首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Coordinated morphogenetic cell movements during gastrulation are crucial for establishing embryonic axes in animals. Most recently, the non-canonical Wnt signaling cascade (PCP pathway) has been shown to regulate convergent extension movements in Xenopus and zebrafish. Heparan sulfate proteoglycans (HSPGs) are known as modulators of intercellular signaling, and are required for gastrulation movements in vertebrates. However, the function of HSPGs is poorly understood. We analyze the function of Xenopus glypican 4 (Xgly4), which is a member of membrane-associated HSPG family. In situ hybridization revealed that Xgly4 is expressed in the dorsal mesoderm and ectoderm during gastrulation. Reducing the levels of Xgly4 inhibits cell-membrane accumulation of Dishevelled (Dsh), which is a transducer of the Wnt signaling cascade, and thereby disturbs cell movements during gastrulation. Rescue analysis with different Dsh mutants and Wnt11 demonstrated that Xgly4 functions in the non-canonical Wnt/PCP pathway, but not in the canonical Wnt/beta-catenin pathway, to regulate gastrulation movements. We also provide evidence that the Xgly4 protein physically binds Wnt ligands. Therefore, our results suggest that Xgly4 functions as positive regulator in non-canonical Wnt/PCP signaling during gastrulation.  相似文献   

2.
3.
Activin-like signaling plays an important role in early embryogenesis. Activin A, a TGF-beta family protein, induces mesodermal/endodermal tissues in animal cap assays. In a screen for genes expressed early after treatment with activin A, we isolated a novel gene, denoted as BENI (Brachyury Expression Nuclear Inhibitor). The BENI protein has a conserved domain at the N-terminus that contains a nuclear localization signal (NLS), and two other NLSs in the C-terminal domain. BENI mRNA was localized to the animal hemisphere at the gastrula stages and to ectoderm except for neural regions at stage 17; expression persisted until the tadpole stage. The overexpression of BENI caused gastrulation defects and inhibition of elongation of activin-treated animal caps with reduction of Xbra expression. Moreover, whole-mount in situ hybridization revealed reduced expression of Xbra in BENI mRNA-injected regions of gastrula embryos. Functional knockdown of BENI using an antisense morpholino oligonucleotide also resulted in an abnormal phenotype of embryos curling to the dorsal side, and excessive elongation of activin-treated animal caps without altered expression of mesodermal markers. These results suggested that BENI expression is regulated by activin-like signaling, and that this regulation is crucial for Xbra expression.  相似文献   

4.
5.
6.
Kim GH  Han JK 《The EMBO journal》2007,26(10):2513-2526
beta-Arrestin 2 (betaarr2) is a multifunctional protein that regulates numerous aspects of G-protein-coupled receptor function. However, its possible involvement in developmental processes is poorly understood. In this work, we examined the potential role of betaarr2 during Xenopus early development. Gain- and loss-of-function studies showed that Xenopus betaarr2 (xbetaarr2) is required for proper convergent extension (CE) movements, and normal cell polarization and intercalation without affecting cell fate. Moreover, for CE movements, betaarr2 acts as an essential regulator of dishevelled-mediated PCP (planar cell polarity) signaling, but not G-protein-mediated Ca(2+) signaling. Notably, xbetaarr2 is localized with the same distribution as the dishevelled protein, which is reasonable, as xbetaarr2 is required for dishevelled activation of RhoA. Furthermore, xbetaarr2 interacts with the N-terminal quarter of Daam1 and RhoA proteins, but not Rac1, and regulates RhoA activation through Daam1 activation for CE movements. We provide evidence that the endocytic activity of xbetaarr2 is essential for control of CE movements. Taken together, our results suggest that betaarr2 has a pivotal role in the regulation of Xenopus CE movements.  相似文献   

7.
During Xenopus development, convergent extension movements mediated by cell intercalation drive axial elongation. While many genes required for convergent extension have been identified, little is known of regulation of the cytoskeleton during these cell movements. Although microtubules are required for convergent extension, this applies only to initial stages of gastrulation, between stages 10 and 10.5. To examine the cytoskeleton more directly during convergent extension, we visualized actin and microtubules simultaneously in live explants using spinning disk confocal fluorescence microscopy. Microtubule depolymerization by nocodazole inhibits lamellipodial protrusions and cell-cell contact, thereby inhibiting convergent extension. However, neither taxol nor vinblastine, both of which block microtubule dynamics while stabilizing a polymer form of tubulin, inhibits lamellipodia or convergent extension. This suggests an unusual explanation: the mass of polymerized tubulin, not dynamics of the microtubule cytoskeleton, is crucial for convergent extension. Because microtubule depolymerization elicits striking effects on actin-based protrusions, the role of Rho-family GTPases was tested. The effects of nocodazole are partially rescued using dominant negative Rho, Rho-kinase inhibitor, or constitutively active Rac, suggesting that microtubules regulate small GTPases, possibly via a guanine-nucleotide exchange factor. We cloned full-length XLfc, a microtubule-binding Rho-GEF. Nucleotide exchange activity of XLfc is required for nocodazole-mediated inhibition of convergent extension; constitutively active XLfc recapitulates the effects of microtubule depolymerization. Morpholino knockdown of XLfc abrogates the ability of nocodazole to inhibit convergent extension. Therefore, we believe that XLfc is a crucial regulator of cell morphology during convergent extension, and microtubules limit its activity through binding to the lattice.  相似文献   

8.
9.
We have undertaken the first detailed analysis of Rho GTPase function during vertebrate development by analyzing how RhoA and Rac1 control convergent extension of axial mesoderm during Xenopus gastrulation. Monitoring of a number of parameters in time-lapse recordings of mesoderm explants revealed that Rac and Rho have both distinct and overlapping roles in regulating the motility of axial mesoderm cells. The cell behaviors revealed by activated or inhibitory versions of these GTPases in native tissue were clearly distinct from those previously documented in cultured fibroblasts. The dynamic properties and polarity of protrusive activity, along with lamellipodia formation, were controlled by the two GTPases operating in a partially redundant manner, while Rho and Rac contributed separately to cell shape and filopodia formation. We propose that Rho and Rac operate in distinct signaling pathways that are integrated to control cell motility during convergent extension.  相似文献   

10.
Mutations in the zebrafish knypek locus impair gastrulation movements of convergent extension that narrow embryonic body and elongate it from head to tail. We demonstrate that knypek regulates cellular movements but not cell fate specification. Convergent extension movement defects in knypek are associated with abnormal cell polarity, as mutant cells fail to elongate and align medio-laterally. Positional cloning reveals that knypek encodes a member of the glypican family of heparan sulfate proteoglycans. Double mutant and overexpression analyses show that Knypek potentiates Wnt11 signaling, mediating convergent extension. These studies provide experimental and genetic evidence that glypican Knypek acts during vertebrate gastrulation as a positive modulator of noncanonical Wnt signaling to establish polarized cell behaviors underlying convergent extension movements.  相似文献   

11.
The single-pass transmembrane protein Ryk (atypical receptor related tyrosine kinase) functions as a Wnt receptor. However, Ryk's correlation with Wnt/Frizzled (Fz) signaling is poorly understood. Here, we report that Ryk regulates Xenopus laevis convergent extension (CE) movements via the β-arrestin 2 (βarr2)-dependent endocytic process triggered by noncanonical Wnt signaling. During X. laevis gastrulation, βarr2-mediated endocytosis of Fz7 and dishevelled (Dvl/Dsh) actually occurs in the dorsal marginal zone tissues, which actively participate in noncanonical Wnt signaling. Noncanonical Wnt11/Fz7-mediated endocytosis of Dsh requires the cell-membrane protein Ryk. Ryk interacts with both Wnt11 and βarr2, cooperates with Fz7 to mediate Wnt11-stimulated endocytosis of Dsh, and signals the noncanonical Wnt pathway in CE movements. Conversely, depletion of Ryk and Wnt11 prevents Dsh endocytosis in dorsal marginal zone tissues. Our study suggests that Ryk functions as an essential regulator for noncanonical Wnt/Fz-mediated endocytosis in the regulation of X. laevis CE movements.  相似文献   

12.
The Xenopus gene crescent encodes a member of the secreted Frizzled-related protein (sFRP) family and is expressed in the head organizer region. However, the target and function of Crescent in early development are not well understood. Here, we describe a role of Crescent in the regulation of convergent extension movements (CEMs) during gastrulation and neurulation. We show that overexpression of Crescent in whole embryos or animal caps inhibits CEMs without affecting tissue specification. Consistent with this, Crescent efficiently forms complexes with Xwnt11 and Xwnt5a, in contrast to another sFRP, Frzb1. As expected, the inhibitory effect of Crescent or Xwnt11 on CEMs is cancelled when both proteins are coexpressed in the neuroectoderm. Interestingly, when coexpressed in the dorsal mesoderm, the activity of Xwnt11 is rather enhanced by Crescent. Supporting this finding, the inhibition of CEMs by Crescent in mesodermalized but not neuralized animal caps is reversed by the dominant-negative form of Cdc42, a putative mediator of Wnt/Ca2+ pathway. Antisense morpholino oligos for Crescent impair neural plate closure and elicit microcephalic embryos with a shortened trunk without affecting early tissue specification. These data suggest a potential role for Crescent in head formation by regulating a non-canonical Wnt pathway positively in the adjacent posterior mesoderm and negatively in the overlying anterior neuroectoderm.  相似文献   

13.
Rho GTPases have important roles in regulating cell migration and are activated by Rho-specific guanine nucleotide exchange factors (RhoGEFs). However, the role of leukemia-associated RhoGEF (LARG), responding to G12/13 family, has not been studied in vertebrate development. Here, the in vivo biochemical function of LARG was examined during early embryonic development in African frog Xenopus laevis. Gain-of-function study was performed by injecting the RNA of full-length xLARG to 2 cell-stage embryos. The ectopic expression of this protein resulted in the defect of blastopore closure during early embryogenesis. Expression of the dominant-negative form caused the defect in cell movement and following archenteron formation during late gastrulation, which is represented by the blister formation in the ventral side of the embryos. The phenotype was rescued by co-expressing the mutant with Rho or wild type xLARG, confirming the specificity of the dominant-negative activity of xLARG mutant. In this study, I showed for the first time that the spatiotemporal expression of xLARG is very dynamic and specifically regulated in early Xenopus embryonic development and xLARG may mediate Gα13 signal to activate Rho to exert its function in gastrulation movement and archenteron formation. My results implicate that the dynamic regulation of maternal and zygotic xLARG expression and its biochemical activity is necessary for proper gastrulation.  相似文献   

14.
We show with time-lapse micrography that narrowing in the circumblastoporal dimension (convergence) and lengthening in the animal-vegetal dimension (extension) of the involuting marginal zone (IMZ) and the noninvoluting marginal zone (NIMZ) are the major tissue movements driving blastopore closure and involution of the IMZ during gastrulation in the South African clawed frog, Xenopus laevis. Analysis of blastopore closure shows that the degree of convergence is uniform from dorsal to ventral sides, whereas the degree of extension is greater on the dorsal side of the gastrula. Explants of the gastrula show simultaneous convergence and extension in the dorsal IMZ and NIMZ. In both regions, convergence and extension are most pronounced at their common boundary, and decrease in both animal and vegetal directions. Convergent extension is autonomous to the IMZ and begins at stage 10.5, after the IMZ has involuted. In contrast, expression of convergent extension in the NIMZ appears to be dependent on basal contact with chordamesoderm or with itself. The degree of extension decreases progressively in lateral and ventral sectors. Isolated ventral sectors show convergence without a corresponding degree of extension, perhaps reflecting the transient convergence and thickening that occurs in this region of the intact embryo. We present a detailed mechanism of how these processes are integrated with others to produce gastrulation. The significance of the regional expression of convergence and extension in Xenopus is discussed and compared to gastrulation in other amphibians.  相似文献   

15.
BACKGROUND: During Xenopus gastrulation, cell intercalation drives convergent extension of dorsal tissues. This process requires the coordination of motility throughout a large population of cells. The signaling mechanisms that regulate these movements in space and time remain poorly understood. RESULTS: To investigate the potential contribution of calcium signaling to the control of morphogenetic movements, we visualized calcium dynamics during convergent extension using a calcium-sensitive fluorescent dye and a novel confocal microscopy system. We found that dramatic intercellular waves of calcium mobilization occurred in cells undergoing convergent extension in explants of gastrulating Xenopus embryos. These waves arose stochastically with respect to timing and position within the dorsal tissues. Waves propagated quickly and were often accompanied by a wave of contraction within the tissue. Calcium waves were not observed in explants of the ventral marginal zone or prospective epidermis. Pharmacological depletion of intracellular calcium stores abolished the calcium dynamics and also inhibited convergent extension without affecting cell fate. These data indicate that calcium signaling plays a direct role in the coordination of convergent extension cell movements. CONCLUSIONS: The data presented here indicate that intercellular calcium signaling plays an important role in vertebrate convergent extension. We suggest that calcium waves may represent a widely used mechanism by which large groups of cells can coordinate complex cell movements.  相似文献   

16.
The Wnt-PCP (planar cell polarity, PCP) pathway regulates cell polarity and convergent extension movements during axis formation in vertebrates by activation of Rho and Rac, leading to the re-organization of the actin cytoskeleton. Rho and Rac activation require guanine nucleotide-exchange factors (GEFs), but the identity of the GEF involved in Wnt-PCP-mediated convergent extension is unknown. Here we report the identification of the weak-similarity GEF (WGEF) gene by a microarray-based screen for notochord enriched genes, and show that WGEF is involved in Wnt-regulated convergent extension. Overexpression of WGEF activated RhoA and rescued the suppression of convergent extension by dominant-negative Wnt-11, whereas depletion of WGEF led to suppression of convergent extension that could be rescued by RhoA or Rho-associated kinase activation. WGEF protein preferentially localized at the plasma membrane, and Frizzled-7 induced colocalization of Dishevelled and WGEF. WGEF protein can bind to Dishevelled and Daam-1, and deletion of the Dishevelled-binding domain generates a hyperactive from of WGEF. These results indicate that WGEF is a component of the Wnt-PCP pathway that connects Dishevelled to Rho activation.  相似文献   

17.
During Drosophila gastrulation, convergent extension of the ectoderm is required for germband extension. Adhesive heterogeneity within ectodermal cells has been proposed to trigger the intercalation of cells responsible for this movement. Segmentation genes would impose this heterogeneity by establishing a pair-rule pattern of cell adhesion properties. We previously reported that the serotonin receptor (5-ht(2Dro)) is expressed in the presumptive ectoderm with a pair-rule pattern. Here, we show that the peaks of 5-ht(2Dro) expression and serotonin synthesis coincide precisely with the onset of convergent extension of the ectoderm. Gastrulae genetically depleted of serotonin or the 5-ht(2Dro) receptor do not extend their germband properly, and the ectodermal movements becomes asynchronous with the morphogenetic movements in the endoderm and mesoderm. Associated with the beginning of this desynchronisation, is an altered subcellular localisation of adherens junctions within the ectoderm. Combined, these data highlight the role of the ectoderm in Drosophila gastrulation and support the notion that serotonin signalling through the 5-HT(2Dro) receptor triggers changes in cell adhesiveness that are necessary for cell intercalation.  相似文献   

18.
During vertebrate gastrulation, a ventral to dorsal gradient of bone morphogenetic protein (Bmp) activity establishes cell fates. Concomitantly, convergent extension movements narrow germ layers mediolaterally while lengthening them anteroposteriorly. Here, by measuring movements of cell populations in vivo, we reveal the presence of three domains of convergent extension movements in zebrafish gastrula. Ventrally, convergence and extension movements are absent. Lateral cell populations converge and extend at increasing speed until they reach the dorsal domain where convergence speed slows but extension remains strong. Using dorsalized and ventralized mutants, we demonstrate that these domains are specified by the Bmp activity gradient. In vivo cell morphology and behavior analyses indicated that low levels of Bmp activity might promote extension with little convergence by allowing mediolateral cell elongation and dorsally biased intercalation. Further, single cell movement analyses revealed that the high ventral levels of Bmp activity promote epibolic migration of cells into the tailbud, increasing tail formation at the expense of head and trunk. We show that high Bmp activity limits convergence and extension by negatively regulating expression of the wnt11 (silberblick) and wnt5a (pipetail) genes, which are required for convergent extension but not cell fate specification. Therefore, during vertebrate gastrulation, a single gradient of Bmp activity, which specifies cell fates, also regulates the morphogenetic process of convergent extension.  相似文献   

19.
The signaling mechanisms that specify, guide and coordinate cell behavior during embryonic morphogenesis are poorly understood. We report that a Xenopus homolog of the Drosophila planar cell polarity gene strabismus (stbm) participates in the regulation of convergent extension, a critical morphogenetic process required for the elongation of dorsal structures in vertebrate embryos. Overexpression of Xstbm, which is expressed broadly in early development and subsequently in the nervous system, causes severely shortened trunk structures; a similar phenotype results from inhibiting Xstbm translation using a morpholino antisense oligo. Experiments with Keller explants further demonstrate that Xstbm can regulate convergent extension in both dorsal mesoderm and neural tissue. The specification of dorsal tissues is not affected. The Xstbm phenotype resembles those obtained with several other molecules with roles in planar polarity signaling, including Dishevelled and Frizzled-7 and -8. Unlike these proteins, however, Stbm has little effect on conventional Wnt/beta-catenin signaling in either frog or fly assays. Thus our results strongly support the emerging hypothesis that a vertebrate analog of the planar polarity pathway governs convergent extension movements.  相似文献   

20.
PACSIN2 regulates cell adhesion during gastrulation in Xenopus laevis   总被引:1,自引:0,他引:1  
We previously identified the adaptor protein PACSIN2 as a negative regulator of ADAM13 proteolytic function. In Xenopus embryos, PACSIN2 is ubiquitously expressed, suggesting that PACSIN2 may control other proteins during development. To investigate this possibility, we studied PACSIN2 function during Xenopus gastrulation and in XTC cells. Our results show that PACSIN2 is localized to the plasma membrane via its coiled-coil domain. We also show that increased levels of PACSIN2 in embryos inhibit gastrulation, fibronectin (FN) fibrillogenesis and the ability of ectodermal cells to spread on a FN substrate. These effects require PACSIN2 coiled-coil domain and are not due to a reduction of FN or integrin expression and/or trafficking. The expression of a Mitochondria Anchored PACSIN2 (PACSIN2-MA) sequesters wild type PACSIN2 to mitochondria, and blocks gastrulation without interfering with cell spreading or FN fibrillogenesis but perturbs both epiboly and convergence/extension. In XTC cells, the over-expression of PACSIN2 but not PACSIN2-MA prevents the localization of integrin β1 to focal adhesions (FA) and filamin to stress fiber. PACSIN2-MA prevents filamin localization to membrane ruffles but not to stress fiber. We propose that PACSIN2 may regulate gastrulation by controlling the population of activated α5β1 integrin and cytoskeleton strength during cell movement.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号