in human umbilical vein endothelial cells (HUVECs). The effect of cryptotanshinone on nitric oxide (NO) in HUVECs was also examined. We found that cryptotanshinone inhibited basal and tumor necrosis factor-alpha (TNF-alpha) stimulated ET-1 secretion in a concentration-dependent manner. Cryptotanshinone also induced a concentration-dependent decrease in ET-1 mRNA expression. Cryptotanshinone increased basal and TNF-alpha-attenuated NO production in a dose-dependent fashion. Cryptotanshinone induced a concentration-dependent increase in endothelial nitric oxide synthase (eNOS) expression without significantly changing neuronal nitric oxide synthase (nNOS) expression in HUVECs in the presence or absence of TNF-alpha. NOS activities in the HUVECs were also induced by cryptotanshinone. Furthermore, decreased ET-1 expression in response to cryptotanshinone was not antagonized by the NOS inhibitor l-NAME. A gel shift assay further showed that TNF-alpha-induced Nuclear Factor-kappaB (NF-kappaB) activity was significantly reduced by cryptotanshinone. These data suggest that cryptotanshinone inhibits ET-1 production, at least in part, through a mechanism that involves NF-kappaB but not NO production.  相似文献   

14.
The localization of insulin receptor substrate (IRS) molecules may be responsible for the differential biological activities of insulin and other peptides such as platelet-derived growth factor. The subcellular localization of IRS-1 is controversial, with some reports suggesting association with the cytoskeleton and other studies reporting membrane localization. In this study, we used immunofluorescence microscopy to define the localization of IRS-1. In the basal state, recombinant IRS-1 was localized predominantly in the cytoplasm. In response to insulin, recombinant IRS-1 translocated to the plasma membrane. We have also studied the localization of green fluorescent protein (GFP) fusion proteins. Unlike native IRS-1, a fusion protein containing GFP plus full-length IRS-1 appeared to localize in inclusion bodies. In contrast, when GFP was fused to the N terminus of IRS-1 (i.e. the pleckstrin homology and phosphotyrosine-binding domains), this fusion protein was targeted to the plasma membrane. Mutations of phosphoinositide-binding sites in both the pleckstrin homology and phosphotyrosine-binding domains significantly reduced the ability of Myc-tagged IRS-1 to translocate to the plasma membrane following insulin stimulation. However, these mutations did not cause a statistically significant impairment of tyrosine phosphorylation in response to insulin. This raises the possibility that IRS-1 tyrosine phosphorylation may occur prior to plasma membrane translocation.  相似文献   

15.
Insulin-induced vasodilatation in vivo has been attributed to the activation of the endothelial nitric oxide (NO) synthase (eNOS). The present study addressed the effects of insulin on the activity and expression of eNOS in native and cultured endothelial cells. Insulin applied to native porcine aortic endothelial cells elicited the tyrosine phosphorylation of the insulin receptor and receptor substrate, the subsequent activation of phosphatidylinositol 3-kinase (PI 3-K), Akt (protein kinase B), and ERK1/2. Insulin did not activate eNOS in cultured endothelial cells nor relax endothelium-intact arterial segments. However, 4h after application of insulin to native endothelial cells eNOS mRNA was increased 2-fold. A comparable increase in eNOS protein was detected after 18-24h and associated with an increase in intracellular cyclic GMP. In native endothelial cells, insulin enhanced the DNA-binding activity of Sp1 and AP-1, but not that of NF-kappaB. The insulin-induced increase in eNOS expression was prevented by wortmannin as well as by AP-1 decoy oligonucleotides. The MEK1 inhibitor, PD 98059, also enhanced eNOS expression in native and cultured endothelial cells, an effect which was independent of ERK1/2 and associated with an increase in the DNA-binding activity of AP-1 and Sp1. These results demonstrate that insulin activates multiple signalling pathways in endothelial cells but does not acutely activate eNOS. Insulin however enhances eNOS mRNA and protein by a mechanism involving the combined activation of a PI 3-K- and AP-1-dependent pathway.  相似文献   

16.
Insulin stimulates nitric oxide production in rat adipocytes   总被引:3,自引:0,他引:3  
In adipocytes, insulin regulates the activity of different protein kinases (PI3K/Akt, MAPK, PKC) and protein phosphatases (PP-1, PP-2A). Since these enzymes are implicated in the regulation of NOS activity which is present in adipose tissue, we tested the effects of insulin on white adipocyte NOS activity. Exposure of adipocytes to insulin resulted simultaneously in NOS activity stimulation and Akt activation with maximal effect observed at 1 nM. Higher concentrations of insulin induced a progressive decline of NOS activity. In the presence of wortmannin, a PI3K inhibitor, 1 nM insulin failed to stimulate NOS activity. Insulin (1 nM)-stimulated NOS activity was also abolished by U0126, an inhibitor of p42/p44 MAPK activation, and by 1 microM okadaic acid (OA), which inhibits both PP-1 and PP-2A but not by 1 nM OA which inhibits only PP-2A. Moreover, inhibition of cPKC allowed a high (1 microM) insulin concentration to stimulate NOS activity. These results (i) demonstrate that insulin activates NO production in adipocytes through both PI3K/Akt and MAPK/PP-1 activation and (ii) suggest that PP-1 activation protects NOS against the inhibitory effect of cPKC activation.  相似文献   

17.
Consumption of tea (Camellia sinensis) improves vascular function and is linked to lowering the risk of cardiovascular disease. Endothelial nitric oxide is the key regulator of vascular functions in endothelium. In this study, we establish that l-theanine, a non-protein amino-acid found in tea, promotes nitric oxide (NO) production in endothelial cells. l-theanine potentiated NO production in endothelial cells was evaluated using Griess reaction, NO sensitive electrode and a NO specific fluorescent probe (4-amino-5-methylamino-2',7'-difluororescein diacetate). l-Theanine induced NO production was partially attenuated in presence of l-NAME or l-NIO and completely abolished using eNOS siRNA. eNOS activation was Ca2 + and Akt independent, as assessed by fluo-4AM and immunoblotting experiments, respectively and was associated with phosphorylation of eNOS Ser 1177. eNOS phosphorylation was inhibited in the presence of ERK1/2 inhibitor, PD-98059 and partially inhibited by PI3K inhibitor, LY-294002 and Wortmanin suggesting PI3K-ERK1/2 dependent pathway. Increased NO production was associated with vasodilation in ex ovo (chorioallantoic membrane) model. These results demonstrated that l-theanine administration in vitro activated ERK/eNOS resulting in enhanced NO production and thereby vasodilation in the artery. The results of our experiments are suggestive of l-theanine mediated vascular health benefits of tea.  相似文献   

18.
The effects of specific microtubule-active agents on nitric oxide (NO) production were examined in pulmonary artery endothelial cells (PAEC). PAEC were incubated with taxol, which stabilizes microtubules, or nocodazole, which disrupts microtubules, or both for 2-4 h. We then examined NO production, endothelial NO synthase (eNOS) activity, and eNOS association with heat shock protein (HSP) 90. Incubation of PAEC with taxol (15 microM) for 2-4 h resulted in an increase in NO production, eNOS activity, and the amount of HSP90 binding to eNOS. Incubation of PAEC with nocodazole (50 microM) for 2-4 h induced a decrease in NO production, eNOS activity, and the amount of HSP90 binding to eNOS. The presence of taxol in the culture medium prevented the effects of nocodazole on NO production and eNOS activity in PAEC. Geldanamycin, a HSP90 inhibitor, prevented the taxol-induced increase in eNOS activity. Taxol and nocodazole did not affect eNOS, HSP90, and tubulin protein contents in PAEC, as detected using Western blot analysis. These results indicate that the polymerization state of the microtubule cytoskeleton regulates NO production and eNOS activity in PAEC. The changes in eNOS activity induced by modification of microtubules are due, at least in part, to the altered binding of HSP90 to eNOS protein.  相似文献   

19.
We recently reported that in vitro Cognac polyphenolic compounds (CPC) induce NO-dependent vasorelaxant effects and stimulate cardiac function. In the present study, we aim to investigate the effect of CPC on both nitric oxide (NO) and superoxide anions (O(2)(-)) production in cultured human endothelial cells. In addition, its effect on the bradykinin (BK)-induced NO production was also tested. The role and sources of O(2)(-) in the concomitant effect of BK plus CPC were pharmacologically determined. NO and O(2)(-) signals were measured using electron paramagnetic resonance technique using specific spin trappings. Both, CPC and BK induced an increase in NO production in human endothelial cells. The combination of both further enhanced NO release. The capacity of CPC plus BK to increase NO signal was blunted by the NO synthase inhibitor, N(G)-nitro-L-arginine methyl ester, and was enhanced in the presence either of superoxide dismutase or catalase. Moreover, CPC plus BK response was greater after inhibition of either NADPH oxidase by apocynin or xanthine oxidase by allopurinol but it was not affected by rotenone. CPC did not affect O(2)(-) level either alone or after its increase upon lipopolysaccharide treatment. Finally, the capacity of BK alone to increase NO was enhanced either by apocynin or allopurinol. Altogether, these data demonstrate that CPC is able to directly increase NO production without affecting O(2)(-) and enhances the BK-induced NO production in human endothelial cells. The data highlight the ability of BK to stimulate not only NADPH oxidase- but also xanthine oxidase-inhibitor sensitive mechanisms that reduce its efficiency in increasing NO either alone or in the presence of CPC. These results bring pharmacological evidence for vascular protection by CPC via its potentiating effect of BK response in terms of endothelial NO release.  相似文献   

20.
Icariin, a flavonoid isolated from Epimedii herba, stimulated phosphorylation of endothelial nitric oxide synthase (eNOS) at Ser1177, Akt (Ser473) and ERK1/2 (Thr202/Tyr204). The icariin-induced eNOS phosphorylation was abolished by an androgen receptor (AR) antagonist, nilutamide in human umbilical vein endothelial cells (HUVECs). Furthermore, it was also reduced in the cells transfected with small interfering RNA in which the expression of AR was broken down. The icariin-induced eNOS phosphorylation was inhibited by wortmannin, a phosphatidylinositol 3-kinase (PI3K) inhibitor and partially attenuated by PD98059, an upstream inhibitor for ERK1/2. These data suggest that icariin stimulates release of NO by AR-dependent activation of eNOS in HUVECs. PI3K/Akt and MAPK-ERK kinase (MEK)/ERK1/2 pathways were involved in the phosphorylation of eNOS by icariin.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号