首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Peroxisome proliferator-activated receptor alpha (PPARalpha) is mainly expressed in liver and involved in lipid metabolism. Oxidation of certain fatty acids in peroxisomes is under PPARalpha control. A wide variety of lipid molecules activate PPARalpha as well as the fibric acid derivative clofibrate. In the present study, we evaluated the differential activation of PPARalpha with several agonist ligands through its expression and DNA binding in both rat (McA-RH7777) and human (HepG2) hepatoma cell lines. In McA-RH7777 cells, clofibrate alone mediated a higher induction of PPARalpha expression than linoleic acid. In contrast, linoleic acid was the most effective ligand in HepG2 cells and treatment with clofibrate plus linoleic acid did not further increase PPARalpha expression. PPRE-binding activity of PPARalpha in ligand-treated cells was also increased in a parallel manner. We suggest that ligand-induced PPARalpha activation might give rise to differential species-dependent responses.  相似文献   

2.
3.
Several herbal medicines improve hyperlipidemia, diabetes and cardiovascular diseases. However, the molecular mechanism underlying this improvement has not yet been clarified. In this study, we found that several isoprenols, common components of herbal plants, activate human peroxisome proliferator-activated receptors (PPARs) as determined using the novel GAL4 ligand-binding domain chimera assay system with coactivator coexpression. Farnesol and geranylgeraniol that are typical isoprenols in herbs and fruits activated not only PPARgamma but also PPARalpha as determined using the chimera assay system. These compounds also activated full-length human PPARgamma and PPARalpha in CV1 cells. Moreover, these isoprenols upregulated the expression of some lipid metabolic target genes of PPARgamma and PPARalpha in 3T3-L1 adipocytes and HepG2 hepatocytes, respectively. These results suggest that herbal medicines containing isoprenols with dual action on both PPARgamma and PPARalpha can be of interest for the amelioration of lipid metabolic disorders associated with diabetes.  相似文献   

4.
5.
6.
Proper function of the peroxisome proliferator-activated receptor alpha (PPARalpha) is essential for the regulation of hepatic fatty acid metabolism. Fatty acid levels are increased in liver during the metabolism of ethanol and should activate PPARalpha. However, recent in vitro data showed that ethanol metabolism inhibited the function of PPARalpha. We now report that ethanol feeding impairs fatty acid catabolism in the liver in part via blocking PPARalpha-mediated responses in C57BL/6J mice. Ethanol feeding decreased PPARalpha/retinoid X receptor alpha binding in electrophoretic mobility shift assay of liver nuclear extracts. mRNAs for PPAR-regulated genes were reduced (long chain and medium chain acyl-CoA dehydrogenases) or failed to be induced (acyl-CoA oxidase, liver carnitine palmitoyl-CoA transferase, very long chain acyl-CoA synthetase, very long chain acyl-CoA dehydrogenase) in livers of the ethanol-fed animals, and ethanol feeding did not increase the rate of fatty acid beta-oxidation. Wy14,643, a PPARalpha agonist, restored the DNA binding activity of PPARalpha/retinoid X receptor alpha, induced mRNA levels of PPARalpha target genes, stimulated the rate of fatty acid beta-oxidation, and prevented fatty liver in ethanol-fed animals. Impairment of PPARalpha function during ethanol consumption contributes to the development of alcoholic fatty liver, which can be overcome by Wy14,643.  相似文献   

7.
8.
Peroxisome proliferator-activated receptor alpha (PPARalpha) is a nuclear receptor activated by fatty acids, hypolipidemic drugs, and peroxisome proliferators (PPs). Like other nuclear receptors, PPARalpha is a phosphoprotein whose activity is affected by a variety of growth factor signaling cascades. In this study, the effects of protein kinase C (PKC) on PPARalpha activity were explored. In vivo phosphorylation studies in COS-1 cells transfected with murine PPARalpha showed that the level of phosphorylated PPARalpha is increased by treatment with the PP Wy-14,643 as well as the PKC activator phorbol myristol acetate (PMA). In addition, inhibitors of PKC decreased Wy-14,643-induced PPARalpha activity in a variety of reporter assays. Overexpressing PKCalpha, -beta, -delta, and -zeta affected both basal and Wy-14,643-induced PPARalpha activity. Four consensus PKC phosphorylation sites are contained within the DNA binding (C-domain) and hinge (D-domain) regions of rat PPARalpha (S110, T129, S142, and S179), and their contribution to receptor function was examined. Mutation of T129 or S179 to alanine prevented heterodimerization of PPARalpha with RXRalpha, lowered the level of phosphorylation by PKCalpha and PKCdelta in vitro, and lowered the level of phosphorylation of transfected PPARalpha in transfected cells. In addition, the T129A mutation prevented PPARalpha from binding DNA in an electromobility shift assay. Together, these studies demonstrate a direct role for PKC in the regulation of PPARalpha, and suggest several PKCs can regulate PPARalpha activity through multiple phosphorylation sites.  相似文献   

9.
10.
11.
12.
13.
14.
15.
16.
Fatty acid metabolism of isolated mammalian cells   总被引:5,自引:0,他引:5  
It is now clear that a wide variety of differentiated cells in culture exhibit essentially the full spectrum of mammalian fatty acid metabolism. These cells readily incorporate free fatty acids into membrane phosphoglycerides, modify exogenous fatty acids by desaturation and elongation, and store excess fatty acyl groups, primarily as triacylglycerols. Similarly, many different types of cells synthesize cyclooxygenase and lipoxygenase derivatives of long chain polyunsaturated fatty acids. Furthermore, although the fatty acid composition of cellular phospholipids can be modified by medium supplementation, cells in culture exhibit definite fatty acyl specificities for the various steps of fatty acid activation, transesterification and release. As the extensive repertoire of fatty acid metabolism in mammalian cells has been elucidated, and as the ability to grow differentiated cells in culture has increased, new questions have arisen. There is still much to be learned about the enzymes involved in synthesizing and maintaining the unique fatty acid composition of the different cellular phospholipids and the processes which regulate the desaturation, elongation and retroconversion of polyunsaturated fatty acids. Other areas of great current interest are the mechanisms by which certain long chain polyunsaturated fatty acids are made available for conversion to oxygenated, biologically-active derivatives, the metabolic interactions between different polyunsaturated fatty acids, particularly n-3 and n-6 fatty acids, the cellular roles of the C22 polyunsaturated fatty acids, and the functions of particular molecular species of phospholipids in membrane-mediated events. Further research in these areas will contribute to unravelling the role of fatty acids and fatty acid derivatives in the physiological processes of mammalian cells.  相似文献   

17.
In this study, we found that the mRNA level of peroxisome proliferator-activated receptor (PPAR) alpha, but not of PPARdelta, was elevated in the jejunum during the postnatal development of the rat. Moreover, we found that the expressions of PPAR-dependent genes, such as acyl-CoA oxidase, L-FABP, and I-FABP, were also increased during the postnatal development of the small intestine. Electrophoretic mobility shift assay revealed that both the PPARalpha-9-cis-retinoic acid receptor alpha (RXRalpha) heterodimer and the PPARdelta-RXRalpha heterodimer bound to the peroxisome proliferator response element (PPRE) of acyl-CoA oxidase and L-FABP genes. The binding of the PPARalpha-RXRalpha heterodimer to the PPREs of the various genes was enhanced by the addition of PPARalpha, with a concomitant reduction of the binding of PPARdelta-RXRalpha to the PPREs. Furthermore, the binding activity of PPARalpha-RXRalpha, but not PPARdelta-RXRalpha, to the PPREs was enhanced by the addition of a PPAR ligand, WY14,643. The GAL4-PPAR-chimera reporter assay showed that WY14,643 transactivated the reporter gene through action of PPARalpha, but not through PPARdelta, in Caco-2 cells. Furthermore, oral administration of a PPAR ligand, clofibrate, during 3 consecutive days of the weanling period caused a parallel increase in the mRNA levels of these PPAR-dependent genes. These results suggest that acyl-CoA oxidase, L-FABP and the other PPAR-dependent genes in the small intestine may be coordinately modulated during postnatal development by the disproportional expression of PPARalpha over PPARdelta.  相似文献   

18.
19.
20.
PPARalpha in atherosclerosis and inflammation   总被引:3,自引:0,他引:3  
  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号