首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Electron microscopic observation was carried out on epithelial cells of Lieberkühn's crypts of cats naturally affected with feline panleukopenia. The most important change was the replication of feline panleukopenia. The most important change was the replication of feline panleukopenia virus in the nucleus with associated alterations in the lining epithelial cells of the crypts. In these cells in the early stage of infection, virus particles 20 nm in average diameter were found either singly or in small regularly arrayed clusters everywhere in the markedly swollen nucleus. In the course of infection, the nucleus of infected cells became rather atrophic with a marked margination of chromatin granules. Its major portion was occupied with masses of fine fibrillar substance. It was a "viral matrix area" in which appeared a large compact aggregate of virus particles showing a crystalline array. At the same time, the outer membrane of the nuclear envelope partially extended and disrupted. Membranous elements related to it in the cytoplasm were regularly distributed almost always with particles indistinguishable from the virus particles in the nucleus. From these results it was suggested that the major portion of the infected nucleus, or the site of viral replication, might correspond to the amphophilic intranuclear inclusion body revealed by light microscopy.  相似文献   

2.
Apoptosis in Feline Panleukopenia Virus-Infected Lymphocytes   总被引:3,自引:0,他引:3       下载免费PDF全文
Feline panleukopenia virus (FPLV) was shown to induce apoptosis to feline lymphoid cells and to reduce the expression of interleukin-2 receptor α on the cells. FPLV-induced apoptosis might be a key element in the pathophysiology of atrophy of lymphoid tissues associated with feline panleukopenia caused by FPLV.  相似文献   

3.
Hemopoiesis was studied in rats after x-ray irradiation. Lethal doses of 800--820 R were applied totally, with screening the shin and with subsequent autotransplantation of bone marrow taken from noninjured hemopoietic tissue. Survival of the animals and status of hemopoietic organs (quantitative indices of the peripheral blood, bone marrow and the spleen, as well as morphological changes in hemopoietic organs) served as tests. All totally irradiated animals died by the 20th day, the 30th day in the group of screened animals 32% survived, in the group with autotransplantation of bone marrow--62%. According to the indices studied restoration of hemopoiesis proceeded more quickly and completely in the group with autotransplantation of bone marrow and somewhat slower in the group with screening the shin (but without autotransplantation); this was accompanied by repopulation of bone marrow comparing with the totally irradiated animals. Restoration of the hemopoietic organs was followed by a comparatively rapid increase in the number of myeloid cells, while the number of lymphoid cells increased more slowly.  相似文献   

4.
A dual-laser fluorescence-activated cell sorter was utilized to study the distribution of the surface IgM and IgD on individual B cells of normal and immune-defective CBA/N mice. Cells from different lymphoid organs and from developing mice were studied. Two major populations of cells were seen. Those with low densities of surface IgM and intermediate-high densities of surface IgD were relatively or totally absent from the bone marrow, spleens, and lymph nodes of adult, immune-defective (CBA/N x DBA/2)F1 male mice, and developed late in ontogeny in the lymphoid organs of normal F1 female mice. By contrast, the second major population, with intermediate-high surface IgM and low surface IgD, was found in highest frequency in the lymphoid organs of immature mice, the bone marrow of adult mice, and the lymphoid organs of F1 male mice compared to F1 female mice at any age. These two major populations of B cells were further subdivided into five groups of cells to better define the surface IgM and IgD characteristics of developing B cells of immune-defective and normal mice. The relationship of these groups of cells to populations defined by other criteria are discussed.  相似文献   

5.
Sequences coding for the nonstructural protein NS1 of the autonomous parvovirus feline panleukopenia virus were expressed in Escherichia coli as fusion proteins. The fusion proteins were specifically bound by antisera from canine parvovirus-infected dogs. Antisera against one of the fusion proteins bound to several proteins found only in feline panleukopenia virus-infected feline cells.  相似文献   

6.
Canine parvovirus (CPV) emerged as an apparently new virus during the mid-1970s. The origin of CPV is unknown, but a variation from feline panleukopenia virus (FPV) or another closely related parvovirus is suspected. Here we examine the in vitro and in vivo canine and feline host ranges of CPV and FPV. Examination of three canine and six feline cell lines and mitogen-stimulated canine and feline peripheral blood lymphocytes revealed that CPV replicates in both canine and feline cells, whereas FPV replicates efficiently only in feline cells. The in vivo host ranges were unexpectedly complex and distinct from the in vitro host ranges. Inoculation of dogs with FPV revealed efficient replication in the thymus and, to some degree, in the bone marrow, as shown by virus isolation, viral DNA recovery, and Southern blotting and by strand-specific in situ hybridization. FPV replication could not be demonstrated in mesenteric lymph nodes or in the small intestine, which are important target tissues in CPV infection. Although CPV replicated well in all the feline cells tested in vitro, it did not replicate in any tissue of cats after intramuscular or intravenous inoculation. These results indicate that these viruses have complex and overlapping host ranges and that distinct tissue tropisms exist in the homologous and heterologous hosts.  相似文献   

7.
Morbidity and mortality in mice were observed upon administration of exogenous DNA following their pre-treatment with a cytostatic agent cyclophosphamide. Upon intraperitoneal injections, the fragments of exogenous DNA reached bone marrow cells. These cells were also found to internalize up to 1800 kb of exogenous DNA ex vivo. The 18-24 h time frame represents a final stage in the repair of DNA double-strand breaks, so when exogenous DNA was administered within this critical period of time, pathological changes were observed in many target organs. Namely, bone marrow cells underwent a sustained increase in apoptosis. Copy number of B1 and B2 DNA repeats in bone marrow cells remained unchanged, whereas in the control group of animals their levels were significantly decreased. Finally, the bone marrow cells of moribund animals completely lacked lymphoid progenitors, yet the CD34+ hematopoietic stem cell counts were normal. Histopathology analysis suggested that mice died due to accidental involution of lymphoid organs combined with a systemic inflammatory process induced by massive administration of exogenous DNA and depletion of lymphoid lineage.  相似文献   

8.
Fatal herpesvirus tamarinus infection was observed in cotton-topped marmosets (Saguinus oedipus) imported from South America via the United States on August 26, 1976. In addition to the lesions hitherto reported in herpesvirus tamarinus infection, severe degenerative and necrotic changes of ganglion cells were recognized with intranuclear inclusion bodies in the plexus of the digestive tract and the sympathetic nerves and their ganglions in the abdominal cavity. Inflammatory or regressive changes were also noted in the central nervous system. A large number of basophilic or eosinophilic intranuclear inclusion bodies frequently recognized in multinucleated giant cells were observed in various organs and tissues, and they showed different shapes at the electron microscopic level. Morphological findings indicated that herpesvirus tamarinus infection seemed to be similar to herpes simplex virus infection in man. The findings of the susceptibility of a variety of cell cultures to the virus isolate serologically identified as herpesvirus tamarinus and physicochemical characteristics of the virus isolate were in general agreement with the findings of herpesvirus tamarinus already reported by previous workers.  相似文献   

9.
The proper development of the organs of the immune system is dependent on at least three factors: (1) the development of anlagen with the capacity to trap antigens and support the proliferation of lymphoid and plasma cell precursors; (2) the production by the bone marrow of lymphoid and plasma cell precursors which seed in the lymphoid organs; and (3) the thymus, which seeds reactive cells to the lymphoid organs and produces a humoral factor stimulating antigen-triggered proliferation of primitive lymphoid and plasma cells. Studies on cell population changes in the lymph nodes following thymectomy in mice confirm earlier evidence that most cells produced in the thymus do not seed to the lymphoid organs, but die locally in the thymus.  相似文献   

10.
The distribution of 51Cr-labeled lymphoid cells from normal mice and mice immunized against a tumor were compared after intravenous inoculation of the labeled cells into normal syngeneic recipients. Spleen cell preparations from immune donors contained increased percentages of spleen and bone marrow-seeking cells, thus suggesting expansion of these cell populations when immunity to a tumor exists. Homing of labeled normal cells in tumor cell-injected normal animals was somewhat different from that seen in tumor cell-inoculated mice that were immunized against the tumor. In the latter case, accumulations of lymph node and spleen cells in recipient lymph nodes and bone marrow were consistently lower. In contrast, lymphoid cells from animals immunized against the tumor were found to accumulate in virtually the same percentages in lymphoid organs of normal and immune recipients. The behavior of lymphoid cell populations from thymus or bone marrow that consist mainly of precursor cells was unaffected by presence of malignancy and/or tumor immunity.  相似文献   

11.
The components of the cell cycle for a feline embryo cell line were defined. Thymidine (6mM)-supplemented medium reversibly arrested cells 1 h into the S phase of the cell cycle and was used in a double blocking procedure to synchronize cells to the early S phase. The kinetics of feline panleukopenia virus replication in synchronized cells was studied by using (i) inclusion body formation, (ii) a plaque assay for cell-associated and cell-free virus under one-step growth conditions, (iii) an enzyme immunoassay for viral protein, (iv) electron microscopy of infected cells, and (v) the detection and identification of viral replicative form DNA by restriction endonuclease analysis. Parallel studies by each of these procedures of the replication of feline panleukopenia virus in cells in which a 6 mM thymidine block was maintained indicated that parvovirus replicated with essentially similar kinetics in both unblocked, synchronized cells and in cells in which the block was maintained. Accordingly, a 6 mM thymidine-supplemented medium, although it effectively blocks cellular DNA synthesis, does not block the replication of parvovirus.  相似文献   

12.
Lymphoid and myeloid cells isolated from second trimester fetal lymphoid organs were characterized by utilizing a panel of monoclonal antibodies that define human lineage-restricted, differentiation, histocompatibility, and activation antigens. At distinct gestational stages, the appearance of morphologically identifiable lymphoid and myeloid cells paralleled the appearance of cells expressing definable lymphoid and myeloid antigens. The proportion of cells in fetal liver, bone marrow, and spleen that expressed histocompatibility, myeloid, and B cell antigens increased with fetal maturation. In contrast, even the earliest fetal thymuses studied were of a phenotype no different than that seen during later stages of ontogeny. Although the cellular lineage of most fetal hematopoietic cells could be identified by this panel of reagents, a considerable number of fetal liver and bone marrow cells did not express any of these antigens, suggesting the possibility that they might represent early hematopoietic progenitor cells. These studies support the notion that the adult cellular phenotype is the result of both an orderly acquisition of differentiation antigens and the migration of these primitive cellular populations to specific fetal organs. Identification of hematopoietic progenitors in fetal tissues may facilitate the identification and isolation of early lymphoid and myeloid progenitor cells in adults.  相似文献   

13.
The transplanted limb contains bone marrow tissue. The hematopoietic cells contained in the bone of the graft normally differentiate after transplantation and can be released to the recipient. The cells migrate to the recipient bone marrow cavities and lymphoid organs. This causes the immune reaction between the donor and the recipient, which develops not only in the graft itself but also in the recipient immune organs where donor bone marrow cells home. The purpose of this study was to investigate the process of migration of the hematopoietic cells from the donor limb to the recipient bone marrow cavities and lymphoid tissues. The questions the authors asked were: what is the rate of release of bone marrow cells from the transplanted bone, where do the released bone marrow cells home in the recipient, how fast are donor bone marrow cells rejected by the recipient, and can some bone marrow cells homing in the recipient tissues survive and create a state of microchimerism. Experiments were performed on Brown Norway and Lewis inbred rat strains (n = 30). Limb donors received intravenous chromium-51-labeled bone marrow cells. Twenty-four hours later, the limb with homing labeled bone marrow cells was transplanted to an allogeneic or syngeneic recipient. The rate of radioactivity of bone marrow cells released from the graft and homing in recipient tissues was measured after another 24 hours. To eliminate factors adversely affecting homing such as the "crowding effect" and allogeneic elimination of bone marrow cells by natural killer cells, total body irradiation and antiasialo-GM1 antiserum were applied to recipients before limb transplantation. In rats surviving with the limb grafts for 7 and 30 days, homing of donor bone marrow cells was studied by specific labeling of donor cells and flow cytometry as well as by detecting donor male Y chromosome. The authors found that transplantation of the limb with bone marrow in its natural spatial relationship with stromal cells and blood perfusion brings about immediate but low-rate release of bone marrow cells and their migration to recipient bone marrow and lymphoid tissues. Large portions of allogeneic bone marrow cells are rapidly destroyed in the mechanism of allogeneic elimination by radioresistant but antiasialo-GM1-sensitive natural killer cells. Some transplanted bone marrow cells remain in the recipient's tissues and create a state of cellular and DNA microchimerism. A low number of physiologically released donor bone marrow cells do not seem to adversely affect the clinical outcome of limb grafting. Quite the opposite, a slight prolongation of the graft survival time was observed.  相似文献   

14.
An immunofluorescent study of hemopoietic organs in xenogenic (mouse-rat) radiation chimaeras has been carried out by means of specific antiserum against hemopoietic cells of the rat bone marrow. The presence of donor cells was tested at different times after the transplantation in the bone marrow, spleen, lymph nodes, thymus and liver of radiochimaeras. The transplanted cells were shown to populate all hemopoietic organs of the recipient, first of all tissues of the bone marrow type and, then, lymphoid organs. The donor (bone marrow) origin of the extramedullar foci of hemopoiesis in the liver was established.  相似文献   

15.
The recovery of the B-cell population was studied in irradiated and fetal liver-reconstituted mice. Since in irradiated and reconstituted mice the B-cell population in the spleen recovers much more rapidly than in the other lymphoid organs, we assessed the role of the spleen in the recovery of the B-cell compartment in the other organs. It was found that the absence of the spleen did not delay or diminish the recovery of the immunoglobulin (Ig)-bearing (B)-cell population in the bone marrow, lymph nodes, Peyer's patches, and peripheral blood. Throughout the recovery period the number of B lymphocytes in the lymphoid organs of splenectomized mice was even greater than in the same organs of sham-operated mice. B cells obtained from the bone marrow of splenectomized, irradiated, and reconstituted mice appeared to be fully immunocompetent, as shown by their ability to cooperate with thymocytes in an adoptive plaque-forming cell response to sheep red blood cells. The compensatory effect of the increased numbers of B cells in the bone marrow and peripheral lymphoid organs of splenectomized mice was reflected in the level of the serum immunoglobulins. Apart from a lower IgM concentration in the serum of splenectomized mice, no significant differences were found in IgG1, IgG2b, and IgA levels between splenectomized and sham-splenectomized mice. It is concluded that the spleen is not essential for both normal B-lymphocyte differentiation and maturation after irradiation and reconstitution.  相似文献   

16.
The effect of an automyelotransplant taken from a nonirradiated area of bone marrow has been studied after large fields irradiation in dogs. Certain changes occurring in the hemopoietic organs and in some other vitally important organs have been revealed. The automyelotransplantation contributes to a quicker repopulation of the bone marrow and stimulates lymphoid hemopoiesis in the spleen; that plays a positive role in overcoming the bone marrow syndrome at radiation illness. In other organs (gastrointestinal tract, kidneys, lungs, heart) given various doses of irradiation, in the control and test (with automyelotransplantation) groups similar morphological changes have been revealed.  相似文献   

17.
Germinal center B cells and antibody production in the bone marrow   总被引:14,自引:0,他引:14  
In secondary antibody (Ab) responses, Ag processing and presentation occur in secondary lymphoid organs but most serum Ab is produced by cells in the bone marrow. Plasma cells in the bone marrow are derived from B cells activated by Ag in secondary lymphoid organs. We hypothesized that germinal center (GC) B cells, which acquire Ag from follicular dendritic cells in draining lymph nodes during the first few days of the secondary response, migrate to the bone marrow to terminally differentiate and produce specific Ab. To test this we looked for GC B cells in the thoracic duct lymph and in peripheral blood after secondary challenge using the peanut agglutininhi phenotype and blast cell morphology as markers for GC B cells. In addition, GC B cells were injected i.v. into naive recipients to determine if they would home to the bone marrow. Finally, to determine if the bone marrow environment supports maturation and Ab production by GC B cells, we cocultured GC B cells with bone marrow cells or bone marrow supernatants. The results indicate that blast cells bearing the GC B cell phenotype were present in both the thoracic duct and the peripheral blood 3 days after antigenic challenge. Day 3 peripheral blood cells secreted specific Ab, whereas cells isolated on day 0, 8, or 11 did not. Furthermore, in adoptive transfer experiments, only the day 3 GC B cells produced specific Ab and migrated to the bone marrow of naive mice. Finally, either bone marrow cells or factor(s) produced by bone marrow cells markedly enhanced Ab production by day 3 GC B cells. These data support the hypothesis that during the first few days after secondary challenge GC B cells seed the bone marrow and differentiate into plasma cells which produce the large quantities of Ab typical of secondary responses.  相似文献   

18.
R Pabst  F Trepel 《Blut》1975,31(2):77-86
In young pigs, the spleen, thymus and all lymph nodes were dissected out and weighed. The relative content of lymphoid cells was determined from histological sections. The number of nucleated cells was evaluated by two different methods: firstly, by measuring the DNA content of samples of lymphoid tissue and dividing by the DNA content of a single nucleus; and, secondly, by counting all lymphoid cells in histological sections of defined volumes of these organs. The number of lymphoid cells in tonsils, gut, bone marrow and lung were determined using histological evaluations and the volumes or weights of these organs. The resulting average number of lymphocytes was 321 times 10 (9) for a pig of 26 kg body weight. The lymphocytes showed the following distribution in lymphoid and non-lymphoid organs: thymus 44%, spleen 9%, mesenteric lymph nodes 17%, cervical lymph nodes 9%, other peripheral lymph nodes 3%, gut-associated lymphocytes 5%, tonsils 2%, bone marrow 5%, blood 3%, lung 0.2% and an estimated figure of 3% for all other tissues.  相似文献   

19.
Theiler's murine encephalomyelitis virus (TMEV) infection of the brain induces a virus-specific CD8(+) T-cell response in genetically resistant mice. The peak of the immune response to the virus occurs 7 days after infection, with an immunodominant CD8(+) T-cell response against a VP2-derived capsid peptide in the context of the D(b) molecule. The process of activation of antigen-specific T cells that migrate to the brain in the TMEV model has not been defined. The site of antigenic challenge in the TMEV model is directly into the brain parenchyma, a site that is considered immune privileged. We investigated the hypothesis that antiviral CD8(+) T-cell responses are initiated in situ upon intracranial inoculation with TMEV. To determine whether a brain parenchymal antigen-presenting cell is responsible for the activation of virus-specific CD8(+) T cells, we evaluated the CD8(+) T-cell response to the VP2 peptide in bone marrow chimeras and mutant mice lacking peripheral lymphoid organs. The generation of the anti-TMEV CD8(+) T-cell response in the brain requires priming by a bone marrow-derived antigen-presenting cell and the presence of peripheral lymphoid organs. Although our results show that activation of TMEV-specific CD8(+) T cells occurs in the peripheral lymphoid compartment, they do not exclude the possibility that the immune response to TMEV is initiated by a brain-resident, bone marrow-derived, antigen-presenting cell.  相似文献   

20.
This paper continues the previous investigation of the Department on the lymphoid tissue of central and peripheral lymphoid organs under different experimental conditions. The morphological reactional modalities of the intestinal lymphoid tissue in the male Wistar rat were followed up under endocrine imbalance conditions following cortisone administration. Seven days after administration cortisone induced a hyperplasia of the intestinal lymphoid tissue in parallel with a depletion of the lymph node parenchyma and a hypercellularity of bone marrow. After a 6-week postcortisone interval, the lymphoid tissue showed changes corresponding to a cellular depletion in parallel with the restoration of the lymph node parenchyma and a normocellular bone marrow.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号