首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The influence of oscillatory versus unidirectional flow on the growth and nitrate‐uptake rates of juvenile kelp, Laminaria digitata, was determined seasonally in experimental treatments that simulated as closely as possible natural environmental conditions. In winter, regardless of flow condition (oscillatory and unidirectional) or water velocity, no influence of water motion was observed on the growth rate of L. digitata. In summer, when ambient nitrate concentrations were low, increased water motion enhanced macroalgal growth, which is assumed to be related to an increase in the rate of supply of nutrients to the blade surface. Nitrate‐uptake rates were significantly influenced by water motion and season. Lowest nitrate‐uptake rates were observed for velocities <5 cm · s?1 and nitrate‐uptake rates increased by 20%–50% under oscillatory motion compared to unidirectional flow at the same average speed. These data further suggested that the diffusion boundary layer played a significant role in influencing nitrate‐uptake rates. However, while increased nitrate‐uptake in oscillatory flow was clear, this was not reflected in growth rates and further work is required to understand the disconnection of nitrate‐uptake and growth by L. digitata in oscillatory flow. The data obtained support those from related field‐based studies, which suggest that in summer, when insufficient nitrogen is available in the water to saturate metabolic demand, the growth rate of kelps will be influenced by water motion restricting mass transfer of nitrogen.  相似文献   

2.
Membranes with precise control of selective layer are designed and prepared by adjusting diffusion of solvents. Combining experiments and theoretical calculations, the formation mechanism of ion conductive membranes prepared by a non‐solvent induced phase separation (NIPS) method is found to be related to internal diffusion flux of solvent to the non‐solvent bath and external diffusion flux of non‐solvent to the casting solution. By regulating the internal and external diffusion rates via a two‐step NIPS method, a series of polybenzimidazole (PBI) porous membranes with independently controlled thin selective skin layers and highly porous support layers are fabricated, which achieve a simultaneous improvement in ion selectivity and proton conductivity. A vanadium flow battery assembled with a PBI membrane demonstrates an energy efficiency of 80% at a current density of 220 mA cm?2, which is the highest value among the reported PBI membranes. This provides a simple and effective way to fabricate membranes with well‐defined morphologies.  相似文献   

3.
Anaerobic respiration and methanogenesis have been found to slow-down in water saturated peat soils with accumulation of metabolic end-products, i.e. dissolved inorganic carbon (DIC) and methane (CH4), due to a lack of solute and gas transport. So far it is not well understood how solute and gas transport may control this effect. We conducted a column experiment with homogenized ombrotrophic peat over a period of 300 days at 20 °C. We specifically evaluated the effects of diffusive flux as control, downward advective water flux, intensified ebullition by conduit gas transport and diffusive oxygen supply on controlling anaerobic decomposition rates and carbon (C) turnover. To simulate advective flux, water and solutes were recirculated downward through the column after stripping of dissolved gases. We analyzed DIC and CH4 concentrations, production rates and fluxes, gas filled porosity, oxygen profiles (O2) and microbial C biomass over time. DIC residence time thereby served as proxy to characterize transport. A slowdown of anaerobic respiration and methanogenesis evolved with the accumulation of the end-products DIC and CH4 and set in after 150 days. This slow-down was accompanied by a decrease in the distribution of microbial biomass C with depths. Anaerobic DIC and CH4 production rates were fastest close to the water table and sharply slowed with depth. Accumulation of DIC and CH4 in the homogeneous peat material throughout the column decreased decomposition constants from about 10?5 near the surface to 10?9 year?1 deeper in the profile. Advective water transport extended the zone of active methanogenesis compared to a diffusive system; experimental enhancement of ebullition had little or no effect as well as strictly anoxic conditions. DIC residence time was negatively correlated to anaerobic respiration suggesting this parameter to be a predictor of anaerobic peat decomposition in peatlands. Overall, this study suggests that burial of peat and accumulation of metabolic end-products effectively slows decomposition and that this effect needs to be considered to explain peat accumulation and the response of peat mineralization rates to changes in environmental conditions.  相似文献   

4.
The cyanobacteria Synechococcus and Prochlorococcus are important primary producers in marine ecosystems. Because currently available approaches for estimating microbial growth rates can be difficult to apply in the field, we have been exploring the feasibility of using quantitative rRNA measurements as the basis for making such estimates. In this study we examined the relationship between rRNA and growth rate in several Synechococcus and Prochlorococcus strains over a range of light‐regulated growth rates. Whole‐cell hybridization with fluorescently labeled peptide nucleic acid (PNA) probes was used in conjunction with flow cytometry to quantify rRNA on a per cell basis. This PNA probing technique allowed rRNA analysis in a phycoerythrin‐containing Synechococcus strain (WH7803) and in a non–phycoerythrin‐containing strain and in Prochlorococcus. All the strains showed a qualitatively similar tri‐phasic relationship between rRNA·cell?1 and growth rate, involving relatively little change in rRNA·cell?1 at low growth rates, linear increase at intermediate growth rates, and a plateau and/or decrease at the highest growth rates. The onset of each phase was associated with the relative, rather than absolute, growth rate of each strain. In the Synechococcus strains, rRNA normalized to flow cytometrically measured forward angle light scatter (an indicator of size) was well‐correlated with growth rate across strains. These findings support the idea that cellular rRNA may be useful as an indicator of in situ growth rate in natural Synechococcus and Prochlorococcus populations.  相似文献   

5.
A recently formulated convection–diffusion model predicted that root growth plus diffusion of protons in the neighbouring soil would lead to particular pH patterns around the moving root tip. To test the predictions of this theory, pH was measured at differing radial distances from the root surface after 24 h of growth in a medium with low diffusivity (sandy soil) and after a shorter period (55 min of growth) in a medium with high diffusivity (agar). In agreement with the theory, the growth zone was found to influence the pH of the soil for distances less than 1 mm from the root surface (even after many hours) and the pH of the agar for a distance of at least 5 mm (after only 1 h). The axial pattern of pH along the surface of soil‐grown Zea mays L. root tips was found to be the same for roots growing at different rates under different temperatures (2·23  mm h?1 at 26 °C or 1·27 mm h?1 at 20 °C). Thus, the plant can synchronize proton flux with growth to maintain a particular surface pH pattern within the growth zone. This implies that root tips growing at different rates in response to different temperatures can carry the same microenvironment of pH through a homogeneous soil.  相似文献   

6.
The effects of environmental variables, particularly irradiance, on the sinking rates of phytoplankton were investigated using cultures of Chaetoceros gracilis Schütt and C. flexuosum Mangin in laboratory experiments; these data were compared with results from assemblages in the open ocean and marginal ice zone of the Greenland Sea. In culture experiments both the irradiance under which the diatom was grown and culture growth rate were positively correlated with sinking rates. Sinking rates (ψ) in the Greenland Sea were smallest when determined from chlorophyll (mean ψchl= 0.14 m · d?1) and biogenic silica (ψsi= 0.14 m · d?1) and greatest when determined from particulate carbon (ψc= 0.55 m · d?1) and nitrogen (ψN= 0.64 m · d?1). Field measurements indicated that variations in sinking may be associated with changes in irradiance and nitrate concentrations. Because these factors do not directly affect water density, they must be inducing physiological changes in the cell which affect buoyancy. Although a direct response to a single environmental variable was not always evident, sinking rates were positively correlated with growth rates in the marginal ice zone, further indicating a connection to physiological processes. Estimats of carbon flux at stations with vertically mixed euphotic zones indicated that approximately 30% of the daily primary production sank from the euphotic zone in the form of small particulates. Calculated carbon flux tended to increase with primary productivity.  相似文献   

7.
Black carbon (BC) is an important pool of the global C cycle, because it cycles much more slowly than others and may even be managed for C sequestration. Using stable isotope techniques, we investigated the fate of BC applied to a savanna Oxisol in Colombia at rates of 0, 11.6, 23.2 and 116.1 t BC ha?1, as well as its effect on non‐BC soil organic C. During the rainy seasons of 2005 and 2006, soil respiration was measured using soda lime traps, particulate and dissolved organic C (POC and DOC) moving by saturated flow was sampled continuously at 0.15 and 0.3 m, and soil was sampled to 2.0 m. Black C was found below the application depth of 0–0.1 m in the 0.15–0.3 m depth interval, with migration rates of 52.4±14.5, 51.8±18.5 and 378.7±196.9 kg C ha?1 yr?1 (±SE) where 11.6, 23.2 and 116.1 t BC ha?1, respectively, had been applied. Over 2 years after application, 2.2% of BC applied at 23.2 t BC ha?1 was lost by respiration, and an even smaller fraction of 1% was mobilized by percolating water. Carbon from BC moved to a greater extent as DOC than POC. The largest flux of BC from the field (20–53% of applied BC) was not accounted for by our measurements and is assumed to have occurred by surface runoff during intense rain events. Black C caused a 189% increase in aboveground biomass production measured 5 months after application (2.4–4.5 t additional dry biomass ha?1 where BC was applied), and this resulted in greater amounts of non‐BC being respired, leached and found in soil for the duration of the experiment. These increases can be quantitatively explained by estimates of greater belowground net primary productivity with BC addition.  相似文献   

8.
Increased mass transfer to microorganisms with fluid motion   总被引:2,自引:0,他引:2  
The effect of fluid flow and laminar shear on bacterial uptake was examined under conditions representative of the fluid environment of unattached and attached cells in wastewater treatment bioreactors. Laminar shear rates below 50 s(-1) did not increase leucine uptake by suspended cultures of Zoogloea ramigera. However, leucine uptake by cells fixed in a flow field of approximately 1 mm s(-1) was 55-65% greater than uptake by suspended cells. Enhanced microbial uptake with advective motion is consistent with mass transfer rates calculated using Sherwood number correlations. Advective flow increases microbial uptake by increasing collisions between substrate molecules and cells through compression of the concentration boundary layer surrounding a cell. The rate of leucine uptake suggests that binding proteins used to transport leucine into the cell can occupy approximately 1% of the cell surface area.  相似文献   

9.
Water motion drives the flux of suspended and dissolved material (e.g., nutrients, gametes, and dissolved oxygen) to and from macrophyte canopies, and is one of the most important mechanisms that can regulate the growth, survival, and persistence of marine macrophytes populations. At small spatial scales (e.g., lamina or leaves and individuals), increasing flow‐rates have been demonstrated to enhance physiological processes, especially photosynthesis rates, and we expected a similar response at the canopy scale. We conducted seven experiments over 25 days using a pair of open‐air flow‐chambers under natural light, temperature, and seawater conditions. In the four marine macrophyte (Sargassum piluliferum, S. siliquastrum, S. thunbergii, and Zostera marina) canopies examined, an increase in flow‐rate did not enhance photosynthesis rates. The odds that daily gross photosynthesis rates increase with a decrease in flow‐rates was 1.77 to 1. We also examined if two non‐linear equations and one linear equation, often used to describe the relationship between photosynthesis to photosynthetic photon flux density (PPFD), biased estimates of the daily rates of photosynthesis and respiration. It was revealed that the functional form of the equation strongly influenced photosynthesis and respiration rate estimates at short time scales (i.e., minutes), however, daily rates were insensitive to the type of equation used to model the relationship between photosynthesis and PPFD. We suggest that the predominance of photosynthesis rates occurring in under‐saturating PPFD conditions (> 40 % of daylight hours) may be one of the reasons for this insensitivity.  相似文献   

10.
Quantitative measurements of intravascular microscopic dynamics, such as absolute blood flow velocity, shear stress and the diffusion coefficient of red blood cells (RBCs), are fundamental in understanding the blood flow behavior within the microcirculation, and for understanding why diffuse correlation spectroscopy (DCS) measurements of blood flow are dominantly sensitive to the diffusive motion of RBCs. Dynamic light scattering‐optical coherence tomography (DLS‐OCT) takes the advantages of using DLS to measure particle flow and diffusion within an OCT resolution‐constrained three‐dimensional volume, enabling the simultaneous measurements of absolute RBC velocity and diffusion coefficient with high spatial resolution. In this work, we applied DLS‐OCT to measure both RBC velocity and the shear‐induced diffusion coefficient within penetrating venules of the somatosensory cortex of anesthetized mice. Blood flow laminar profile measurements indicate a blunted laminar flow profile and the degree of blunting decreases with increasing vessel diameter. The measured shear‐induced diffusion coefficient was proportional to the flow shear rate with a magnitude of ~0.1 to 0.5 × 10?6 mm2. These results provide important experimental support for the recent theoretical explanation for why DCS is dominantly sensitive to RBC diffusive motion.   相似文献   

11.
1. Zebra mussels aggregate to form dense colonies where, depending on the flow rate, individuals in different vertical locations within the colony may experience restricted food availability. 2. Using 32P‐labelled Chlamydomonas angulosa, we found ingestion rates of individual mussels located at the surface to exceed those in the bottom of a 6 cm thick colony by up to 75%. 3. Higher velocities (10 and 20 cm s?1) increased algal delivery to the colony's middle layer (2–4 cm depth), subsequently increasing ingestion rates to equal those in the surface layer, while increasing ingestion only for the smallest mussels in the bottom (4–6 cm). 4. At all vertical locations within the colonies, smaller mussels showed higher ingestion rates per unit mass than larger mussels, particularly at higher flow rates.  相似文献   

12.
The recently isolated root‐hairless mutant of barley (Hordeum vulgare L), bald root barley, brb offers a unique possibility to quantify the importance of root hairs in phosphorus (P) uptake from soil. In the present study the ability of brb and the wild‐type, barley genotype Pallas producing normal root hairs to deplete P in the rhizosphere soil was investigated and the theory of diffusion and mass flow applied to compare the predicted and measured depletion profiles of diffusible P. Pallas depleted twice as much P from the rhizosphere soil as brb. The P depletion profile of Pallas uniformly extended to 0.8 mm from the root surface, which was equal to the root hair length (RHL). The model based on the theory of diffusion and mass flow explained the observed P‐depletion profile of brb, and the P depletion outside the root‐hair zone of Pallas, suggesting that the model is valid only for P movement in rhizosphere soil outside the root‐hair zone. In low‐P soil (P in soil solution 3 µm ) brb did not survive after 30 d, whereas Pallas continued to grow, confirming the importance of root hairs in plant growth in a P‐limiting environment. In high‐P soil (P in soil solution 10 µm ) both brb and Pallas maintained their growth, and they were able to produce seeds. At the high‐P concentration, RHL of the Pallas was reduced from 0.80 ± 0.2 to 0.68 ± 0.14 mm. In low‐P soil, P‐uptake rate into the roots of Pallas was 4.0 × 10?7 g mm?1 d?1 and that of brb was 1.9 × 10?7 g mm?1 d?1, which agreed well with the double amount of P depleted from the rhizosphere soil of Pallas in comparison with that of brb. In high‐P soil, the P uptake rates into the roots of brb and Pallas were 3.3 and 5.5 × 10?7 g mm?1 d?1, respectively. The results unequivocally confirmed that in a low‐P environment, root hairs are of immense importance in P acquisition and plants survival, but under high‐P conditions they may be dispensable. The characterization of phenotypes brb and Pallas and the ability to reproduce seeds offers a unique possibility of molecular mapping of QTLs and candidate genes conferring root‐hair formation and growth of barley.  相似文献   

13.
Adaptive metabolic behavior of photoautotrophic microorganisms toward genetic and environmental perturbations can be interpreted in a quantitative depiction of carbon flow through a biochemical reaction network using isotopic non‐stationary 13C‐metabolic flux analysis (INST 13C‐MFA). To evaluate 13C‐metabolic flux maps for Chlamydomonas reinhardtii, an original experimental framework was designed allowing rapid, reliable collection of high‐quality isotopomer data against time. It involved (i) a short‐time 13C labeling injection device based on mixing control in a torus‐shaped photobioreactor with plug‐flow hydrodynamics allowing a sudden step‐change in the 13C proportion in the substrate feed and (ii) a rapid sampling procedure using an automatic fast filtration method coupled to a manual rapid liquid nitrogen quenching step. 13C‐substrate labeling enrichment was controlled through the total dissolved inorganic carbon concentration in the pulsed solution. First results were obtained from steady‐state continuous culture measurements allowing the characterization of the kinetics of label incorporation into light‐limited growing cells cultivated in a photobioreactor operating at the maximal biomass productivity for an incident photon flux density of 200 µmol m?2 s?1. 13C label incorporation was measured for 21 intracellular metabolites using IC‐MS/MS in 58 samples collected across a labeling experiment duration of 7 min. The fastest labeling rate was observed for 2/3‐phosphoglycerate with an apparent isotopic stationary state reached after 300 s. The labeling rate was consistent with the optimized mixing time of about 4.9 s inside the reactor and the shortest reliable sampling period assessed at 5 s. Biotechnol. Bioeng. 2012; 109: 3030–3040. © 2012 Wiley Periodicals, Inc.  相似文献   

14.
Stream and river carbon dioxide emissions are an important component of the global carbon cycle. Methane emissions from streams could also contribute to regional or global greenhouse gas cycling, but there are relatively few data regarding stream and river methane emissions. Furthermore, the available data do not typically include the ebullitive (bubble‐mediated) pathway, instead focusing on emission of dissolved methane by diffusion or convection. Here, we show the importance of ebullitive methane emissions from small streams in the regional greenhouse gas balance of a lake and wetland‐dominated landscape in temperate North America and identify the origin of the methane emitted from these well‐oxygenated streams. Stream methane flux densities from this landscape tended to exceed those of nearby wetland diffusive fluxes as well as average global wetland ebullitive fluxes. Total stream ebullitive methane flux at the regional scale (103 Mg C yr?1; over 6400 km2) was of the same magnitude as diffusive methane flux previously documented at the same scale. Organic‐rich stream sediments had the highest rates of bubble release and higher enrichment of methane in bubbles, but glacial sand sediments also exhibited high bubble emissions relative to other studied environments. Our results from a database of groundwater chemistry support the hypothesis that methane in bubbles is produced in anoxic near‐stream sediment porewaters, and not in deeper, oxygenated groundwaters. Methane interacts with other key elemental cycles such as nitrogen, oxygen, and sulfur, which has implications for ecosystem changes such as drought and increased nutrient loading. Our results support the contention that streams, particularly those draining wetland landscapes of the northern hemisphere, are an important component of the global methane cycle.  相似文献   

15.
This paper describes the metabolic adaptation of Lactococcus lactis during the transition from a growing to a non‐growing state using retentostat cultivation. Under retentostat cultivation, the specific growth rate decreased from 0.025 h?1 to 0.0001 h?1 in 42 days, while doubling time increased to more than 260 days. Viability of the overall culture was maintained above 90% but included approximately 20% damaged cells, which had lost their colony forming capacity on solid media. Although culture biomass and viability had reached a steady‐state after 14 days of retentostat cultivation, the morphology of the cells changed from coccus‐to‐rod shape at later stages of retentostat cultivation, by which the cell's surface to volume ratio was estimated to increase 2.4‐fold. Furthermore, the metabolic patterns switched between homolactic and mixed‐acid fermentation during the retentostat cultivation. Retentostat cultivation enabled the calculation of accurate substrate‐ and energy‐related maintenance coefficients and biomass yields under non‐growing conditions, which were in good agreement with those calculated by extrapolation from chemostat cultivations at high dilution rates. In this study, we illustrate how retentostat cultivation allows decoupling of growth and non‐growth associated processes in L. lactis, enabling the analysis of quantitative physiological responses of this bacterium to near zero‐specific growth rates.  相似文献   

16.
Twenty years ago an Arctic cryptophyte was isolated from Baffin Bay and given strain number CCMP 2045. Here, it was described using morphology, water‐ and non‐water soluble pigments and nuclear‐encoded SSU rDNA . The influence of temperature, salinity, and light intensity on growth rates was also examined. Microscopy revealed typical cryptophyte features but the chloroplast color was either green or red depending on the light intensity provided. Phycoerythrin (Cr‐PE 566) was only produced when cells were grown under low‐light conditions (5 μmol photons · m?2 · s?1). Non‐water‐soluble pigments included chlorophyll a , c 2 and five major carotenoids. Cells measured 8.2 × 5.1 μm and a tail‐like appendage gave them a comma‐shape. The nucleus was located posteriorly and a horseshoe‐shaped chloroplast contained a single pyrenoid. Ejectosomes of two sizes and a nucleomorph anterior to the pyrenoid were discerned in TEM . SEM revealed a slightly elevated vestibular plate in the vestibulum. The inner periplast component consisted of slightly overlapping hexagonal plates arranged in 16–20 oblique rows. Antapical plates were smaller and their shape less profound. Temperature and salinity studies revealed CCMP 2045 as stenothermal and euryhaline and growth was saturated between 5 and 20 μmol photons · m?2 · s?1. The phylogeny based on SSU rDNA showed that CCMP 2045 formed a distinct clade with CCMP 2293 and Falcomonas sp. isolated from Spain. Combining pheno‐ and genotypic data, the Arctic cryptophyte could not be placed in an existing family and genus and therefore Baffinellaceae fam. nov. and Baffinella frigidus gen. et sp. nov. were proposed.  相似文献   

17.
A marine ciliate of the genus Strombidium isolated from a marine rock-pool, was grown bacteriafree in a chemostat continuous culture system and fed on the alga Pavlova (Monochrysis) lutheri Droop, which was also grown in continuous culture. The growth rate of the ciliate was maintained constant whilst the growth rate of the alga was varied, the latter producing little change in its energy content.The specific filtration and ingestion rates of Strombidium were measured and found, in both cases, to vary inversely as a function of the concentration of available algae. The filtration rate showed a range from 2 to 35 μl · ciliate?1 · day?1 whilst the ingestion rate varied from 0.8 to 3.4 J · ciliate?1 · day?1. The efficiency of ingestion remained constant throughout the experiment with a mean of > 91%, the overall growth efficiency also remained constant but with a mean of only 6.5%.The rates and efficiencies are compared with the results obtained by other workers.  相似文献   

18.
Hydrodynamical impact on biogeochemical processes in aquatic sediments   总被引:1,自引:1,他引:0  
Huettel  Markus  Røy  Hans  Precht  Elimar  Ehrenhauss  Sandra 《Hydrobiologia》2003,494(1-3):231-236
Boundary layer flow characteristics and sediment permeability control pathways and magnitude of material exchange in the surface layer of aquatic sediments. In fine-grained cohesive beds, bottom currents and sediment microtopography shape the diffusive boundary layer and locally produce areas where the interfacial solute fluxes are increased or reduced. Where sediment permeabilities exceed 10–12 m2, advective pore water flows driven by boundary flow–topography interaction dominate the sediment–water exchange of matter, with transport rates that exceed those of molecular diffusion by two orders of magnitude and more. The curved paths of the advective pore flows through the surface layers of such sandy beds generate complex three-dimensional biogeochemical patterns with extreme spatial and temporal variability ranging from millimeters to decimeters and seconds to seasons. High filtration rates, a bacterial community firmly attached to the mineral grains, rapidly changing biogeochemical zonations and winnowing of the sediment surface layers by frequent resuspension convert these beds into effective biocatalytical filter systems.  相似文献   

19.
A miniaturized and low-cost assay for algal growth and loss rates, and estimation of compensation light was developed and optimized. Microalgal cultures were grown in white 96-well microplates to estimate specific growth rates at six temperatures, five salinities and eight light levels. Data from black 24-well microplates at six temperatures, five salinities and five light conditions were used in addition to estimate loss rates and compensation light. Absorption and reflection of light were different in the white and black microplates. Growth rates were estimated from daily in vivo fluorescence (IVF) measurements using a microplate reader fitted with a fluorometer. To validate the microplate algal growth assay, IVF was compared with cell counting by flow cytometry. Maximal growth rate for the test alga Pseudochattonella farcimen (Heterokonta) was estimated to 0.52?±?0.05 day?1 at optimal temperatures ranging from 9 to 14°C and salinities 18–26 psu. Lowest value of compensation light as photosynthetic photon flux density (PPFD) was 4.2?±?1.2 μmol photons m?2 s?1, and lowest saturation light, 34.1?±?3.7 μmol photons m?2 s?1, was observed in the temperature range 5–11°C and salinity range 23–28 psu. Minimum loss rate was obtained at temperatures 5–8°C and salinities 26–31 psu. Blooms of P. farcimen have been recorded in nature under conditions similar to those minimizing loss rates rather than maximizing growth rates in this study. The microalgal assay described here allows for a large number of conditions to be tested, and accurate optimal conditions for growth and loss rates to be obtained.  相似文献   

20.
1. Macrobrachium hainanense is a predatory palaemonid shrimp (total length >7 cm) that can be abundant [density 3–5 m?2; biomass 484–606 mg ash‐free dry mass (AFDM) m?2] in forest streams in Hong Kong, China. This study investigated the growth and production of M. hainanense during 2001 and 2002 in pools of two forested streams (one third‐ and one fourth‐order). 2. The growth of tagged individuals was recorded in situ and compared with that of tagged and untagged shrimps in laboratory tanks. Field and laboratory estimates yielded similar growth rates of 0.7 mm carapace length (CL) per month, and instantaneous growth rate was 0.004 g AFDM g?1 day?1. Tagging did not affect growth in the laboratory. Cohort analysis of field populations produced similar estimates of growth to that of tagged individuals, and the growth of M. hainanense was generally slower than has been reported for other Macrobrachium species. Mass‐specific growth rate of M. hainanense in the field varied with size and was two to five times higher in small individuals (<10 mm CL). In addition, growth rate varied with season and was 40% lower in the dry season when temperature was at the annual minimum. 3. Males grew bigger than females (36 versus 25 mm CL). The minimum lifespan of M. hainanense in the field, calculated from size‐specific growth rates, ranged from 29.3 months (females) to 47.6 months (males). Male lifespan derived from cohort analysis was estimated as 48 and 46 months in the two streams. Females reached maturity in 17–18 months (at 15–17 mm CL) while males matured at 24–26 months (at 18–22 mm CL). Females bred twice (at 2 and 3 years of age) while males probably bred three times (at 2, 3 and 4 years) in both streams. 4. Macrobrachium hainanense production in the fourth‐order stream, calculated by the size‐frequency method, was 900 and 1096 mg AFDM m?2 year?1 (for 2001 and 2002, respectively) with a production/biomass (P/B) of 2.1–2.3 year?1. In the third‐order stream, production was 987 and 1304 mg AFDM m?2 year?1 (for 2001 and 2002, respectively) with a P/B of 1.7–2.1 year?1. Production estimates based on the instantaneous growth method were half of those obtained by the size‐frequency method. 5. Although M. hainanense production at the third‐order stream exceeded that in the fourth‐order, growth rates showed the opposite pattern and were 0.31–0.43 mm CL month?1 and 0.56–0.65 mm CL month?1 in the third‐ and fourth‐order streams, respectively. Greater mortality in the latter may account for low production at a site where growth rate was high. 6. Production of M. hainanense in both streams was lower during 2001 when rainfall was higher. This may reflect the influence of spates associated with monsoonal rains, which could have reduced M. hainanense production through spate‐induced mortality or by reducing the abundance of prey. This study provides the first in situ estimate of secondary production by a non‐commercial Macrobrachium species in Asia or elsewhere. It involved a whole‐pool approach to sampling that allowed the estimation of production and population parameters on a realistic scale.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号