首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Extreme climatic events and land‐use change are known to influence strongly the current carbon cycle of Amazonia, and have the potential to cause significant global climate impacts. This review intends to evaluate the effects of both climate and anthropogenic perturbations on the carbon balance of the Brazilian Amazon and to understand how they interact with each other. By analysing the outputs of the Intergovernmental Panel for Climate Change (IPCC) Assessment Report 4 (AR4) model ensemble, we demonstrate that Amazonian temperatures and water stress are both likely to increase over the 21st Century. Curbing deforestation in the Brazilian Amazon by 62% in 2010 relative to the 1990s mean decreased the Brazilian Amazon's deforestation contribution to global land use carbon emissions from 17% in the 1990s and early 2000s to 9% by 2010. Carbon sources in Amazonia are likely to be dominated by climatic impacts allied with forest fires (48.3% relative contribution) during extreme droughts. The current net carbon sink (net biome productivity, NBP) of +0.16 (ranging from +0.11 to +0.21) Pg C year?1 in the Brazilian Amazon, equivalent to 13.3% of global carbon emissions from land‐use change for 2008, can be negated or reversed during drought years [NBP = ?0.06 (?0.31 to +0.01) Pg C year?1]. Therefore, reducing forest fires, in addition to reducing deforestation, would be an important measure for minimizing future emissions. Conversely, doubling the current area of secondary forests and avoiding additional removal of primary forests would help the Amazonian gross forest sink to offset approximately 42% of global land‐use change emissions. We conclude that a few strategic environmental policy measures are likely to strengthen the Amazonian net carbon sink with global implications. Moreover, these actions could increase the resilience of the net carbon sink to future increases in drought frequency.  相似文献   

2.
Colombian vegetation, at the ecological level of the biome, is reconstructed at six sites using pollen data assigned a priori to plant functional types and biomes. The chosen sites incorporate four savanna sites (Laguna Sardinas, Laguna Angel, El Piñal and Laguna Carimagua), a site on the transition between savanna and Amazon rainforest (Loma Linda) and a site within the Amazon rainforest (Pantano de Monica). The areal extent of tropical moist forest, tropical dry forest and steppe have been subject to significant change: differential responses of the vegetation to climatic shifts are related to changes in plant available moisture, duration of dry season and edaphic controls on the vegetation. The record from El Piñal shows that the present-day savanna vegetation, dominated by steppe (Poaceae) with little occurrence of woody savanna taxa (e.g. Curatella, Byrsonima), was present since the last glacial period of the northern hemisphere. Unfortunately, El Piñal is located on an edaphic savanna and is not particularly responsive to registering change. Most records cover the early Holocene; one site records the El Abra stadial (Younger Dryas equivalent), when forest expansion reflects more humid climatic conditions and higher plant available moisture. During the early and middle Holocene, the maximum expansion of steppe and tropical dry forest occurred, indicating that dry climatic conditions continued to around 4000 14C BP. The following period, from shortly before 4000 14C BP, is characterised by an increase in forest and gallery forests, reflecting a wetter period probably with a shorter annual dry season. Anthropogenic influence on the vegetation is recorded by all the records over the last millennial, particularly characterised by a reduction in forest cover and high amplitude changes in vegetation.Biome transitions from one type to another, and the environmental controls on this shift, are investigated by applying a vegetation model (BIOME-3). The model uses climatic data from six meteorological stations that, encompass a range of environments within lowland Colombia, which are similar to the pollen data. The signals of vegetation change can be translated to the main environmental controls of temperature and moisture to indicate the degree of change needed in these parameters to record the vegetation change depicted by the pollen data. Moisture balance is the dominant control on driving vegetation change whether under seasonal or annual control. The combined reconstruction from pollen data and model output of biome-scale vegetation dynamics for lowland Colombia allows an understanding of the environmental controls to be developed.  相似文献   

3.
Several factors have been proposed as drivers of species diversification in the Neotropics, including environmental heterogeneity, the development of drainage systems and historical changes in forest distribution due to climatic oscillations. Here, we investigate which drivers contributed to the evolutionary history and current patterns of diversity of a polymorphic songbird (Arremon taciturnus) that is widely distributed in Amazonian and Atlantic forests as well as in Cerrado gallery and seasonally‐dry forests. We use genomic, phenotypic and habitat heterogeneity data coupled with climatic niche modelling. Results suggest the evolutionary history of the species is mainly related to paleoclimatic changes, although changes in the strength of the Amazon river as a barrier to dispersal, current habitat heterogeneity and geographic distance were also relevant. We propose an ancestral distribution in the Guyana Shield, and recent colonization of areas south of the Amazon river at ~380 to 166 kya, and expansion of the distribution to southern Amazonia, Cerrado and the Atlantic Forest. Since then, populations south of the Amazon River have been subjected to cycles of isolation and possibly secondary contact due to climatic changes that affected habitat heterogeneity and population connectivity. Most Amazonian rivers are not associated with long lasting isolation of populations, but some might act as secondary barriers, susceptible to crossing under specific climatic conditions. Morphological variation, while stable in some parts of the distribution, is not a reliable indicator of genetic structure or phylogenetic relationships.  相似文献   

4.
Palynological studies on late Quaternary lake sediments from the region of the Amazon estuary, 100 km north-east of Belém, Pará State, Brazil, enable reconstruction of lowland Amazonian rain forest during the Late-glacial and Holocene periods. Late-glacial forests included populations of Podocarpus which suggests a distinct climatic cooling. Ilex was abundant in the early Holocene. Records of the mangrove taxon, Rhizophora, indicate rapid Atlantic sea-level rise in the beginning of the Holocene. High charcoal representation may reflect the first arrival of Amerindians in the Amazon coastal area, probably about 10 800 B.P.  相似文献   

5.
We estimated the geographic distributions of triatomine species in Central-West Region of Brazil (CW) and analysed the climatic factors influencing their occurrence. A total of 3,396 records of 27 triatomine species were analysed. Using the maximum entropy method, ecological niche models were produced for eight species occurring in at least 20 municipalities based on 13 climatic variables and elevation. Triatoma sordida and Rhodnius neglectus were the species with the broadest geographic distributions in CW Brazil. The Cerrado areas in the state of Goiás were found to be more suitable for the occurrence of synanthropic triatomines than the Amazon forest areas in the northern part of the state of Mato Grosso. The variable that best explains the evaluated models is temperature seasonality. The results indicate that almost the entire region presents climatic conditions that are appropriate for at least one triatomine species. Therefore, it is recommended that entomological surveillance be reinforced in CW Brazil.  相似文献   

6.
Landscape diversity patterns and endemism of Araceae in Ecuador   总被引:1,自引:0,他引:1  
Araceae is one of the largest herb families in tropical America, but its patterns of diversity and endemism are poorly known. We used predictive distribution modelling in GIS to study Araceae richness on a landscape scale in Ecuador. Modelling was based on georeferenced herbarium collections with humidity and mean annual temperature as climatic variables. Variation partitioning using multiple regression showed that humidity and altitude were main factors in explaining Araceae diversity patterns. Endemism was less well explained by present climatic factors. Unlike common diversity patterns of herbs or epiphytes, Araceae richness was highest in the eastern (Amazon) lowland rain forest with a secondary centre on the Andean foothills of northwestern Ecuador. The peak in endemism was on the western slopes of the Andes, corresponding to areas that have been severely affected by human activities and deforestation. Eastern lowland (Amazonian) forests were poor in endemic Araceae.  相似文献   

7.
Impact of a drier Early-Mid-Holocene climate upon Amazonian forests   总被引:1,自引:0,他引:1  
This paper uses a palaeoecological approach to examine the impact of drier climatic conditions of the Early-Mid-Holocene (ca 8000-4000 years ago) upon Amazonia's forests and their fire regimes. Palaeovegetation (pollen data) and palaeofire (charcoal) records are synthesized from 20 sites within the present tropical forest biome, and the underlying causes of any emergent patterns or changes are explored by reference to independent palaeoclimate data and present-day patterns of precipitation, forest cover and fire activity across Amazonia. During the Early-Mid-Holocene, Andean cloud forest taxa were replaced by lowland tree taxa as the cloud base rose while lowland ecotonal areas, which are presently covered by evergreen rainforest, were instead dominated by savannahs and/or semi-deciduous dry forests. Elsewhere in the Amazon Basin there is considerable spatial and temporal variation in patterns of vegetation disturbance and fire, which probably reflects the complex heterogeneous patterns in precipitation and seasonality across the basin, and the interactions between climate change, drought- and fire susceptibility of the forests, and Palaeo-Indian land use. Our analysis shows that the forest biome in most parts of Amazonia appears to have been remarkably resilient to climatic conditions significantly drier than those of today, despite widespread evidence of forest burning. Only in ecotonal areas is there evidence of biome replacement in the Holocene. From this palaeoecological perspective, we argue against the Amazon forest 'dieback' scenario simulated for the future.  相似文献   

8.
Greece, as part of the Mediterranean Basin, is projected to be among the most vulnerable countries to climate change. It is therefore quite urgent to adapt forest management to the changing climate in order to enhance biodiversity and to enable the conservation of healthy and productive forests. In the framework of the project LIFE+ AdaptFor (www.life-adaptfor.gr), an effort was made to understand the ecological responses and the vulnerability of forest ecosystems in the face of climate change; the overall aim of the project is the development and implementation of appropriate adaptation strategies. Four study areas were selected where changes in vegetation, quite likely attributed to climate change, have already been observed (dieback of Scots pine and Greek fir, intrusion of conifers in broadleaved forests). To investigate the synergism of climatic parameters’ alterations in the development of the occurring phenomena, time series of temperature and precipitation for the period 1950–2009 were produced and parameters of forest status were investigated, including mapping of vegetation changes through remote sensing. The findings support the hypothesis that climate change has an impact on forest health; the dieback of tree species can be attributed to outbreaks of pathogens (fungi and insects) which are associated with climatic parameters. However, the intrusion of conifer species into broadleaved forests showed no direct connection to climatic parameters, something that needs to be further investigated. In all cases, insufficient or inappropriate management practices applied in the areas exacerbated the occurring phenomena.  相似文献   

9.
Abstract Aim To examine how the genetic diversity of selected taxa of forest‐dwelling small mammals is distributed between and within the major rain forest domains of Amazonia and Atlantic Forest and the intervening interior forests of Brazil, as inferred by the relationships between gene genealogies and geography. I also addressed the historical importance of the central Brazilian forests in connecting Amazon and Atlantic Forest populations of rodents and marsupials. Methods I evaluated variation in the mitochondrial cytochrome b gene to estimate the levels of sequence divergence between those taxa occurring throughout the Amazon, Atlantic Forest, and forests in the Cerrado and Caatinga regions. I inferred the hierarchical relationships between haplotypes, populations and formal taxa using the cladistic approach of maximum parsimony. I compared areas and the clades identified by superimposing cladograms on the geographical distribution of samples. The degree of concordance both in phylogeny and the depth of the nodes in these phylogenies, in addition to patterns of geographical distribution of clades, permitted me to make inferences on how, when and where the taxa differentiated. Results Sequence similarity is often greater between samples from the Atlantic Forest and either Amazon or central Brazilian forests than it is within each of the two rain forest domains. The Atlantic Forest clades are either not reciprocally monophyletic or are the sister group to all the other clades. There is some indication of northern and southern components in the Atlantic Forest. Given the geographical distribution of clades and the relatively deep levels of divergence, the central Brazilian area does not behave as a separate region but is complementary to either Amazon or Atlantic Forest. Patterns of area relationships differ across taxa, suggesting that different processes and/or historic events affected the diversification within each lineage. Main conclusions The Amazon and the Atlantic forests are not exclusive in terms of their small mammal faunas; both overlap broadly with taxa occurring in gallery forests and dry forests in central Brazil. Central Brazilian forests are an integral part of the evolutionary scenario of lowland small mammals, playing an important role as present and past habitats for rain forest species. Therefore, representatives from this area should always be included in analyses of the evolutionary history of lowland rain forest faunas. The incongruence of branching patterns among areas is in agreement with recent results presented for Neotropical passerine birds and indicates that a single hypothesis of Neotropical area relationships is unlikely. These findings reinforce the idea that speciation in the Neotropics will not be explained by any single model of vicariance or climatic changes.  相似文献   

10.
Seasonally dry tropical forests are an important global climatic regulator, a main driver of the global carbon sink dynamics and are predicted to suffer future reductions in their productivity due to climate change. Yet, little is known about how interannual climate variability affects tree growth and how climate-growth responses vary across rainfall gradients in these forests. Here we evaluate changes in climate sensitivity of tree growth along an environmental gradient of seasonally dry tropical vegetation types (evergreen forest – savannah – dry forest) in Northeastern Brazil, using congeneric species of two common neotropical genera: Aspidosperma and Handroanthus. We built tree-ring width chronologies for each species × forest type combinations and explored how growth variability correlated with local (precipitation, temperature) and global (the El Niño Southern Oscillation - ENSO) climatic factors. We also assessed how growth sensitivity to climate and the presence of growth deviations varied along the gradient. Precipitation stimulates tree growth and was the main growth-influencing factor across vegetation types. Trees in the dry forest site showed highest growth sensitivity to interannual variation in precipitation. Temperature and ENSO phenomena correlated negatively with growth and sensitivity to both climatic factors were similar across sites. Negative growth deviations were present and found mostly in the dry-forest species. Our results reveal a dominant effect of precipitation on tree growth in seasonally dry tropical forests and suggest that along the gradient, dry forests are the most sensitivity to drought. These forests may therefore be the most vulnerable to the deleterious effects of future climatic changes. These results highlight the importance of understanding the climatic sensitivity of different tropical forests. This understanding is key to predict the carbon dynamics in tropical regions, and sensitivity differences should be considered when prioritizing conservation measures of seasonally dry topical forests.  相似文献   

11.
Interpretations of habitat use in tropical frog assemblages have centred on resource partitioning and stressed the influence of interspecific interaction and climatic fluctuation on numbers of species using various habitats. We used audio strip transects and visual methods to determine the species composition, reproductive modes, and habitat occupancy patterns of the entire assemblage of frog species in 1900 hectares of primary forest north of Manaus in the central Amazon. We then compared taxon, reproductive mode, and habitat of species at six analogous lowland forest sites of similar species richness (five in the Amazon and one in Southeast Asia) to determine similarity of habitat use among sites and whether habitat is strongly associated with species» systematic positions. In all lowland Amazonian faunas, most species with aquatic development use pools, many species undergo some degree of terrestrial development, and few species are riparian or develop in streams. In contrast, about half the species in Southeast Asian assemblages are riparian and develop in streams, and few species develop terrestrially. Because reproductive mode and habitat associate strongly with taxon, patterns of habitat use observed at this regional scale are better explained by historical biogeography and differential rates of speciation than by proximal selection generated by contemporary environmental conditions. This study presents an inventory of frog species in a central Amazonian terre-firme forest and measurements of habitat availability and use by an entire assemblage of frogs throughout a large area (other portions of this study were published by Gascon, 1990, 1991; Zimmerman & Rodrigues, 1990; Zimmerman, 1991). We asked whether this local pattern of habitat occupancy differed from the regional Amazonian pattern and whether local species composition could be predicted from (sub)habitat composition. Viewing the assemblage at the local level did reveal species-(sub)habitat relationships masked at the broader regional level. About half the pool-breeders at the Manaus forest study sites would not use pools that could be flooded by a permanent stream; several species distinguished between permanent and temporary ponds; and some species occupied all available breeding habitat, whereas others occurred patchily. This pattern was maintained over four breeding seasons, and species composition could be predicted from (sub)habitat composition. Phylogeny was not a predictor of subhabitat occupancy. Perhaps species are phylogenetically constrained to develop in pool, stream, riparian, or terrestrial habitats, but contemporary selection governs their narrow distribution within these major habitat types. Finally, we asked whether anuran species richness in the central Amazon differs from that of the upper or lower Amazon. One genus, Eleutherodactylus , accounts for elevated species richness at upper Amazonian sites. Dry seasons in the central and lower Amazon are unlikely to restrict the spread of eleutherodactylines, which reproduce terrestrially. There are as many non-eleutherodactylines with terrestrial development at seasonal sites as there are at continually wet sites. Colonization history and the topography of central and lower Amazonia are more likely to limit eleutherodactyline richness.  相似文献   

12.
Some model experiments predict a large-scale substitution of Amazon forest by savannah-like vegetation by the end of the twenty-first century. Expanding global demands for biofuels and grains, positive feedbacks in the Amazon forest fire regime and drought may drive a faster process of forest degradation that could lead to a near-term forest dieback. Rising worldwide demands for biofuel and meat are creating powerful new incentives for agro-industrial expansion into Amazon forest regions. Forest fires, drought and logging increase susceptibility to further burning while deforestation and smoke can inhibit rainfall, exacerbating fire risk. If sea surface temperature anomalies (such as El Niño episodes) and associated Amazon droughts of the last decade continue into the future, approximately 55% of the forests of the Amazon will be cleared, logged, damaged by drought or burned over the next 20 years, emitting 15–26 Pg of carbon to the atmosphere. Several important trends could prevent a near-term dieback. As fire-sensitive investments accumulate in the landscape, property holders use less fire and invest more in fire control. Commodity markets are demanding higher environmental performance from farmers and cattle ranchers. Protected areas have been established in the pathway of expanding agricultural frontiers. Finally, emerging carbon market incentives for reductions in deforestation could support these trends.  相似文献   

13.
Anthropogenic and natural forest disturbance cause ecological damage and carbon emissions. Forest disturbance in the Amazon occurs in the form of deforestation (conversion of forest to non‐forest land covers), degradation from the extraction of forest resources, and destruction from natural events. The crucial role of the Amazon rainforest in the hydrologic cycle has even led to the speculation of a disturbance “tipping point” leading to a collapse of the tropical ecosystem. Here we use time series analysis of Landsat data to map deforestation, degradation, and natural disturbance in the Amazon Ecoregion from 1995 to 2017. The map was used to stratify the study area for selection of sample units that were assigned reference labels based on their land cover and disturbance history. An unbiased statistical estimator was applied to the sample of reference observations to obtain estimates of area and uncertainty at biennial time intervals. We show that degradation and natural disturbance, largely during periods of severe drought, have affected as much of the forest area in the Amazon Ecoregion as deforestation from 1995 to 2017. Consequently, an estimated 17% (1,036,800 ± 24,800 km2, 95% confidence interval) of the original forest area has been disturbed as of 2017. Our results suggest that the area of disturbed forest in the Amazon is 44%–60% more than previously realized, indicating an unaccounted for source of carbon emissions and pervasive damage to forest ecosystems.  相似文献   

14.
Protected area systems and conservation corridors can help mitigate the impacts of climate change on Amazonian biodiversity. We propose conservation design criteria that will help species survive in situ or adjust range distributions in response to increased drought. The first priority is to protect the western Amazon, identified as the 'Core Amazon', due to stable rainfall regimes and macro-ecological phenomena that have led to the evolution of high levels of biodiversity. Ecotones can buffer the impact from climate change because populations are genetically adapted to climate extremes, particularly seasonality, because high levels of habitat diversity are associated with edaphic variability. Future climatic tension zones should be surveyed for geomorphological features that capture rain or conserve soil moisture to identify potential refugia for humid forest species. Conservation corridors should span environmental gradients to ensure that species can shift range distributions. Riparian corridors provide protection to both terrestrial and aquatic ecosystems. Multiple potential altitudinal corridors exist in the Andes, but natural and anthropogenic bottlenecks will constrain the ability of species to shift their ranges and adapt to climate change. Planned infrastructure investments are a serious threat to the potential to consolidate corridors over the short and medium term.  相似文献   

15.
We developed an automated tree crown analysis algorithm using 1-m panchromatic IKONOS satellite images to examine forest canopy structure in the Brazilian Amazon. The algorithm was calibrated on the landscape level with tree geometry and forest stand data at the Fazenda Cauaxi (3.75° S, 48.37° W) in the eastern Amazon, and then compared with forest stand data at Tapajos National Forest (3.08° S, 54.94° W) in the central Amazon. The average remotely sensed crown width (mean ± SE) was 12.7 ± 0.1 m (range: 2.0–34.0 m) and frequency of trees was 76.6 trees/ha at Cauaxi. At Tapajos, remotely sensed crown width was 13.1 ± 0.1 m (range: 2.0–38.0 m) and frequency of trees was 76.4 trees/ha. At both Cauaxi and Tapajos, the remotely sensed average crown widths were within 3 percent of the crown widths derived from field measurements, although crown distributions showed significant differences between field-measured and automated methods. We used the remote sensing algorithm to estimate crown dimensions and forest structural properties in 51 forest stands (1 km2) throughout the Brazilian Amazon. The estimated crown widths, tree diameters (dbh), and stem frequencies differed widely among sites, while estimated biomass was similar among most sites. Sources of observed errors included an inability to detect understory crowns and to separate adjacent, intermingled crowns. Nonetheless, our technique can serve to provide information about structural characteristics of large areas of unsurveyed forest throughout Amazonia.  相似文献   

16.
Amazon droughts have impacted regional ecosystem functioning as well as global carbon cycling. The severe dry‐season droughts in 2005 and 2010, driven by Atlantic sea surface temperature (SST) anomaly, have been widely investigated in terms of drought severity and impacts on ecosystems. Although the influence of Pacific SST anomaly on wet‐season precipitation has been well recognized, it remains uncertain to what extent the droughts driven by Pacific SST anomaly could affect forest greenness and photosynthesis in the Amazon. Here, we examined the monthly and annual dynamics of forest greenness and photosynthetic capacity when Amazon ecosystems experienced an extreme drought in 2015/2016 driven by a strong El Niño event. We found that the drought during August 2015–July 2016 was one of the two most severe meteorological droughts since 1901. Due to the enhanced solar radiation during this drought, overall forest greenness showed a small increase, and 21.6% of forests even greened up (greenness index anomaly ≥1 standard deviation). In contrast, solar‐induced chlorophyll fluorescence (SIF), an indicator of vegetation photosynthetic capacity, showed a significant decrease. Responses of forest greenness and photosynthesis decoupled during this drought, indicating that forest photosynthesis could still be suppressed regardless of the variation in canopy greenness. If future El Niño frequency increases as projected by earth system models, droughts would result in persistent reduction in Amazon forest productivity, substantial changes in tree composition, and considerable carbon emissions from Amazon.  相似文献   

17.
Gradual changes in vegetation structure and composition are expected to result from continuous environmental change with increasing elevation on mountains. Hence, the occurrence of abrupt or discrete ecotones in vegetation patterns is intriguing and may suggest key controls on community assembly in montane forests. We review tropical montane forest (TMF) zonation patterns focusing on a case study from the Cordillera Central, Hispaniola where a striking discontinuity in forest composition occurs consistently at ~2000 m elevation, with cloud forest below and monodominant pine forest above. We propose that a discontinuity in climatic factors (temperature, humidity) associated with the trade‐wind inversion (TWI) is the primary cause of this and other ecotones in TMFs that occur at a generally consistent elevation. Low humidity, fires and occasional frost above the TWI favor pine over cloud forest species. Fires in the high‐elevation pine forest have repeatedly burned down to the ecotone boundary and extinguished in the cloud forest owing to its low flammability, reinforced by high humidity, cloud immersion and epiphytic bryophyte cover. Small‐scale fire patterns along the ecotone are influenced by topography and where forest structure is impacted by hurricanes and landslides. Analogous patterns are observed worldwide in other TMFs where the TWI is important, high‐elevation fires are frequent, and the flora contains frost‐tolerant species (often of temperate lineage). The response of this and other TMFs to anthropogenic climate change is highly uncertain owing to potentially countervailing effects of different climatic phenomena, including warming temperatures and decreased frost; changes in the TWI, high‐elevation drought or cloudiness; and increased frequency or intensity of hurricanes and El Niño‐Southern Oscillation events.  相似文献   

18.
Tall trees are key drivers of ecosystem processes in tropical forest, but the controls on the distribution of the very tallest trees remain poorly understood. The recent discovery of grove of giant trees over 80 meters tall in the Amazon forest requires a reevaluation of current thinking. We used high‐resolution airborne laser surveys to measure canopy height across 282,750 ha of old‐growth and second‐growth forests randomly sampling the entire Brazilian Amazon. We investigated how resources and disturbances shape the maximum height distribution across the Brazilian Amazon through the relations between the occurrence of giant trees and environmental factors. Common drivers of height development are fundamentally different from those influencing the occurrence of giant trees. We found that changes in wind and light availability drive giant tree distribution as much as precipitation and temperature, together shaping the forest structure of the Brazilian Amazon. The location of giant trees should be carefully considered by policymakers when identifying important hot spots for the conservation of biodiversity in the Amazon.  相似文献   

19.
Lips  Johanna M.  Duivenvoorden  Joost F. 《Oecologia》1996,108(1):138-150
A comparative litter fall study was made in five rain forest stands along a gradient of humus form development and soils in the Amazon lowlands of eastern Colombia. The total fine litter fall was highest in a plot on a well drained soil of the flood plain of the Caquetá River (1.07 kg · m-2 · y-1), lower in three plots on well drained upland soils (0.86, 0.69, and 0.68 kg · m-2 · y-1), and lowest in a plot on a poorly drained, upland podzolised soil (0.62 kg · m-2 · y-1). In the four upland plots, leaf litter fall patterns were highly associated, which points at climatic regulation. Litter resource quality, as represented by nutrient concentrations and area/weight ratio of the leaf litter fall, was comparatively high in the flood plain plot. In the upland plots, concentrations and fluxes of Ca, Mg, K, and P were as low as in oligotrophic central Amazonian upland forests. This questions generalisations that the western peripheral region of the Amazon basin should be less oligotrophic than central Amazonia. The upland plot on the podzolised soil showed the lowest concentrations and fluxes of N. Mean residence times of organic matter and nutrients in the L horizons hardly differed between the five plots, suggesting that edaphic properties and litter resource quality are of little importance in the first step of decomposition. Mean residence time of organic matter in all ectorganic horizons combined (estimated on the basis of litter input and necromass on the forest floor, and uncorrected for dead fine root input) varied from 1.0 y in the flood plain forest, 1.1–3.3 y in the well drained upland forests, and 10.2 y in the forest on the podzolised soil.  相似文献   

20.
Aim To evaluate the relative effectiveness of the lower and upper sections, respectively, of the Amazon River as a barrier to bird distribution, and to evaluate ecological and taxonomic factors affecting the efficacy of the river barrier. Location Amazon River of South America between its confluence with the Napo River in the west and its delta in the east. Methods Using published distribution maps for 448 species of passerine birds occurring along the Amazon River, we evaluated whether each was distributed along one bank only (river presumed to be a barrier) or both banks (no barrier) to test the predictions that the river was more effective as a dispersal barrier: (1) along the lower, wider portion of the river than the upper, narrower portion; (2) for species inhabiting forests than open country; (3) for species inhabiting forest understorey than forest canopy; (4) for species restricted to terra firme (never inundated upland forest) than those not restricted to terra firme and (5) for certain taxonomic groups. Results Our analyses demonstrated that the Amazon River was most effective as a dispersal barrier along its lower portion and for species restricted to forests and terra firme. However, the river was not significantly more of a barrier for species inhabiting forest understorey than forest canopy. The river was most significant as a barrier to dispersal for the antbirds (Thamnophilidae) and was less significant as a barrier to species belonging to several large families including woodcreepers (Dendrocolaptidae), ovenbirds (Furnariidae), flycatchers (Tyrannidae), cotingids (Cotingidae), tanagers (Thraupidae), seed‐eating finches (Emberizidae) and blackbirds (Icteridae). Main conclusions The robust widths of Amazonian rivers are widely considered to represent impediments to dispersal and gene flow for many taxa of birds and other animals, and may have represented agents of vicariance in the diversification of species. Our study reaffirms the effectiveness of the lower Amazon River as a current barrier to bird dispersal for forest birds and provides new insights into the effects of habitat and taxonomy on the efficacy of the river barrier. Although supportive of several predictions of the river hypothesis of biological diversification, our study is limited in addressing the historical impact of river barriers as agents of vicariance in the process of diversification.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号