首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
A challenge in evolutionary biology is to understand the operation of sexual selection on males in polyandrous groups, where sexual selection occurs before and after mating. Here, we combine fine‐grained behavioral information (>41,000 interactions) with molecular parentage data to study sexual selection in replicated, age‐structured groups of polyandrous red junglefowl, Gallus gallus. Male reproductive success was determined by the number of females mated (precopulatory sexual selection) and his paternity share, which was driven by the polyandry of his female partners (postcopulatory sexual selection). Pre‐ and postcopulatory components of male reproductive success covaried positively; males with high mating success also had high paternity share. Two male phenotypes affected male pre‐ and postcopulatory performance: average aggressiveness toward rival males and age. Aggressive males mated with more females and more often with individual females, resulting in higher sexual exclusivity. Similarly, younger males mated with more females and more often with individual females, suffering less intense sperm competition than older males. Older males had a lower paternity share even allowing for their limited sexual exclusivity, indicating they may produce less competitive ejaculates. These results show that—in these populations—postcopulatory sexual selection reinforces precopulatory sexual selection, consistently promoting younger and more aggressive males.  相似文献   

2.
In many species, males possess conspicuous characteristics to attract females. These traits often attract predators as well, and males thus may have to balance the conspicuousness of their signals in relation to the prevailing predation risk. Here we develop a theoretical model of optimal signaling and risk‐taking behavior for males differing in the attractiveness of their signals. All else being equal, more attractive males should behave more cautiously. Yet this prediction may drastically change if males differ in any additional characteristic, especially if basal mortality rate or signaling costs are higher or if the vulnerability to predators is lower for attractive males. A key insight from our model is that male competition will create a positive feedback so that selection on male risk‐taking strategies is acting in opposite directions. If selection acts on one male type to behave more cautiously, this will strengthen selection on males of the other types to take higher risks and vice versa. Our results further demonstrate that the asset‐protection principle, which states that individuals with higher future expectations should behave more cautiously, may often be violated. We also offer an alternative to the handicap principle explaining the often found positive association between male ornamentation and viability: attractive males may simply behave more cautiously.  相似文献   

3.
Sexual size dimorphism is often a likely outcome of the interplay between natural selection and sexual selection, with female size dictated primarily by natural selection that maximizes fecundity and male size by sexual selection that maximizes reproductive opportunities. Attention to male fitness has focused heavily on direct male-male conflict selecting for superior male size and/or fighting ability, although male reproductive traits vary immensely among animals. An alternative, advanced by Michael Ghiselin, posits highly mobile dwarf males as a strategy for finding relatively immobile females in low-density populations. Adult male crab spiders Misumena vatia , sit-and-wait predators, are strikingly smaller, much more active, and relatively longer-legged than their females. This size difference results largely from males having two fewer instars than females, which simultaneously results in marked protandry. Populations of M. vatia often were small and of low density, with a female-biased sex ratio and an operational sex ratio that changed strikingly over the season. Sexual selection through scramble competition (locating the female first) should favour this suite of characters in males of low-density populations. Although direct male-male contests favoured large males, the low densities of adult males and the dispersed, relatively immobile females led to low levels of direct intrasexual contest. Females exaggerated the problem of males in finding them by providing few cues to their presence, a pattern consistent with indirect mate choice. In addition to favouring high mobility, scramble competition favoured males that selected flowers attracting many prey, the sites most often occupied by females.  相似文献   

4.
Competition for limiting resources and stress can magnify variance in fitness and therefore selection. But even in a common environment, the strength of selection can differ across the sexes, as their fitness is often limited by different factors. Indeed, most taxa show stronger selection in males, a bias often ascribed to intense competition for access to mating partners. This sex bias could reverberate on many aspects of evolution, from speed of adaptation to genome evolution. It is unclear, however, whether stronger opportunity for selection in males is a pattern robust to sex-specific stress or resource limitation. We test this in the model species Callosobruchus maculatus by comparing female and male opportunity for selection (i) with and without limitation of quality oviposition sites, and (ii) under delayed age at oviposition. Decreasing the abundance of the resource key to females or increasing their reproductive age was challenging, as shown by a reduction in mean fitness, but opportunity for selection remained stronger in males across all treatments, and even more so when oviposition sites were limiting. This suggests that males remain the more variable sex independent of context, and that the opportunity for selection through males is indirectly affected by female-specific resource limitation.  相似文献   

5.
Sexual selection is a potent force in the evolution of morphology in sexually reproducing species. When large size in a trait is favored by sexual selection the trait often exhibits positive allometry. Mating behavior in whirligig beetles consists of males attempting to grasp reluctant females using enlarged protarsi (protarsal pads). Here we use allometry and a mating experiment to investigate sexual selection pressures on accessory glands, intromittant genitalia (aedeagus), and protarsal pads in males of the whirligig beetle Dineutus nigrior Roberts. Accessory gland size exhibited positive allometry and males with larger accessory glands were more likely to copulate suggesting that larger size in this trait is favored by sexual selection. Males with larger accessory glands attempted to copulate more often but did not exhibit fewer failed mating attempts before copulating. This suggests that the increased probability of mating in males with large accessory glands is due to higher mating attempt frequency and not to increased ability to overcome female resistance. The length of the aedeagus exhibited negative allometry and males with a longer aedeagus did not have increased mating success. This is consistent with stabilizing selection favoring an intermediate size in this trait. The allometric slope of the protarsal pad did not differ from isometry and males with larger protarsal pads did not have increased mating success. This suggests that larger protarsal pads are not favored by sexual selection.  相似文献   

6.
Polyandrous females often mate with more than two males, and yet most studies of postcopulatory sexual selection involve only two males. In insects, second-male sperm precedence is usually taken as evidence of overall last-male sperm precedence despite some studies to the contrary. Furthermore, the processes or mechanisms causing the patterns are often unknown and yet are important when estimating how postcopulatory sexual selection might act on males. Whether the patterns and processes change in normal sperm competitive situations and the effects of other factors besides mating order need to be examined to better assess the evolutionary potential of postcopulatory sexual selection. In this study, I assessed the effects of mating interval and number of mating males on sperm precedence patterns and their causal mechanisms in the mealworm beetle, Tenebrio molitor. Last-male sperm precedence was the same when two or three males mated, but also depended on mating intervals and hence mechanisms of paternity bias. However, when females mated with many males, one of the mechanisms no longer created last-male sperm precedence. This example illustrates the importance of knowing both the patterns and mechanisms of paternity bias and whether they change depending on female mating frequency to make reasonable inferences about the potential for postcopulatory sexual selection on males. Copyright 2003 Published by Elsevier Ltd on behalf of The Association for the Study of Animal Behaviour.   相似文献   

7.
In several species of fish, females select males that are already guarding eggs in their nests. It is a matter of debate as to whether a female selects a good nest site for her offspring (natural selection) or a male for his attractiveness (sexual selection). The golden egg bug, Phyllomorpha laciniata Vill, resembles fish in the sense that mating males carry more eggs than single males, but in the bugs, female mate choice is decoupled from egg site choice. The sexual selection hypothesis predicts that if females select males using male egg load as a cue for male quality, they should not mate with a male when eggs are removed, regardless of his mating attempts. When individual females were enclosed with an egg-loaded male and an unloaded male, they mated equally often with both males, although the loaded males courted more. In addition, when only successful males were used, females mated equally often with the loaded male and the unloaded male irrespective of sex ratio. Male choice rather than female choice affected mating frequency when sex ratio was equal. Therefore, females do not select the male by the eggs he carries, but successful males may receive many eggs due to egg dumping by alien females while they mate or as a consequence of mate guarding.  相似文献   

8.
Conflict between males and females over whether, when, and how often to mate often leads to the evolution of sexually antagonistic interactions that reduce female reproductive success. Because the offspring of relatives contribute to inclusive fitness, high relatedness between rival males might be expected to reduce competition and result in the evolution of reduced harm to females. A recent study investigated this possibility in Drosophila melanogaster and concluded that groups of brothers cause less harm to females than groups of unrelated males, attributing the effect to kin selection. That study did not control for the rearing environment of males, rendering the results impossible to interpret in the context of kin selection. Here, we conducted a similar experiment while manipulating whether males developed with kin prior to being placed with females. We found no difference between related and unrelated males in the harm caused to females when males were reared separately. In contrast, when related males developed and emerged together before the experiment, female reproductive output was higher. Our results show that relatedness among males is insufficient to reduce harm to females, while a shared rearing environment – resulting in males similar to or familiar with one another – is necessary to generate this pattern.  相似文献   

9.
Abstract.— Sexual size dimorphism (SSD), the difference in body size between males and females, is common in almost all taxa of animals and is generally assumed to be adaptive. Although sexual selection and fecundity selection alone have often been invoked to explain the evolution of SSD, more recent views indicate that the sexes must experience different lifetime selection pressures for SSD to evolve and be maintained. We estimated selection acting on male and female adult body size (total length) and components of body size in the waterstrider Aquarius remigis during three phases of life history. Opposing selection pressures for overall body size occurred in separate episodes of fitness for females in both years and for males in one year. Specific components of body size were often the targets of the selection on overall body size. When net adult fitness was estimated by combining each individual's fitnesses from all episodes, we found stabilizing selection in both sexes. In addition, the net optimum overall body size of males was smaller than that of females. However, even when components of body size had experienced opposing selection pressures in individual episodes, no components appeared to be under lifetime stabilizing selection. This is the first evidence that contemporary selection in a natural population acts to maintain female size larger than male size, the most common pattern of SSD in nature.  相似文献   

10.
11.
In studies of sexual selection, larger size is often argued to increase male fitness, and relatively smaller males are explained by genetic and/or environmental variation. We demonstrate that a size–development life‐history trade‐off could underlie the maintenance of a broad, unimodal distribution of size in male redback spiders (Latrodectus hasselti). Larger males are superior in direct competition, but redback males mature rapidly at small size in the presence of females. In field enclosures, we simulated two competitive contexts favouring development of divergent male sizes. Relatively smaller males lost when competing directly, but had 10 times higher fitness than relatively larger males when given the temporal advantage of rapid development. Linear selection gradients confirmed the reversal of selection on size, showing that it is critical to consider life‐history decisions underlying the development of traits related to fitness.  相似文献   

12.
Ornaments, weapons and aggressive behaviours may evolve in female animals by mate choice and intrasexual competition for mating opportunities-the standard forms of sexual selection in males. However, a growing body of evidence suggests that selection tends to operate in different ways in males and females, with female traits more often mediating competition for ecological resources, rather than mate acquisition. Two main solutions have been proposed to accommodate this disparity. One is to expand the concept of sexual selection to include all mechanisms related to fecundity; another is to adopt an alternative conceptual framework-the theory of social selection-in which sexual selection is one component of a more general form of selection resulting from all social interactions. In this study, we summarize the history of the debate about female ornaments and weapons, and discuss potential resolutions. We review the components of fitness driving ornamentation in a wide range of systems, and show that selection often falls outside the limits of traditional sexual selection theory, particularly in females. We conclude that the evolution of these traits in both sexes is best understood within the unifying framework of social selection.  相似文献   

13.
A crucial question in sexual selection theory is whether post-copulatory sexual selection reinforces or counteracts conventional pre-copulatory sexual selection. Male body size is one of the traits most generally favoured by pre-copulatory sexual selection; and recent studies of sperm competition often suggest that large male size is also favoured by post-copulatory sexual selection. In contrast to this general pattern, this study shows that pre- and post-copulatory sexual selection act antagonistically on male body size in Gerris lacustris. One large and one small male were kept together with two females in this experiment. Large males had a significant mating advantage, but small males copulated longer and gained higher fertilization success from each mating. Large and small males, however, gained similar reproductive success, and there was no overall correlation between mating success and reproductive success. These results suggest that estimates of male fitness based solely on mating success should be viewed with caution, because of potentially counteracting post-copulatory selection.  相似文献   

14.
Explaining the evolution of male care has proved difficult. Recent theory predicts that female promiscuity and sexual selection on males inherently disfavour male care. In sharp contrast to these expectations, male-only care is often found in species with high extra-pair paternity and striking variation in mating success, where current theory predicts female-only care. Using a model that examines the coevolution of male care, female care and female choice; I show that inter-sexual selection can drive the evolution of male care when females are able to bias mating or paternity towards parental males. Surprisingly, female choice for parental males allows male care to evolve despite low relatedness between the male and the offspring in his care. These results imply that predicting how sexual selection affects parental care evolution will require further understanding of why females, in many species, either do not prefer or cannot favour males that provide care.  相似文献   

15.
In many anurans, the forelimb muscles of males are used to grasp females and are often heavier than those of females despite the larger female body size. Such sexual dimorphism in forelimb musculature is thought to result from sexual selection. In addition, the hindlimbs of frogs and toads play an important role in the reproductive process as amplectant males can expel rivals with robust hindlimbs through kicking. In this study, the sexual dimorphism in dry mass for six hindlimb muscles of the Asiatic toad(Bufo gargarizans) was investigated. The results showed that, when controlled for body size, the hindlimb muscle mass of males significantly exceeded that of females for every muscle. The hindlimb muscle mass of amplectant males was also significantly larger than that of non-amplectant males. These results suggested that if strong hindlimb muscles could improve mating success of males, sexual selection would promote the evolution of dimorphism in this character.  相似文献   

16.
Sexual size dimorphism (SSD) is one of the most common ways in which males and females differ. Male‐biased SSD (when males are larger) is often attributed to sexual selection favouring large males. When females are larger (female‐biased SSD), it is often argued that natural selection favouring increased fecundity (i.e. larger clutches or eggs) has coevolved with larger female body size. Using comparative phylogenetic and multispecies regression model selection approaches, we test the hypothesis that among‐species variation in female fecundity is associated with the evolution of female‐biased SSD. We also ask whether the hypothesized relationship between SSD and fecundity is relaxed upon the evolution of parental care. Our results suggest a strong relationship between the evolution of fecundity and body size, but we find no significant relationship between fecundity and SSD. Similarly, there does not appear to be a relationship between fecundity and the presence or absence of parental care among species. Thus, although female body size and fecundity coevolve, selection for increased fecundity as an explanation for female‐biased SSD is inconsistent with our analyses. We caution that a relationship between female body size and fecundity is insufficient evidence for fecundity selection driving the evolution of female‐biased SSD.  相似文献   

17.
Traditionally it was thought that fitness-related traits such as male mating frequency, with a history of strong directional selection, should have little additive genetic variance and thus respond asymmetrically to bidirectional artificial selection. However, recent findings and theory suggest that a balance between selection for increased male mating frequency and opposing selection pressures on physiologically linked traits will cause male mating frequency to have high additive genetic variation and hence respond symmetrically to selection. We tested these hypotheses in the stalk-eyed fly, Cyrtodiopsis dalmanni, in which males hold harems comprising many females and so have the opportunity to mate at extremely high frequencies. We subjected male stalk-eyed flies to artificial selection for increased ('high') and decreased ('low') mating frequency in the presence of ecologically realistic, high numbers of females. High line males mated significantly more often than control or low line males. The direct response to selection was approximately symmetric in the high and low lines, revealing high additive genetic variation for, and no significant genetic constraints on, increased male mating frequency in C. dalmanni. In order to investigate trade-offs that might constrain male mating frequency under natural conditions we examined correlated responses to artificial selection. We measured accessory gland length, testis length and eyespan after 7 and 14 generations of selection. High line males had significantly larger accessory glands than low line males. No consistent correlated responses to selection were found in testis length or eyespan. Our results suggest that costs associated with the production and maintenance of large accessory glands, although yet to be identified, are likely to be a major constraint on mating frequency in natural populations of C. dalmanni.  相似文献   

18.
Females often possess ornaments that appear smaller and duller than homologous traits in males. These ornaments may arise as nonfunctional by‐products of sexual selection in males and cause negative viability or fecundity selection in females in proportion to the cost of their production and maintenance. Alternatively, female ornaments may function as signals of quality that are maintained by sexual or social selection. In a 4‐year study of 83 female common yellowthroats (Geothlypis trichas) and their 222 young, we found strong viability and fecundity selection on the yellow bib, a carotenoid‐based plumage ornament that is a target of sexual selection in males. Females with larger bibs were older, larger and more fecund than females with smaller bibs. However, bib size positively covaried with bib total brightness and carotenoid chroma, aspects of bib coloration that were under negative viability and fecundity selection. Females with more colourful bibs laid fewer eggs in their first clutch, were more likely to suffer total brood loss due to predation and were less likely to return to the study area. Selection against bib coloration limits the value of bib size as a quality indicator in females and may constrain the elaboration of bib attributes in males.  相似文献   

19.
Studies of phenotypic selection in natural populations often concentrate only on short time periods and do not quantify selection intensities. We quantified temporal and microspatial variation in the intensities of natural and sexual selection for body size in the yellow dung fly over 2 years. Female fecundity selection intensity remained approximately constant over the season with an overall mean ± SE of 0.187 ± 0.014. Selection intensity for male reproductive success, defined as eggs obtained by mating males, did not differ from zero, indicating there was no assortative mating by size. Sexual selection intensity for male mating success favouring large males was variable but overall strong in the two years (0.499 ± 0.053 and 0.510 ± 0.051). As theoretically expected for male–male competition, sexual selection intensity increased with competitor density and reached an asymptote at about 250 males per pat; it also decreased with time in spring and increased again in autumn as a function of density. Small males had the best chance of obtaining a female at very low male densities. Greater selection intensity for large size in males than females is consistent with, and might be responsible for, the observed sexual size dimorphism in this species, as males are larger. The seasonal pattern of mean male body size (smallest at the beginning and end of the season) most likely reflects mere environmental (primarily temperature) influences on phenotypic size.  相似文献   

20.
Females of many taxa often copulate with multiple males and incite sperm competition. On the premise that males of high genetic quality are more successful in sperm competition, it has been suggested that females may benefit from polyandry by accruing 'good genes' for their offspring. Laboratory studies have shown that multiple mating can increase female fitness through enhanced embryo viability, and have exposed how polyandry influences the evolution of the ejaculate. However, such studies often do not allow for both female mate choice and male-male competition to operate simultaneously. Here, I took house mice (Mus domesticus) from selection lines that had been evolving with (polygamous) and without (monogamous) sperm competition for 16 generations and, by placing them in free-ranging enclosures for 11 weeks, forced them to compete for access to resources and mates. Parentage analyses revealed that female reproductive success was not influenced by selection history, but there was a significant paternity bias towards males from the polygamous selection lines. Therefore, I show that female house mice benefit from polyandry by producing sons that achieve increased fitness in a semi-natural environment.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号