首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
2.
Banding Patterns of Chinese Hamster Chromosomes   总被引:4,自引:0,他引:4       下载免费PDF全文
  相似文献   

3.
4.
5.
6.
DNA in eukaryotic organisms does not exist free in cells, but instead is present as chromatin, a complex assembly of DNA, histone proteins, and chromatin-associated proteins. Chromatin exhibits a complex hierarchy of structures, but in its simplest form it is composed of long linear arrays of nucleosomes. Nucleosomes contain 147 base pairs of DNA wrapped around a histone octamer, consisting of two copies each of histones H2A, H2B, H3 and H4, where 15-38 amino terminal residues of each histone protein extends past the DNA gyres to form histone “tails” 1. Chromatin provides a versatile regulatory platform for nearly all cellular processes that involve DNA, and improper chromatin regulation results in a wide range of diseases, including various cancers and congenital defects. One major way that chromatin regulates DNA utilization is through a wide range of post-translational modification of histones, including serine and threonine phosphorylation, lysine acetylation, methylation, ubiquitination, and sumoylation, and arginine methylation 2. Histone H4 K16 acetylation is a modification that occurs on the H4 histone tail and is one of the most frequent of the known histone modifications. We have demonstrated that this mark both disrupts formation of higher-order chromatin structure and changes the functional interaction of chromatin-associated proteins 3. Our results suggest a dual mechanism by which H4 K16 acetylation can ultimately facilitate genomic functions.  相似文献   

7.
8.
组蛋白乙酰化与癌症   总被引:17,自引:0,他引:17  
由于组蛋白被修饰所引起的染色质结构的改变,在真核生物基因表达调控中发挥着重要的作用,这些修饰主要包括甲基化、乙酰化、磷酸化和泛素化等,其中组蛋白乙酰化尤为重要.组蛋白乙酰转移酶(HAT)和组蛋白去乙酰化酶(HDAC)参与决定组蛋白乙酰化状态.HAT通常作为多亚基辅激活物复合体的一部分,催化组蛋白乙酰化,导致染色质结构的松散、激活转录;而HDAC是多亚基辅抑制物复合体的一部分,使组蛋白去乙酰化,导致染色质集缩,并抑制基因的转录. 编码这些酶的基因染色体易位易于导致急性白血病的发生.另一方面,已经确定了一些乙酰化修饰酶的基因在染色体上的位置,它们尤其倾向定位于染色体的断裂处.综述了HAT和HDAC参与的组蛋白乙酰化与癌症发生之间关系的最新进展,以期进一步阐明组蛋白乙酰化修饰酶的生物学功能以及它们在癌症发生过程中的作用.  相似文献   

9.
10.
Chromosome duplication (DNA synthesis) was studied in cultured cells of Chinese hamsters by means of autoradiography following thymidine-H3 incorporation. The technique used was to expose an asynchronously dividing population of rapidly growing cells for a 10 minute interval to a medium with thymidine-H3. Cells were then transferred to a medium with excess unlabeled thymidine. The population was sampled at intervals thereafter and studies made of the frequency of labeled interphases and division figures, and the patterns of labeling of specific chromosomes. The average generation time during these experiments was about 14 hours. DNA synthesis occurred during an interval of about 6 hours and stopped 2 to 3 hours before metaphase. After metaphase the chromosomes usually begin duplication again within 5 to 6 hours. Grain counting, to estimate the amount of tritium incorporated after a short contact with thymidine-H3 and at intervals after transfer to a medium with excess unlabeled thymidine, indicated that the intracellular pool of labeled precursors was diluted within less than a minute so that further labeling would not be detected. The chromosomes labeled during the contact period retained their precise pattern of labeling through another duplication cycle and no turnover of DNA or loss of tritium was detectable. Five or 6 chromosomes of the complement have segments typically late in duplication. Two of these are the X and Y chromosomes. The long arm of the X chromosome and the whole Y chromosome are duplicated in the last half of the interval of DNA synthesis. The short arm of the X chromosome in a male strain is duplicated in the first half of the interval. In another strain (female), one X chromosome had the same timing, but the other one was all duplicated in the last half of the period of DNA synthesis. The DNA in the short arms of 2 medium sized chromosomes, as well as most of the DNA in 1 or 2 of the smallest chromosomes of the complement was replicated late. The study has led to the hypothesis that various chromosomes or parts of chromosomes have a genetically controlled sequence in duplication which may have some functional significance.  相似文献   

11.
组蛋白甲基化与乙酰化作为共价修饰的两种不同方式,参与许多生物学过程,并在基因表达调控中有重要作用.探讨组蛋白甲基化、乙酰化以及二者之间的关系,对认识疾病相关基因功能有重要意义,并可进一步了解基因转录的表观遗传学调控机制.  相似文献   

12.
Histone post-translational modification heritably regulates gene expression involved in most cellular biological processes. Experimental studies suggest that alteration of histone modifications affects gene expression by changing chromatin structure, causing various cellular responses to environmental influences. Arsenic (As), a naturally occurring element and environmental pollutant, is an established human carcinogen. Recently, increasing evidence suggests that As-mediated epigenetic mechanisms may be involved in its toxicity and carcinogenicity, but how this occurs is still unclear. Here we present evidence that suggests As-induced global histone H4K16 acetylation (H4K16ac) partly due to the direct physical interaction between As and histone acetyltransferase (HAT) hMOF (human male absent on first) protein, leading to the loss of hMOF HAT activity. Our data show that decreased global H4K16ac and increased deacetyltransferase HDAC4 expression occurred in arsenic trioxide (As2O3)-exposed HeLa or HEK293T cells. However, depletion of HDAC4 did not affect global H4K16ac, and it could not raise H4K16ac in cells exposed to As2O3, suggesting that HDAC4 might not directly be involved in histone H4K16 de-acetylation. Using As-immobilized agarose, we confirmed that As binds directly to hMOF, and that this interaction was competitively inhibited by free As2O3. Also, the direct interaction of As and C2CH zinc finger peptide was verified by MAIDI-TOF mass and UV absorption. In an in vitro HAT assay, As2O3 directly inhibited hMOF activity. hMOF over-expression not only increased resistance to As and caused less toxicity, but also effectively reversed reduced H4K16ac caused by As exposure. These data suggest a theoretical basis for elucidating the mechanism of As toxicity.  相似文献   

13.
14.
15.
During interphase, the spindle assembly factor TPX2 is compartmentalized in the nucleus where its roles remain largely uncharacterized. Recently, we found that TPX2 regulates the levels of serine 139-phosphoryated H2AX (γ-H2AX) at chromosomal breaks induced by ionizing radiation. Here, we report that TPX2 readily associates with the chromatin in the absence of ionizing radiation. Overexpression of TPX2 alters the DAPI staining pattern of interphase cells and depletion of TPX2 constitutively decreases the levels of histone H4 acetylated at lysine16 (H4K16ac) during G1-phase. Upon ionizing irradiation, this constitutive TPX2 depletion-dependent decrease in H4K16ac levels correlates with increased levels of γ-H2AX. The inversely correlated levels of H4K16ac and γ-H2AX can also be modified by altering the levels of SIRT1, herein identified as a novel protein complex partner of TPX2. Furthermore, we find that TPX2 depletion also interferes with formation of 53BP1 ionizing radiation-induced foci, known to depend on γ-H2AX and the acetylation status of H4K16. In brief, our study is the first indication of a constitutive control of TPX2 on H4K16ac levels, with potential implications for DNA damage response.  相似文献   

16.
Histone H3 lysine 56 acetylation in Saccharomyces cerevisiae is required for the maintenance of genome stability under normal conditions and upon DNA replication stress. Here we show that in the absence of H3 lysine 56 acetylation replisome components become deleterious when replication forks collapse at natural replication block sites. This lethality is not a direct consequence of chromatin assembly defects during replication fork progression. Rather, our genetic analyses suggest that in the presence of replicative stress H3 lysine 56 acetylation uncouples the Cdc45–Mcm2-7–GINS DNA helicase complex and DNA polymerases through the replisome component Ctf4. In addition, we discovered that the N-terminal domain of Ctf4, necessary for the interaction of Ctf4 with Mms22, an adaptor protein of the Rtt101-Mms1 E3 ubiquitin ligase, is required for the function of the H3 lysine 56 acetylation pathway, suggesting that replicative stress promotes the interaction between Ctf4 and Mms22. Taken together, our results indicate that Ctf4 is an essential member of the H3 lysine 56 acetylation pathway and provide novel mechanistic insights into understanding the role of H3 lysine 56 acetylation in maintaining genome stability upon replication stress.  相似文献   

17.
18.
19.
组蛋白乙酰化在转录调节中的作用   总被引:2,自引:0,他引:2  
组蛋白乙酰化对染色质结构有重要影响,与特定位点的基因活化有直接联系,是转录调节的重要方式,在细胞生长、分化、衰老过程中起重要作用.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号