首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Alpha-synuclein is the major component of Lewy bodies in patients with Parkinson's disease, and mutations in the alpha-synuclein gene are responsible for some familial forms of the disease. alpha-Synuclein is enriched in the presynapse, but its synaptic targets are unknown. Synphilin-1 associates in vivo with alpha-synuclein promoting the formation of intracellular inclusions. Additionally synphilin-1 has been found to be an intrinsic component of Lewy bodies in patients with Parkinson's disease. To understand the role of synphilin-1 in Parkinson's disease, we sought to define its localization and function in the brain. We now report that, like alpha-synuclein, synphilin-1 was enriched in neurons. In young rats, synphilin-1 was prominent in neuronal cell bodies but gradually migrated to neuropil during development. Immunoelectron microscopy of adult rat cerebral cortex demonstrated that synphilin-1 was highly enriched in presynaptic nerve terminals. Synphilin-1 co-immunoprecipitated with synaptic vesicles, indicating a strong association with these structures. In vitro binding experiments demonstrated that the N terminus of synphilin-1 robustly associated with synaptic vesicles and that this association was resistant to high salt washing but was abolished by inclusion of alpha-synuclein in the incubation medium. Our data indicated that synphilin-1 is a synaptic partner of alpha-synuclein, and it may mediate synaptic roles attributed to alpha-synuclein.  相似文献   

2.
Siah-1 facilitates ubiquitination and degradation of synphilin-1   总被引:8,自引:0,他引:8  
Parkinson's disease is a common neurodegenerative disorder characterized by loss of dopaminergic neurons and appearance of Lewy bodies, cytoplasmic inclusions that are highly enriched with ubiquitin. Synphilin-1, alpha-synuclein, and Parkin represent the major components of Lewy bodies and are involved in the pathogenesis of Parkinson's disease. Synphilin-1 is an alpha-synuclein-binding protein that is ubiquitinated by Parkin. Recently, a mutation in the synphilin-1 gene has been reported in patients with sporadic Parkinson's disease. Although synphilin-1 localizes close to synaptic vesicles, its function remains unknown. To investigate the proteins that interact with synphilin-1, the present study performed a yeast two-hybrid screening and identified a novel interacting protein, Siah-1 ubiquitin ligase. Synphilin-1 and Siah-1 proteins were endogenously expressed in the central nervous system and were found to coimmunoprecipitate each other in rat brain homogenate. Confocal microscopic analysis revealed colocalization of both proteins in cells. Siah-1 was found to interact with the N terminus of synphilin-1 through its substrate-binding domain and to specifically ubiquitinate synphilin-1 via its RING finger domain. Siah-1 facilitated synphilin-1 degradation via the ubiquitin-proteasome pathway more efficiently than Parkin. Siah-1 was found to not facilitate ubiquitination and degradation of wild type or mutant alpha-synuclein. Synphilin-1 inhibited high K+-induced dopamine release from PC12 cells. Siah-1 was found to abrogate the inhibitory effects of synphilin-1 on dopamine release. Such findings suggest that Siah-1 might play a role in regulation of synphilin-1 function.  相似文献   

3.
Lipid droplets are accumulations of neutral lipids surrounded by a monolayer of phospholipids and associated proteins. Recent proteomic analysis of isolated droplets suggests that they are part of a dynamic organelle system that is involved in membrane traffic as well as packaging and distributing lipids in the cell. To gain a better insight into the function of droplets, we used a combination of mass spectrometry and NMR spectroscopy to characterize the lipid composition of this compartment. In addition to cholesteryl esters and triacylglycerols with mixed fatty acid composition, we found that approximately 10-20% of the neutral lipids were the ether lipid monoalk(en)yl diacylglycerol. Although lipid droplets contain only 1-2% phospholipids by weight, >160 molecular species were identified and quantified. Phosphatidylcholine (PC) was the most abundant class, followed by phosphatidylethanolamine (PE), phosphatidylinositol, and ether-linked phosphatidylcholine (ePC). Relative to total membrane, droplet phospholipids were enriched in lysoPE, lysoPC, and PC but deficient in sphingomyelin, phosphatidylserine, and phosphatidic acid. These results suggest that droplets play a central role in ether lipid metabolism and intracellular lipid traffic.  相似文献   

4.
Previous studies indicate that binding of α-synuclein to membranes is critical for its physiological function and the development of Parkinson's disease (PD). Here, we have investigated the association of fluorescence-labeled α-synuclein variants with different types of giant unilamellar vesicles using confocal microscopy. We found that α-synuclein binds with high affinity to anionic phospholipids, when they are embedded in a liquid-disordered as opposed to a liquid-ordered environment. This indicates that not only electrostatic forces but also lipid packing and hydrophobic interactions are critical for the association of α-synuclein with membranes in vitro. When compared to wild-type α-synuclein, the disease-causing α-synuclein variant A30P bound less efficiently to anionic phospholipids, while the variant E46K showed enhanced binding. This suggests that the natural association of α-synuclein with membranes is altered in the inherited forms of Parkinson's disease.  相似文献   

5.
Using a yeast model of Parkinson’s disease, we found that alpha-synuclein (αS) binds to lipid droplets in lipid-loaded, wild-type yeast cells but not to lipid droplets in lipid-loaded, peroxisome-deficient cells (pex3Δ). Our analysis revealed that pex3Δ cells have both fewer lipid droplets and smaller lipid droplets than wild-type cells, and that the acyl chains of the phospholipids on the surface of the lipid droplets from pex3Δ cells are on average shorter (C16) than those (C18) on the surface of lipid droplets from wild-type cells. We propose that the shift to shorter (C18 → C16) acyl chains contributes to the reduced binding of αS to lipid droplets in pex3Δ cells.  相似文献   

6.
All eukaryotic organisms store excess lipid in intracellular lipid droplets. These dynamic structures are associated with and regulated by numerous proteins. Perilipin 2, an abundant protein on most lipid droplets, promotes neutral lipid accumulation in lipid droplets. However, the mechanism by which perilipin 2 binds to and remains anchored on the lipid droplet surface is unknown. Here we identify features of the lipid droplet surface that influence perilipin 2 localization. We show that perilipin 2 binding to the lipid droplet surface requires both hydrophobic and electrostatic interactions. Reagents that disrupt these interactions also decrease binding. Moreover, perilipin 2 binding does not depend on other lipid droplet-associated proteins but is influenced by the lipid composition of the surface. Perilipin 2 binds to synthetic vesicles composed of dioleoylphosphatidylcholine, a phospholipid with unsaturated acyl chains. Decreasing the temperature of the binding reaction, or introducing phospholipids with saturated acyl chains, decreases binding. We therefore demonstrate a role for surface lipids and acyl chain packing in perilipin 2 binding to lipid droplets. The ability of the lipid droplet phospholipid composition to impact protein binding may link changes in nutrient availability to lipid droplet homeostasis.  相似文献   

7.
alpha-Synuclein is a major component of the fibrillary lesion known as Lewy bodies and Lewy neurites that are the pathologic hallmarks of Parkinson's disease (PD). In addition, point mutations in the alpha-synuclein gene imply alpha-synuclein dysfunction in the pathology of inherited forms of PD. alpha-Synuclein is a member of a family of proteins found primarily in the brain and is concentrated within presynaptic terminals. Here, we address the localization and membrane binding characteristics of wild type and PD mutants of alpha-synuclein in cultured cells. In cells treated with high concentrations of fatty acids, wild type alpha-synuclein accumulated on phospholipid monolayers surrounding triglyceride-rich lipid droplets and was able to protect stored triglycerides from hydrolysis. PD mutant synucleins showed variable distributions on lipid droplets and were less effective in regulating triglyceride turnover. Chemical cross-linking demonstrated that synuclein formed small oligomers within cells, primarily dimers and trimers, that preferentially associated with lipid droplets and cell membranes. Our results suggest that the initial phases of synuclein aggregation may occur on the surfaces of membranes and that pathological conditions that induce cross-linking of synuclein may enhance the propensity for subsequent synuclein aggregation.  相似文献   

8.
alpha-Synuclein has been centrally implicated in neurodegenerative disease, and a normal function in developmental synaptic plasticity has been suggested by studies in songbirds. A variety of observations suggest the protein partitions between membrane and cytosol, a behavior apparently conferred by a conserved structural similarity to the exchangeable apolipoproteins. Here we show that the capacity to bind lipids is broadly distributed across exons 3, 4, and 5 (encoding residues 1-102). Binding to phosphatidylserine-containing vesicles requires the presence of all three exons, while binding to phosphatidic acid can be mediated by any one of the three. Consistent with a "class A2" helical binding mechanism, lipid association is disrupted by introduction of charged residues along the hydrophobic face of the predicted alpha-helix and also by biotinylation of conserved lysines (which line the interfacial region). Circular dichroism spectroscopy reveals a general correlation between the amount of lipid-induced alpha-helix content and the degree of binding to PS-containing vesicles. Two point mutations associated with Parkinson's disease have little (A30P) or no (A53T) effect on lipid binding or alpha-helicity. These results are consistent with the hypothesis that alpha-synuclein's normal functions depend on an ability to undergo a large conformational change in the presence of specific phospholipids.  相似文献   

9.
α-Synuclein (α-syn) is a 140-residue protein of unknown function, involved in several neurodegenerative disorders, such as Parkinson's disease. Recently, the possible interaction between α-syn and polyunsaturated fatty acids has attracted a strong interest. Indeed, lipids are able to trigger the multimerization of the protein in vitro and in cultured cells. Docosahexaenoic acid (DHA) is one of the main fatty acids (FAs) in cerebral gray matter and is dynamically released following phospholipid hydrolysis. Moreover, it has been found in high levels in brain areas containing α-syn inclusions in patients affected by Parkinson's disease. Debated and unsolved questions regard the nature of the molecular interaction between α-syn and DHA and the effect exerted by the protein on the aggregated state of the FA. Here, we show that α-syn is able to strongly interact with DHA and that a mutual effect on the structure of the protein and on the physical state of the lipid derives from this interaction. α-Syn acquires an α-helical conformation in a simple two-state transition. The binding of the protein to the FA leads to a reduction of the size of the spontaneously formed aggregated species of DHA as well as of the critical aggregate concentration of the lipid. Specifically, biophysical methods and electron microscopy observations indicated that the FA forms oil droplets in the presence of α-syn. Limited proteolysis experiments showed that, when the protein is bound to the FA oil droplets, it is initially cleaved in the 89-102 region, suggesting that this chain segment is sufficiently flexible or unfolded to be protease-sensitive. Subsequent proteolytic events produce fragments corresponding to the first 70-80 residues that remain structured and show high affinity for the lipid. The fact that a region of the polypeptide chain remains accessible to proteases, when interacting with the lipid, suggests that this region could be involved in other interactions, justifying the ambivalent propensity of α-syn towards folding or aggregation in the presence of FAs.  相似文献   

10.
The discovery of the sterol carrier and lipid transfer proteins was largely a result of the findings that cells contained cytosolic factors which were required either for the microsomal synthesis of cholesterol or which could accelerate the transfer or exchange of phospholipids between membrane preparations. There are two sterol carrier proteins present in rat liver cytosol. Sterol carrier protein 1 (SCP1) (Mr 47 000) participates in the microsomal conversion of squalene to lanosterol, and sterol carrier protein 2 (SCP2) (Mr 13 500) participates in the microsomal conversion of lanosterol to cholesterol. In addition SCP2 also markedly stimulates the esterification of cholesterol by rat liver microsomes, as well as the conversion of cholesterol to 7 alpha-hydroxycholesterol - the major regulatory step in bile acid formation. Also, SCP2 is required for the intracellular transfer of cholesterol from adrenal cytoplasmic lipid inclusion droplets to mitochondria for steroid hormone production, as well as cholesterol transfer from the outer to the inner mitochondrial membrane. SCP2 is identical to the non-specific phospholipid exchange protein. While SCP2 is capable of phospholipid exchange between artificial donors/acceptors, e.g. liposomes and microsomes, it does not enhance the release of lipids other than unesterified cholesterol from natural donors/acceptors, e.g. adrenal lipid inclusion droplets, and will not enhance exchange of labeled phosphatidylcholine between lipid droplets and mitochondria. Careful comparison of SCP2 and fatty acid binding protein (FABP) using six different assay procedures demonstrates separate and distinct physiological functions for each protein, with SCP2 participating in reactions involving sterols and FABP participating in reactions involving fatty acid binding and/or transport. Furthermore, there is no overlap in substrate specificities, i.e. FABP does not possess sterol carrier protein activity and SCP2 does not specifically bind or transport fatty acid. The results described in the present review support the concept that intracellular lipid transfer is a highly specific process, far more substrate-specific than suggested by the earlier studies conducted using liposomal techniques.  相似文献   

11.
During the reproductive cycle of the female Labidura riparia, cytological observations show cyclical modifications of lipid droplets in the periovarian adipocyte. Fat body lipids and their constitutive fatty acids are analyzed. The lipids are predominantly triacylglycerols, which increase after adult ecdysis during vitellogenic and non-vitellogenic periods. Small amounts of diacylglycerols and phospholipids are found. Diacylglycerols increase during vitellogenesis and decrease during the non-vitellogenic period. Cytological modifications of lipid droplets are probably related to diacylglycerol fluctuations. Gas-liquid chromatography of fatty acid methyl esters shows oleic acid to be the predominant fatty acid in total lipids and triacylglycerols; unsaturated acids are approximately twice as abundant as saturated acids all along the reproductive cycle. Fatty acid composition of diacylglycerols and phospholipids differs from triacylglycerols and total lipids composition. Palmitic, stearic, oleic and linoleic acids represent the major fatty acids; their relative amounts vary during the different periods of the reproductive cycle. The correlations between fat body lipid changes and ovarian development were discussed and compared with observations made on other insect species. Accepted: 23 April 1997  相似文献   

12.
脂滴——细胞脂类代谢的细胞器   总被引:2,自引:0,他引:2  
脂滴是细胞内中性脂贮存的主要场所,由极性单磷脂层包裹疏水核心组成。近年来的蛋白质组学研究表明,脂滴表面还存在着许多功能蛋白,进一步揭示了脂滴可能参与细胞内物质的代谢和转运,以及细胞信号传导等过程,是一个活动旺盛的多功能细胞器。实验结果还证明,脂滴不但是甘油三酯贮存和分解、花生四烯酸代谢和前列腺素合成的主要场所,脂滴还具有合成甘油三酯和磷酯的功能。由此可见,脂滴可能是细胞内参与脂类合成代谢的细胞器。  相似文献   

13.
Alpha-synuclein is an abundant protein in the central nervous system that is associated with a number of neurodegenerative disorders, including Parkinson's disease. Its physiological function is poorly understood, although recently it was proposed to function as a fatty acid binding protein. To better define a role for alpha-synuclein in brain fatty acid uptake and metabolism, we infused awake, wild-type, or alpha-synuclein gene-ablated mice with [1-(14)C]palmitic acid (16:0) and assessed fatty acid uptake and turnover kinetics in brain phospholipids. Alpha-synuclein deficiency decreased brain 16:0 uptake 35% and reduced its targeting to the organic fraction. The incorporation coefficient for 16:0 entering the brain acyl-CoA pool was significantly decreased 36% in alpha-synuclein gene-ablated mice. Because incorporation coefficients alone are not predictive of fatty acid turnover in individual phospholipid classes, we calculated kinetic values for 16:0 entering brain phospholipid pools. Alpha-synuclein deficiency decreased the incorporation rate and fractional turnover of 16:0 in a number of phospholipid classes, but also increased the incorporation rate and fractional turnover of 16:0 in the choline glycerophospholipids. No differences in incorporation rate or turnover were observed in liver phospholipids, confirming that these changes in lipid metabolism were brain specific. Using titration microcalorimetry, we observed no binding of 16:0 or oleic acid to alpha-synuclein in vitro. Thus, alpha-synuclein has effects on 16:0 uptake and metabolism similar to those of an FABP, but unlike FABP, it does not directly bind 16:0; hence, the mechanism underlying these effects is different from that of a classical FABP.  相似文献   

14.
We found that caveolin-2 is targeted to the surface of lipid droplets (Fujimoto, T., Kogo, H., Ishiguro, K., Tauchi, K., and Nomura, R. (2001) J. Cell Biol. 152, 1079-1085) and hypothesized that the lipid droplet surface is a kind of membrane. To elucidate the characteristics of the lipid droplet surface, we isolated lipid droplets from HepG2 cells and analyzed them by cryoelectron microscopy and by mass spectrometry. By use of cryoelectron microscopy at the stage temperature of 4.2 K, the lipid droplet surface was observed as a single line without any fixation or staining, indicating the presence of a single layer of phospholipids. This result appeared consistent with the hypothesis that the lipid droplet surface is derived from the cytoplasmic leaflet of the endoplasmic reticulum membrane and may be continuous to it. However, mass spectrometry revealed that the fatty acid composition of phosphatidylcholine and lysophosphatidylcholine in lipid droplets is different from that of the rough endoplasmic reticulum. The ample presence of free cholesterol in lipid droplets also suggests that their surface is differentiated from the bulk endoplasmic reticulum membrane. On the other hand, although caveolin-2beta and adipose differentiation-related protein, both localizing in lipid droplets, were enriched in the low density floating fraction, the fatty acid composition of the fraction was distinct from lipid droplets. Collectively, the result indicates that the lipid droplet surface is a hemi-membrane or a phospholipid monolayer containing cholesterol but is compositionally different from the endoplasmic reticulum membrane or the sphingolipid/cholesterol-rich microdomain.  相似文献   

15.
The majority of retinoid (vitamin A and its metabolites) present in the body of a healthy vertebrate is contained within lipid droplets present in the cytoplasm of hepatic stellate cells (HSCs). Two types of lipid droplets have been identified through histological analysis of HSCs within the liver: smaller droplets bounded by a unit membrane and larger membrane-free droplets. Dietary retinoid intake but not triglyceride intake markedly influences the number and size of HSC lipid droplets. The lipids present in rat HSC lipid droplets include retinyl ester, triglyceride, cholesteryl ester, cholesterol, phospholipids and free fatty acids. Retinyl ester and triglyceride are present at similar concentrations, and together these two classes of lipid account for approximately three-quarters of the total lipid in HSC lipid droplets. Both adipocyte-differentiation related protein and TIP47 have been identified by immunohistochemical analysis to be present in HSC lipid droplets. Lecithin:retinol acyltransferase (LRAT), an enzyme responsible for all retinyl ester synthesis within the liver, is required for HSC lipid droplet formation, since Lrat-deficient mice completely lack HSC lipid droplets. When HSCs become activated in response to hepatic injury, the lipid droplets and their retinoid contents are rapidly lost. Although loss of HSC lipid droplets is a hallmark of developing liver disease, it is not known whether this contributes to disease development or occurs simply as a consequence of disease progression. Collectively, the available information suggests that HSC lipid droplets are specialized organelles for hepatic retinoid storage and that loss of HSC lipid droplets may contribute to the development of hepatic disease.  相似文献   

16.
Here, we report the functional characterization of the newly identified lipid droplet hydrolase Ldh1p. Recombinant Ldh1p exhibits esterase and triacylglycerol lipase activities. Mutation of the serine in the hydrolase/lipase motif GXSXG completely abolished esterase activity. Ldh1p is required for the maintenance of a steady-state level of the nonpolar and polar lipids of lipid droplets. A characteristic feature of the Saccharomyces cerevisiae Δldh1 strain is the appearance of giant lipid droplets and an excessive accumulation of nonpolar lipids and phospholipids upon growth on medium containing oleic acid as a sole carbon source. Ldh1p is thought to play a role in maintaining the lipid homeostasis in yeast by regulating both phospholipid and nonpolar lipid levels.  相似文献   

17.
A procedure for isolating the carotenoid-containing oil droplets of cone retinal photoreceptors of Gallus domesticus is described. The oil droplets, composed almost entirely of neutral lipids and carotenoids, have been separated into ten chromatographic components. Similar separations have been carried out on the total retinal neutral lipids for comparison. The neutral lipids represented 26.1% of the total retinal lipid. Cholesterol, cholesterol ester, mono-, di- and triacylglycerols represented 92.6% of the total neutral lipid. Each of these and other minor neutral lipid components were also present in the lipids extracted from the isolated oil droplets in correspondingly similar concentrations. However, the concentrations of carotenoids were greatly enriched in the neutral lipids of the oil droplets. Each of the major fatty acyl-containing neutral lipids from the chromatography of oil droplet lipids is greatly enriched in polyunsaturated fatty acids when compared with the corresponding component from the total neutral lipid chromatography. In the acylglycerols and free fatty acid fraction from the oil droplets, linoleic and arachidonic acid together represented 52-83% of the total polyunsaturated fatty acids present. The remainder was generally distributed about equally among six other acids. Except for the diacylglycerol fraction, linoleic acid was usually the most enriched acid in a specific oil droplet fraction when compared with any other polyunsaturated fatty acids. A similar pattern of polyunsaturated fatty acid enrichment observed in the fatty acids of the outer segment phospholipids relative to the corresponding total phospholipid fractions of this cone rich retina (Johnston, D. and Hudson, R.A. (1974) Biochim. Biophys. Acta 369, 269) suggest possible metabolic relationships between the oil droplet neutral lipids and the outer segment membrane phospholipids of the cone photoreceptors. A mechanism for the accumulation of the carotenoids in the oil droplets is also discussed.  相似文献   

18.
Norepinephrine, epinephrine, and isoproterenol at concentrations of 5.5 x 10(-8) M were found to elicit lipolysis in a cell-free system containing lipid droplets from fat cells and lipase solution. In the cell-free system, the beta-blockers propranolol and dichloroisoproterenol at concentrations of 1 microM inhibited lipolysis induced by norepinephrine, whereas similar concentrations of the alpha-blockers phenoxybenzamine and yohimbine did not inhibit lipolysis. The binding of norepinephrine to endogenous lipid droplets was inhibited by propranolol, but not by phenoxybenzamine. We concluded that the propranolol-sensitive, phenoxybenzamine-insensitive binding of norepinephrine to endogenous lipid droplets is involved in lipolysis in fat cells. Treatment of endogenous lipid droplets with phospholipase C, but not phospholipase D, trypsin, chymotrypsin, or neuraminidase, inhibited the propranolol-sensitive binding of norepinephrine to the droplets. These results suggest that the phosphate group of phospholipid in endogenous lipid droplets may be the site of propranolol-sensitive binding of norepinephrine. The physiological significance of the propranolol-sensitive binding is discussed.  相似文献   

19.
We studied the mechanism of uptake and metabolism of exogenous phospholipids in mouse peritoneal macrophages using vesicles composed of various phospholipids and cholesterol. Macrophages in culture were found to actively incorporate and metabolize phosphatidylcholine/cholesterol vesicles containing small amounts of acidic phospholipids such as phosphatidylserine, phosphatidylinositol, or phosphatidic acid and to store the fatty acyl chains and cholesterol in triacylglycerol and cholesteryl ester form in their cytosol. These cells exhibited massive amounts of oil red O-positive lipid droplets, a typical feature of foam cells. The metabolism of exogenous phospholipid vesicles was completely inhibited by chloroquine and cytochalasin B, suggesting that vesicle uptake occurs by endocytosis. A similar type of metabolism was observed in guinea pig peritoneal macrophages, macrophage cell line J774.1, but not in Swiss 3T3 fibroblasts. Competition studies using various ligands for the scavenger receptor showed that acetylated low density lipoprotein (acetyl-LDL), dextran sulfate, or fucoidan was able to compete for up to 60% of the binding of phosphatidylserine-containing vesicles, and that copper-oxidized LDL (oxidized LDL) competed for more than 90% of the vesicle binding. On the other hand, phosphatidylserine-containing vesicles was able to compete for more than 90% of the binding of acetyl-LDL. These results indicate that acidic phospholipids are recognized by the scavenger receptors on the surface of macrophages and that more than one scavenger receptor exists on mouse peritoneal macrophages, i.e. one capable of recognizing acetyl-LDL, oxidized LDL, and an array of acidic phospholipids on membranes, and the other recognizing both acidic phospholipids and oxidized LDL but not acetyl-LDL.  相似文献   

20.
The main triglyceride-lipase (TG-lipase) from the fat body of Manduca sexta has been identified as the homolog of Drosophila melanogaster CG8552. This protein is conserved among insects and also shares significant sequence similarity with vertebrate phospholipases (PLs) from the phosphatidic acid preferring-phospholipase A1 (PA-PLA(1)) family. It is shown here that the TG-lipase is also a PL. TG-lipase and PL activities copurify and are inhibited by, or resistant to, the same lipase inhibitors, indicating that both activities are catalyzed by the same enzyme and active site. The PL activity of TG-lipase corresponded to PL type A(1). The concentration dependence of lipase activity with TG and PL micellar substrates showed saturation kinetics, with apparent K(m) values of 152 +/- 11 and 7.8 +/- 1.1 muM, respectively. TG-lipase was able to hydrolyze the major phospholipid components of the lipid droplets, phosphatidylcholine and phosphatidylethanolamine. The enzyme hydrolyzes 77 molecules of TG for every molecule of PL contained in the lipid droplets. It was observed that the activation of lipolysis in vivo is accompanied by activation of the hydrolysis of phospholipids of the lipid droplets. These results suggest that the PL activity of the insect TG-lipase could be required to allow access of the lipase to TG molecules contained in the core of the lipid droplets.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号