首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
2.
《Current biology : CB》2023,33(6):R210-R214
  相似文献   

3.
4.
The claim of monophyletic origin of angiosperms arose from the confusion of phylogenetic and taxonomic concepts. Unpreconceived studies of extant angiosperms point to more than one archetype. Several lines of angiosperms have simultaneously entered the fossil record; the monocotyledons, proto-Hamamelidales, proto-Laurales and “proteophylls” (possibly ancestral to the Rosidae) are recognized among them. Three groups of Mesozoic seed plants — the Caytoniales, Czekanowskiales and Dirhopalostachyaceae — are distinguished as major sources of angiosperm characters (proangiosperms). Other Mesozoic lineages probably also contributed to the angiosperm character pool. Angiospermization is related to Mammalization and other processes involved in development of the Cenozoic lithosphere and biosphere.  相似文献   

5.
The late pollen-specific actins in angiosperms   总被引:6,自引:0,他引:6  
The actin gene family of Arabidopsis has eight functional genes that are grouped into two ancient classes, vegetative and reproductive, and into five subclasses based on their phylogeny and mRNA expression patterns. Progress in deciphering the functional significance of this diversity is hindered by the lack of tools that can distinguish the highly conserved subclasses of actin proteins at the biochemical and cellular level. In order to address the functional diversity of actin isovariants, we have used Arabidopsis recombinant actins as immunogens and produced several new anti-actin monoclonal antibodies. One of them, MAb45a, specifically recognizes two closely related reproductive subclasses of actins. On immunoblots, MAb45a reacts strongly with actins expressed in mature pollen but not with actins in other Arabidopsis tissues. Moreover, immunocytochemical studies show that this antibody can distinguish actin filaments in pollen tubes from those in most vegetative tissues. Peptide competition analyses demonstrate that asparagine at position 79 (Asn79) within an otherwise conserved sequence is essential for MAb45a specificity. Actins with the Asn79 epitope are also expressed in the mature pollen from diverse angiosperms and Ephedra but not from lower gymnosperms, suggesting that this epitope arose in an ancestor common to angiosperms and advanced gymnosperms more than 220 million years ago. During late pollen development in angio- sperms there is a switch in expression of actins from vegetative to predominantly reproductive subclasses, perhaps to fulfil the unique functions of pollen in fertilization.  相似文献   

6.
The ecophysiology of early angiosperms   总被引:1,自引:0,他引:1  
Angiosperms first appeared during the Early Cretaceous, and within 30 million years they reigned over many floras worldwide. Associated with this rise to prominence, angiosperms produced a spectrum of reproductive and vegetative innovations, which produced a cascade of ecological consequences that altered the ecology and biogeochemistry of the planet. The pace, pattern and phylogenetic systematics of the Cretaceous angiosperm diversification are broadly sketched out. However, the ecophysiology and environmental interactions that energized the early angiosperm radiation remain unresolved. This constrains our ability to diagnose the selective pressures and habitat contexts responsible for the evolution of fundamental angiosperm features, such as flowers, rapid growth, xylem vessels and net-veined leaves, which in association with environmental opportunities, drove waves of phylogenetic and ecological diversification. Here, we consider our current understanding of early angiosperm ecophysiology. We focus on comparative patterns of ecophysiological evolution, emphasizing carbon- and water-use traits, by merging recent molecular phylogenetic studies with physiological studies focused on extant basal angiosperms. In doing so, we discuss how early angiosperms established a roothold in pre-existing Mesozoic plant communities, and how these events canalized subsequent bursts of angiosperm diversification during the Aptian-Albian.  相似文献   

7.
8.
9.
Polyploidy in angiosperms   总被引:11,自引:0,他引:11  
  相似文献   

10.
Incompatibility in angiosperms   总被引:5,自引:0,他引:5  
 Since Darwinian times considerable knowledge has accumulated on the distribution, physiology and genetics of self-incompatibility (SI) in higher plants. In the second half of this century the first attempts were made to identify the biochemical bases of SI. These included thediscovery that cutinase enables pollen tube penetration at the surface* of the stigma in Cruciferae, sorting of segregation pollen S-phenotypes by serological techniques, a lock-and-key model of the SI reaction, the first detection and characterisation of SI proteins and the discovery of the role of the tapetum in the determination of pollen phenotypes in homomorphic sporophytic SI. This pioneering work was followed by a worldwide effort to identify and understand the cellular and molecular processes which lead to the recognition and rejection of SI pollen. The present review article summarizes briefly the current state of knowledge in areas essential for the understanding and exploitation of SI and outlines new information that has become available during recent years. Received: 14 March 1997 / Revision accepted: 10 June 1997  相似文献   

11.
The flowering plants (Magnoliophyta) are separated into two large classes distinguished by the morphology of their embryos. The embryos of monocots (class Liliopsida) have a single terminal cotyledon, while the embryos of dicots (class Magnoliopsida) usually have two lateral cotyledons. The cotyledons of monocots and dicots also differ in form, and there are no true intermediates. In addition, the third leaf of Nymphaealean seedlings appears to be identical to the single cotyledon of monocots. From this it is concluded that the cotyledons of monocots and dicots are not homologous. In addition, dissimilarity of cotyledons and succeeding leaves in dicots, together with recent genetic studies, suggests that the two cotyledons of dicots are not homologous with the succeeding leaves of the same plant. This interpretation is consistent with the view that the Nymphaealean embryo’s third leaf is homologous to the first leaf (cotyledon) of monocots. Because dicotyledonous embryos are common among seed plants and are present in the Gnetopsids, the most likely scenario is that the dicots share a widespread seed plant symplesiomorphy and that the monocots have lost this character state. A less parsimonious hypothesis of monocotyledonous embryos as plesiomorphic for angiosperms is also discussed. Genetic analysis of early embryo development in a variety of vascular plants may be the only way to conclusively determine the evolutionary origin of the distinctive difference between monocot and dicot embryos.  相似文献   

12.
13.
14.
Dichogamy in angiosperms   总被引:1,自引:0,他引:1  
We obtained information on dichogamy and other aspects of the biology of over 4200 species of angiosperms from several hundred published and unpublished sources. We used this information to describe patterns of occurrence of dichogamy and to test specific hypotheses relating dichogamy to other characteristics of plants or their environments. Protandry was more common than protogyny at the intrafloral level, but the reverse was true at the interfloral level. Patterns of dichogamy varied significantly among major taxa, with protogyny more common among monocotyledons and primitive dicotyledons, and protandry expecially common in the Asteridae. Arctic species tended to be less dichogamous and more protogynous than temperate and tropical species. Aquatic and alpine species were especially protogynous. Patterns of dichogamy varied among sexual systems, with gynomonoecious and gynodioecious species especially protandrous, and monoecious species highly protogynous. Autogamous and self-compatible species were disproportionately protogynous. Flowers of intraflorally dichogamous species were slightly larger than those of adichogamous species, owing to the presence of many autogamous species in the latter group. Species with interfloral protogyny bore much smaller flowers than did species with interfloral protandry. Early-blooming species in north-temperate and polar regions were disproportionately protogynous. Sexual structures that abscised, shriveled or moved after completion of their function tended to be presented first, and those that facilitated the other sexual function were presented second. A negative association existed between type of intrafloral and interfloral dichogamy in diclinous species. Most animal-pollinated flowers were protandrous, except beetle-pollinated and refuge and trap blossoms. Wind pollination was markedly associated with protogyny. Vertical inflorescences visited by upwardly-moving vectors were protandrous.  相似文献   

15.
Cuticle from the metathoracic femur of adult locusts (Locusta migratoria) is characterized with respect to changes in water content and in protein extractability during maturation. The swelling behaviour and extractability of fully-sclerotized cuticle are compared to those of chemically-modified, unsclerotized cuticle.It is concluded that although dehydration may contribute to the stabilization of cuticle, it cannot account for the observed differences. The properties of mature cuticle can best be explained by the assumption that covalent cross-links are present between protein molecules.  相似文献   

16.
The angiosperms, one of five groups of extant seed plants, are the largest group of land plants. Despite their relatively recent origin, this clade is extremely diverse morphologically and ecologically. However, angiosperms are clearly united by several synapomorphies. During the past 10 years, higher-level relationships of the angiosperms have been resolved. For example, most analyses are consistent in identifying Amborella, Nymphaeaceae, and Austrobaileyales as the basalmost branches of the angiosperm tree. Other basal lineages include Chloranthaceae, magnoliids, and monocots. Approximately three quarters of all angiosperm species belong to the eudicot clade, which is strongly supported by molecular data but united morphologically by a single synapomorphy-triaperturate pollen. Major clades of eudicots include Ranunculales, which are sister to all other eudicots, and a clade of core eudicots, the largest members of which are Saxifragales, Caryophyllales, rosids, and asterids. Despite rapid progress in resolving angiosperm relationships, several significant problems remain: (1) relationships among the monocots, Chloranthaceae, magnoliids, and eudicots, (2) branching order among basal eudicots, (3) relationships among the major clades of core eudicots, (4) relationships within rosids, (5) relationships of the many lineages of parasitic plants, and (6) integration of fossils with extant taxa into a comprehensive tree of angiosperm phylogeny.  相似文献   

17.
18.
  1. Download : Download high-res image (186KB)
  2. Download : Download full-size image
  相似文献   

19.
Precise ultrastructural localization of Drosophila melanogaster pupal cuticle proteins (PCPs) was achieved by the immunogold labeling of frozen thin sections. PCPs were found in lamellate cuticle and intracellular vesicles but, curiously, were absent from the assembly zone of the cuticle. Antibodies that distinguish between the two classes of PCPs--low molecular weight (L-PCPs) and high molecular weight (H-PCPs)--revealed that the morphologically distinct outer lamellae contained L-PCPs and the inner lamellae contained H-PCPs. The sharp boundary between these two antigenic domains coincides with the transition from the outer to the inner lamellae, which in turn is correlated with the cessation of L-PCP synthesis and the initiation of H-PCP synthesis in response to 20-hydroxyecdysone (Doctor, J., D. Fristrom, and J.W. Fristrom, 1985, J. Cell Biol. 101:189-200). Hence, differences in protein composition are associated with differences in lamellar morphology.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号