首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The cuticle of the nematode Caenorhabditis elegans forms the barrier between the animal and its environment. In addition to being a protective layer, it is an exoskeleton which is important in maintaining and defining the normal shape of the nematode. The cuticle is an extracellular matrix consisting predominantly of small collagen-like proteins that are extensively crosslinked. Although it also contains other protein and non-protein compounds that undoubtedly play a significant part in its function, the specific role of collagen in cuticle structure and morphology is considered here. The C. elegans genome contains between 50 and 150 collagen genes, most of which are believed to encode cuticular collagens. Mutations that result in cuticular defects and grossly altered body form have been identified in more than 40 genes. Six of these genes are now known to encode cuticular collagens, a finding that confirms the importance of this group of structural proteins to the formation of the cuticle and the role of the cuticle as an exoskeleton in shaping the worm. It is likely that many more of the genes identified by mutations giving altered body form, will be collagen genes. Mutations in the cuticular collagen genes provide a powerful tool for investigating the mechanisms by which this group of proteins interact to form the nematode cuticle.  相似文献   

2.
Morphological and behavioural adaptations enable Scirtes hemisphaericus to pupate under water, using emergent macrophytes as snorkels to breathe atmospheric air. The last instar larva bites into emergent macrophytes until the aerenchym is exposed. The pupa pushes its fore body into the wound, becoming surrounded by an air film in continuity with intracellular and atmospheric air. The pupa lacks normal ecdysial sutures, instead, its cuticle ruptures between the pro- and mesothorax. The fore body cuticle remains in place, preserving the connection to atmospheric air for the immature beetle. Pupation in earthen cells is known only in Elodes. Several other genera pupate under some cover, or freely exposed. Most pupae have 2–4 horn-like pronotal processes and 2–4 caudal attachment organs which differ between genera and sexes. Hydrocyphon (which pupates under water) and S. hemisphaericus pupae lack pronotal horns and attachment organs.  相似文献   

3.
Lees (Proc Zool Soc Lond 121:759–772, 1952) concluded that the ixodid tick Ixodes ricinus grows endocuticle during the slow but not during the rapid, phase of engorgement, a conclusion supported by Andersen and Roepstorff (Insect Biochem Mol Biol 35:1181–1188, 2005) for the same species. In this study analysis of dimensional data and cuticle weight measurements from female ixodid ticks (Amblyomma hebraeum) were used to test this hypothesis. Both approaches showed that endocuticle growth continues during the rapid phase, tapering to zero at a fed/unfed weight ratio of ~60. Of the total mass of cuticle in the engorged tick 32–43% was formed during the rapid phase. We demonstrate that if cuticle growth stopped at the end of the slow phase, there would not be sufficient cuticle to account for the thickness of cuticle observed at the end of engorgement. This finding is consistent with prior studies of Rhipicephalus (Boophilus) microplus, and with a dimensional analysis of the cuticle thickness data of Lees for I. ricinus, in contradiction to his conclusion from an analysis of tick cuticle weight measurements. An examination of cuticle weight measurements for I. ricinus by Andersen and Roepstorff similarly supports the finding of cuticle growth during the rapid phase. All ixodid ticks undergo major body expansion, typically tenfold or more, during a rapid phase of engorgement and require sufficient cuticle at the end of that process to contain their body. The fact that cuticle grows during the rapid phase of engorgement in three species suggests that this is a general characteristic of the family Ixodidae.  相似文献   

4.
Terrestrial isopods moult first the posterior and then the anterior half of the body. During the moulting cycle they retain a significant fraction of cuticular calcium partly by storing it in sternal CaCO3 deposits. We analysed the calcium content in whole Ligia hawaiiensis and the calcium distribution between the posterior, the anterior ventral, and the anterior dorsal cuticle during four stages of the moulting cycle. The results indicate that: (1) overall, about 80% of the calcium is retained and 20% is lost with the exuviae, (2) in premoult 68% of the calcium in the posterior cuticle is resorbed (23% moved to the anterior ventral cuticle, 17% to the anterior dorsal cuticle, and the remaining 28% to internal tissues), (3) after the posterior moult 83% of the calcium in the anterior cuticle is shifted to the posterior cuticle and possibly to internal storage sites, (4) following the anterior moult up to 54% of the calcium in the posterior cuticle is resorbed and used to mineralise the new anterior cuticle. 45Ca-uptake experiments suggest that up to 80% of calcium lost with the anterior exuviae may be regained after its ingestion. Whole body calcium of Ligia hawaiiensis is only 0.7 times that of the fully terrestrial isopods. These terrestrial species can retain only 48% of whole body calcium, suggesting that the amount of calcium that can be retained by shifting it between the anterior and posterior integument is limited. We propose that fully terrestrial Oniscidea rely to a larger degree on other calcium sources like internal stores and uptake from the ingested exuviae.  相似文献   

5.
The larvae of the tobacco hornworm, Manduca sexta, grow continuously. During the feeding period of the fifth larval instar their weight increases ten-fold (ca. 1·2–12 g) accompanied by a four-fold expansion of the surface area of the abdominal cuticle. We have found that this cuticle contains structures which facilitate its expansion. Folds in the epicuticle (papillae) flatten as the cuticle expands. The endocuticle, in contrast, does not unfold but rather is plastically deformed. This plastic deformation is assisted by vertical structures in the cuticle (cuticular columns) which are more easily deformed than the surrounding lamellate cuticle. The head capsule cuticle, which does not expand as the larva grows, lacks papillae and cuticular columns. Thus, these are specialized structures that are reserved for cuticle that must expand as the larva grows.  相似文献   

6.
Caenorhabditis elegans adult animals exhibit an inherent chirality of fiber orientation in the basal layer of the cuticle, as well as a naturally invariant but experimentally reversible handedness in the left-right (L-R) asymmetry of the body plan. We have examined the relationship between cuticle chirality and body handedness in normal and L-R reversed animals, using Roller (Rol) mutants and transmission electron microscopy to monitor cuticle properties. Rol phenotypes, several of which have been shown to result from mutations in cuticle collagen genes, are characterized by an invariant, allele-specific handedness in their direction of rolling. We show for several alleles that this direction is not affected by L-R reversal of the body plan. We further show, by electron microscopy, that the chiral orientation of cuticle fibers in animals with normal cuticle is not reversed by L-R body-plan reversal. We conclude that cuticle chirality must be established independently of body-plan handedness. The cues that establish cuticle chirality are still unknown, as are the causes for different rolling directions in different Roller mutants. We discuss the question of how cuticle chirality maintains its independence, and how the orientations of the fiber layers may be determined. Dev. Genet. 23:164–174, 1998. © 1998 Wiley-Liss, Inc.  相似文献   

7.
 The ultrastructure of the body cuticle in species of six of seven representative genera of Stilbonematinae (Eubostrichus, Catanema, Laxus, Robbea, Leptonemella, and Stilbonema) was investigated using SEM and TEM techniques. Additionally, one species of Spirinia (Spiriniinae) and one of Desmodora (Desmodorinae) were studied for outgroup comparison. The body cuticle of all investigated stilbonematids shows a consistent pattern composed of specific elements in a characteristic arrangement to each other. This pattern does not occur in Stilbonematinae alone, but also in Desmodorinae and Spiriniinae. Furthermore, a comparison within the Desmodorida reveals that this cuticular pattern apparently is present in the cuticle of representatives of Monoposthiidae, Epsilonematidae, and Draconematidae. The present results lead to the following conclusions: (1) the cuticle of Stilbonematinae contains no autapomorphic characters for this taxon, (2) there is a common cuticular pattern within the Desmodorida, and (3) this pattern is an autapomorphic character for the order Desmodorida. Accepted: 4 February 1996  相似文献   

8.
Pasteuria penetrans is a naturally occurring bacterial parasite of plant parasitic nematodes showing satisfactory results in a biocontrol strategy of root-knot nematodes (Meloidogyne spp.). The endospores attach to the outside nematode body wall (cuticle) of the infective stage second-stage juveniles (J2) of Meloidogyne populations. Optimal attachment level should be around 5–10 endospores per juvenile, as enough endospores will initiate infection without reducing the ability of the nematode to invade roots. Greater than 15 endospores may disable the nematode in its movements, and invasion may not take place. In this research, evidence is provided that P. penetrans spores disturbed the nematode forward movement by disorganising the nematode's head turns. The results based on Markov chain and Cochran probability model show that even a low number of 5–8 spores of P. penetrans attached to the nematode cuticle have a significant impact on that movement, which plays a role in nematode locomotion.  相似文献   

9.
The arthropod cuticle is a multilayered extracellular matrix produced by the epidermis during embryogenesis and moulting. Molecularly and histologically, cuticle differentiation has been extensively investigated in the embryo of the insect Drosophila melanogaster. To learn about the evolution of cuticle differentiation, we have studied the histology of cuticle differentiation during embryogenesis of the amphipod crustacean Parhyale hawaiensis, which had a common ancestor with Drosophila about 510 million years ago. The establishment of the layers of the Parhyale juvenile cuticle is largely governed by mechanisms observed in Drosophila, e.g. as in Drosophila, the synthesis and arrangement of chitin in the inner procuticle are separate processes. A major difference between the cuticle of Parhyale and Drosophila concerns the restructuring of the Parhyale dorsal epicuticle after deposition. In contrast to the uniform cuticle of the Drosophila larva, the Parhyale cuticle is subdivided into two regions, the ventral and the dorsal cuticles. Remarkably, the boundary between the ventral and dorsal cuticles is sharp suggesting active extracellular regionalisation. The present analysis of Parhyale cuticle differentiation should allow the characterisation of the cuticle-producing and -organising factors of Parhyale (by comparison with the branchiopod crustacean Daphnia pulex) in order to contribute to the elucidation of fundamental questions relevant to extracellular matrix organisation and differentiation. This work was supported by the German Research Foundation (DFG, grant number MO 1714/1-1).  相似文献   

10.
Sequential patterns of cuticle deposition and “melanization” in the imaginal cuticle of Sarcophaga argyrostoma in parts of the body darkening before or after emergence are examined on a histological basis. The patterns in the cuticles examined range from a simple absence of “melanization” to a complex of histological changes involving “melanization” and deposition. Ultrastructural changes in the post-emergent cuticle of Sarcophaga bullata during the hardening and darkening process and cuticle deposition are described.  相似文献   

11.
The structure of the leaf cuticle of Tsuga heterophylla, T. mertensiana and their putative hybrid, T. X jeffryi, is described using light microscopy and scanning electron microscopy. In all three taxa the cuticle, from its response to varying maceration time and from sections stained in Sudan IV, shows clear evidence of two components: an outer one probably corresponding to the cuticle proper and cuticular layer and an inner spongy component separated from the outer by a cutin-deficient layer. Comparison of the three taxa indicates that T. X jeffryi agrees closely in nearly all cuticle features with T. mertensiana indicating that if the hybrid status of T. X jeffryi is correct, cuticle characters have been inherited predominantly from one parent.  相似文献   

12.
The cuticle is a proteinaceous layer covering the avian egg and is believed to form a defence to microorganism ingress. In birds that lay eggs in challenging environments, the cuticle is thicker, suggesting evolutionary pressure; however, in poultry, selection pressure for this trait has been removed because of artificial incubation. This study aimed to quantify cuticle deposition and to estimate its genetic parameters and its role on trans‐shell penetration of bacteria. Additionally, cuticle proteins were characterised to establish whether alleles for these genes explained variation in deposition. A novel and reliable quantification was achieved using the difference in reflectance of the egg at 650 nm before and after staining with a specific dye. The heritability of this novel measurement was moderate (0.27), and bacteria penetration was dependent on the natural variation in cuticle deposition. Eggs with the best cuticle were never penetrated by bacteria (< 0.001). The cuticle proteome consisted of six major proteins. A significant association was found between alleles of one of these protein genes, ovocleidin‐116 (MEPE), and cuticle deposition (= 0.015) and also between alleles of estrogen receptor 1 (ESR1) gene and cuticle deposition (= 0.008). With the heritability observed, genetic selection should be possible to increase cuticle deposition in commercial poultry, so reducing trans‐generational transmission of microorganisms and reversing the lack of selection pressure for this trait during recent domestication.  相似文献   

13.
Terrestrial isopods have adapted to land life by diverse morphological, physiological and behavioral changes. Isopod species exhibit a large variety of preferences ranging from moist to dry habitats. Isopod cuticle is an interesting model for studying adaptations to terrestrial life. The cuticle consists of a hierarchically organized material which provides protection and sites for muscle attachment. The present paper aimed to investigate the structure of the cuticle in three isopod species in order to relate some peculiar features to an adaptive process to environmental constraints. Results showed that general thickness of Ligia italica cuticle was quite similar to that observed in Porcellio lamellatus. Nevertheless, this cuticle was half as thick as in Porcellio laevis. Although the positive relationship found between total body lengths and the total thickness of the cuticle, the exocuticle did not show any differences between the three species. However, it is the development of a thicker endocuticle in P. laevis which make its total cuticle thickness more important.  相似文献   

14.
Summary  The ultrastructure of the cephalic cuticle of 6 of 7 representative genera of Stilbonematinae (Eubostrichus, Catanema, Laxus, Robbea, Leptonemella, Stilbonema) is investigated using SEM and TEM techniques. Additionally, one species of Spirinia (Spiriniinae) and one of Desmodora (Desmodorinae) were studied for outgroup comparison. Most of the studied species show modifications of the cephalic cuticle. Furthermore, at least four different pathways have been developed to reinforce the head within Stilbonematinae. Species with a coarsely annulated somatic cuticle (Leptonemella sp., Stilbonema majum, and Desmodora ovigera) developed a rigid, non-annulated cephalic capsule by modifying the main constructing element of the median zone, the ’’ring body.’’ In faintly annulated Laxus oneistus, the annulated cephalic capsule results from a newly inserted ’’block layer’’ between the median and basal zone. The non-annulated cephalic capsule of Robbea sp. is formed by both the block layer and the ring body element. The annulated capsule of Catanema sp. stems from a doubled number of fiber layers within the basal zone. In Spirinia sp., only the amphidial region is strengthened in what could be termed an amphidial shield. All forms with cephalic capsules show mechanisms to keep the oral region pliable. Only Eubostrichus topiarius lacks a reinforcement of the cephalic cuticle. A comparison with the literature is made to elucidate corresponding structures within the cephalic capsules of representatives of Desmodorida. It is demonstrated that the presence of a cephalic cuticle is of no systematic value above the genus level. Accepted: 3 March 1996  相似文献   

15.
The cuticle, an essential structure for insects, is produced from cuticular proteins and chitin via a series of biochemical reactions. Tweedle genes are important members of the cuticular protein family and have four conserved motifs binding to chitin. Tweedle family genes have been found to play a profound effect on cuticle development. Here, we report that the cuticular protein gene LmTwdl1 of Locusta migratoria belongs to the Tweedle family. In situ hybridization showed that LmTwdl1 is localized to epidermal cells of the cuticle. The expression patterns of LmTwdl1 showed low expression in the cuticle during the early and middle stages of the fifth‐instar nymphs; in contrast, its expression rapidly increased in the late stages of fifth‐instar nymphs. We performed RNA interference to examine the function of LmTwdl1 in locusts. Silencing of LmTwdl1 resulted in high mortality during the molting process before the next stage. Also, the epicuticle of nymphs failed to molt, tended to be thinner and the arrangement of chitin in the procuticle appeared to be disordered compare to the control group. These results demonstrate that LmTwdl1 plays a critical role in molting, which contributes to a better understanding of the distinct functions of the Tweedle family in locusts.  相似文献   

16.
The insect cuticle plays important roles in numerous physiological functions to protect the body from invasion of pathogens, physical injury and dehydration. In this report, we conducted a comprehensive genome-wide search for genes encoding proteins with peritrophin A-type (ChtBD2) chitin-binding domain (CBD) in the silkworm, Bombyx mori. One of these genes, which encodes the cuticle protein BmCBP1, was additionally cloned, and its expression and location during the process of development and molting in B. mori were investigated. In total, 46 protein-coding genes were identified in the silkworm genome, including those encoding 15 cuticle proteins analogous to peritrophins with one CBD (CPAP1s), nine cuticle proteins analogous to peritrophins with three CBD (CPAP3s), 15 peritrophic membrane proteins (PMPs), four chitinases, and three chitin deacetylases, which contained at least one ChtBD2 domain. Microarray analysis indicated that CPAP-encoding genes were widely expressed in various tissues, whereas PMP genes were highly expressed in the midgut. Quantitative polymerase chain reaction and western blotting showed that the cuticle protein BmCBP1 was highly expressed in the epidermis and head, particularly during molting and metamorphosis. An immunofluorescence study revealed that chitin co-localized with BmCBP1 at the epidermal surface during molting. Additionally, BmCBP1 was notably up-regulated by 20-hydroxyecdysone treatment. These results provide a genome-level view of the chitin-binding protein in silkworm and suggest that BmCBP1 participates in the formation of the new cuticle during molting.  相似文献   

17.
The nematomorph species Chordodes festae Camerano, 1897 and C. peraccae (Camerano, 1894) are redescribed by using scanning electron microscopy (SEM). C. festae has a cuticle with four different areolar types, the crown areoles being the most noticeable with long spiniform processes. The terminal end in the male specimen has two short lobe-like structures and a ventral groove. C. peraccae has three areolar types in which, as in C. festae, some areoles form groups surrounding the crown areoles. Intraspecific variations were found in body length and body colour in both species and, in C. peraccae, also in the cuticle.  相似文献   

18.
Insect cuticle lipids are involved in various types of chemical communication between species, and reduce the penetration of insecticides, chemicals, and toxins, as well as provide protection against the attack of microorganisms, parasitic insects, and predators. Ecological studies related to the insect Rhynchophorus palmarum are well-known; however, very little is known about its resistance mechanisms, which includes its lipid composition and its importance, specifically the cuticle layer. This study aimed to characterize the cuticle and internal lipid compounds of the male and female R. palmarum adult insects and to evaluate the presence of antimicrobial activity. We performed by gas chromatography coupled to mass spectrometry (GC–MS) analyzes of lipid extracts fractions and we identified 10 methyl esters of fatty acids esters of C14 to C23, with variation between the sexes of C22:0, C21:0, present only in male cuticle, and C20:2 in female. The lipid content of this insect showed relevant amount of C16:1, C18:1, and C18:2. The antimicrobial activity of the cuticular and internal fractions obtained was tested, which resulted in minimum inhibitory concentrations between 12.5 and 20 μg/ml against Gram-positive bacteria (Staphylococcus epidermidis, Enterococcus faecalis), Gram-negative (Pseudomonas aeruginosa, Escherichia coli, Klebsiella pneumonia), and fungal species (Candida albicans e Candida tropicalis). The antimicrobial effect of the R. palmarum cuticle open perspectives for a new source to bioinsecticidal strategies, in addition to elucidating a bioactive mixture against bacteria and fungi.  相似文献   

19.
The mechanism of oxidation of two related sclerotizing precursors—N-acetyldopamine and N-acetylnorepinephrine—by the cuticular phenoloxidase from Sarcophaga bullata was studied and compared with mushroom tyrosinase-mediated oxidation. While the fungal enzyme readily generated the quinone products from both of these catecholamine derivatives, sarcophagid enzyme converted N-acetyldopamine to a quinone methide derivative, which was subsequently bound to the cuticle with the regeneration of o-dihydroxy phenolic function as outlined in an earlier publication [Sugumaran: Arch Insect Biochem Physiol, 8, 73 (1988)]. However, it converted N-acetylnorepinephrine to its quinone and not to the quinone methide derivative. Proteolytic digests of N-acetyldopamine-treated cuticle liberated peptides that had covalently bound catechols, while N-acetylnorepinephrine-treated cuticle did not release such peptides. Acid hydrolysis of N-acetyldopamine-treated cuticle, but not N-acetylnorepinephrine-treated cuticle liberated 2-hydroxy-3′,4′-dihydroxyacetophenone and arterenone. These results further confirm the unique conversion of N-acetyldopamine to its corresponding quinone methide derivative and N-acetylnorepinephrine to its quinone derivative by the cuticular phen-oloxidase. Significance of this differential mechanism of oxidation for sclerotization of insect cuticle is discussed.  相似文献   

20.
In accordance with our earlier results, quinone methide formation was confirmed to be the major pathway for the oxidation of N-acetyldopamine (NADA) by cuticle-bound enzymes from Sarcophaga bullata larvae. In addition, with the use of a newly developed HPLC separation condition and cuticle prepared by gentle procedures, it could be demonstrated that 1, 2-dehydro-NADA and its dimeric oxidation products are also generated in the reaction mixture containing a high concentration of NADA albeit at a much lower amount than the NADA quinone methide water adduct, viz., N-acetylnorepinephrine (NANE). By using different buffers, it was also possible to establish the accumulation of NADA quinone in reaction mixtures containing NADA and cuticle. That the 1,2-dehydro-NADA formation is due to the action of a NADA desaturase system was established by pH and temperature studies and by differential inhibition of NANE production. Of the various cuticle examined, adult cuticle of Locusta migratoria, presclerotized cuticle of Periplaneta americana, and white puparial cases of Drosophila melanogaster exhibited more NADA desaturase activity than NANE generating activity, while the reverse was observed with the larval cuticle of Tenebrio molitor and pharate pupal cuticle of Manduca sexta. These studies indicate that both NADA quinone methide and 1, 2-dehydro NADA are formed during enzymatic activation of NADA in insect cuticle. Based on these results, a unified mechanism for β-sclerotization involving quinone methides as the reactive species is presented.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号