首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The relative contribution of density-dependent regulation and environmental stochasticity to the temporal dynamics of animal populations is one of the central issues of ecology. In insects, the primary role of the latter factor, typically represented by weather patterns, is widely accepted. We have evaluated the impact of density dependence as well as density-independent factors, including weather and mowing regime, on annual fluctuations of butterfly populations. As model species, we used Maculinea alcon and M. teleius living in sympatry and, consequently, we also analysed the effect of their potential competition. Density dependence alone explained 62 and 42% of the variation in the year-to-year trends of M. alcon and M. teleius, respectively. The cumulative Akaike weight of models with density dependence, which can be interpreted as the probability that this factor should be contained in the most appropriate population dynamics model, exceeded 0.97 for both species. In contrast, the impacts of inter-specific competition, mowing regime and weather were much weaker, with their cumulative weights being in the range of 0.08–0.21; in addition, each of these factors explained only 2–5% of additional variation in Maculinea population trends. Our results provide strong evidence for density-dependent regulation in Maculinea, while the influence of environmental stochasticity is rather minor. In the light of several recent studies on other butterflies that detected significant density-dependent effects, it would appear that density-dependent regulation may be more widespread in this group than previously thought, while the role of environmental stochasticity has probably been overestimated. We suggest that this misconception is the result of deficiencies in the design of most butterfly population studies in the past, including (1) a strong focus on adults and a neglect of the larval stage in which density-dependent effects are most likely to occur; (2) an almost exclusive reliance on transect count results that may confound the impact of environmental stochasticity on butterfly numbers with its impact on adult longevity. Electronic supplementary material  The online version of this article (doi:) contains supplementary material, which is available to authorized users.  相似文献   

2.
It is frequently assumed that population fluctuations are largely independent within a community of trophically‐similar species, but this need not be so. If population fluctuations are partly synchronized or concordant, this will produce interannual variability in the community's aggregate abundance and generate temporal variance in ecosystem structure. We studied the community of Lepidoptera inhabiting northern hardwood forests in New Hampshire, USA, to evaluate the hypothesis that fluctuations in consumer communities can arise from concordant dynamics of constituent populations. Interannual comparisons of moth abundances for >75 species sampled at three sites over four years revealed that concordant dynamics contribute strongly to interannual variability in the abundance of consumers. A conspicuous decline in community abundance from 2004 to 2005 was the result of predominantly negative population growth rates of the component species, while an increase in community abundance from 2006 to 2007 was the result of predominantly positive population growth rates. Population dynamics most strongly linked species that feed in the early season (perhaps due to shared responses to climatic effects), but not species that might share natural enemies or host plants. The observed concordant dynamics introduced conspicuous temporal variation in the abundance of primary consumers relative to plants and secondary consumers, thereby altering the forest's trophic structure. Such variance in the aggregate abundance of forest primary consumers could generate time‐lagged fluctuations in abundances of secondary consumers and will generally have important consequences for ecosystem properties and processes that are nonlinear functions of consumer abundance, such as plant community structure and nutrient cycling.  相似文献   

3.
4.
Although a range of studies have suggested that competition plays a critical role in determining herbivore assemblages, there has been little work addressing the nature of interactions between competing invasive herbivores. We report the results of research on the hemlock woolly adelgid Adelges tsugae (‘HWA’) and elongate hemlock scale Fiorinia externa (‘EHS’), invasive herbivores that both feed on eastern hemlock (Tsuga canadensis). HWA has been linked to hemlock mortality throughout the East Coast of the US; the loss of hemlock threatens to permanently alter surrounding ecosystems. We assessed the spread and impact of both species by resurveying 142 hemlock stands across a 7,500 km2 latitudinal transect, running from coastal CT to northern MA, for HWA and EHS density as well as hemlock mortality. These stands had been previously surveyed in either 1997–1998 (CT) or 2002–2004 (MA). While the number of HWA-infested stands has increased, per-stand HWA density has substantially decreased. In contrast, EHS distribution and density has increased dramatically since 1997–1998. Hemlock mortality was much more strongly related to HWA density than to EHS density, and many stands remain relatively healthy despite an overall increase in hemlock mortality. There was a positive correlation between HWA and EHS densities in stands with low mean HWA densities, suggesting the potential for host-plant-mediated facilitation of EHS by HWA. Our findings underline the importance of research explicitly addressing interactions between competing invasive species, and of determining the potential consequences of these interactions for the invaded ecosystem.  相似文献   

5.
6.
Complex dynamics of animal populations often involve deterministic and stochastic components. A fascinating example is the variation in magnitude of 2-year cycles in abundances of pink salmon (Oncorhynchus gorbuscha) stocks along the North Pacific rim. Pink salmon have a 2-year anadromous and semelparous life cycle, resulting in odd- and even-year lineages that occupy the same habitats but are reproductively isolated in time. One lineage is often much more abundant than the other in a given river, and there are phase switches in dominance between odd- and even-year lines. In some regions, the weak line is absent and in others both lines are abundant. Our analysis of 33 stocks indicates that these patterns probably result from stochastic perturbations of damped oscillations owing to density-dependent mortality caused by interactions between lineages. Possible mechanisms are cannibalism, disease transmission, food depletion and habitat degradation by which one lineage affects the other, although no mechanism has been well-studied. Our results provide comprehensive empirical estimates of lagged density-dependent mortality in salmon populations and suggest that a combination of stochasticity and density dependence drives cyclical dynamics of pink salmon stocks.  相似文献   

7.
Using a long-term demographic data set, we estimated the separate effects of demographic and environmental stochasticity in the growth rate of the great tit population in Wytham Wood, United Kingdom. Assuming logistic density regulation, both the demographic (sigma2d = 0.569) and environmental (sigma2e = 0.0793) variance, with interactions included, were significantly greater than zero. The estimates of the demographic variance seemed to be relatively insensitive to the length of the study period, whereas reliable estimates of the environmental variance required long time series (at least 15 yr of data). The demographic variance decreased significantly with increasing population density. These estimates are used in a quantitative analysis of the demographic factors affecting the risk of extinction of this population. The very long expected time to extinction of this population (approximately 10(19) yr) was related to a relatively large population size (>/=120 pairs during the study period). However, for a given population size, the expected time to extinction was sensitive to both variation in population growth rate and environmental stochasticity. Furthermore, the form of the density regulation strongly affected the expected time to extinction. Time to extinction decreased when the maximum density regulation approached K. This suggests that estimates of viability of small populations should be given both with and without inclusion of density dependence.  相似文献   

8.
Recent long-term studies of population ecology of large herbivorous mammals suggest that survival of prime-aged females varies little from year to year and across populations. Juvenile survival, on the other hand, varies considerably from year to year. The pattern of high and stable adult survival and variable juvenile survival is observed in contrasting environments, independently of the main proximal sources of mortality and regardless of whether mortality is stochastic or density-dependent. High yearly variability in juvenile survival may play a predominant role in population dynamics.  相似文献   

9.

Background and Aims

Models assessing the prospects of plant species at the landscape level often focus primarily on the relationship between species dynamics and landscape structure. However, the short-term prospects of species with slow responses to landscape changes depend on the factors affecting local population dynamics. In this study it is hypothesized that large herbivores may be a major factor affecting the short-term prospects of slow-responding species in the European landscape, because large herbivores have increased in number in this region in recent decades and can strongly influence local population dynamics.

Methods

The impact of browsing by large herbivores was simulated on the landscape-level dynamics of the dry grassland perennial polycarpic herb Scorzonera hispanica. A dynamic, spatially explicit model was used that incorporated information on the location of patches suitable for S. hispanica, local population dynamics (matrices including the impact of large herbivores), initial population sizes and dispersal rate of the species. Simulations were performed relating to the prospects of S. hispanica over the next 30 years under different rates of herbivory (browsing intensity) and varying frequencies of population destruction (e.g. by human activity).

Key Results

Although a high rate of herbivory was detected in most populations of S. hispanica, current landscape-level dynamics of S. hispanica were approximately in equilibrium. A decline or increase of over 20 % in the herbivory rate promoted rapid expansion or decline of S. hispanica, respectively. This effect was much stronger in the presence of population destruction.

Conclusions

Browsing by large herbivores can have a dramatic effect on the landscape dynamics of plant species. Changes in the density of large herbivores and the probability of population destruction should be incorporated into models predicting species abundance and distribution.  相似文献   

10.
Whether self-regulating large herbivores play a key role in the development of wood-pasture landscapes remains a crucial unanswered question for both ecological theory and nature conservation. We describe and analyse how a ‘partly self-regulating’ population of cattle, horses and red deer affected the development of the woody vegetation in the Oostvaardersplassen nature reserve (Netherlands). Using aerial photographs from 1980 to 2011, we analysed the development of shrubs and trees. Before the large herbivores were introduced in the Oostvaardersplassen in 1983, the woody vegetation increased and vegetation type significantly affected the number of establishments. Cover of woody species increased further from 1983 to 1996, not only by canopy expansion but also by new establishments. After 1996, cover of the woody vegetation decreased from 30% to <1% in 2011 and no new establishments were seen on the photographs. Survival of Sambucus nigra and Salix spp. increased with increasing distance to grassland, which is the preferred foraging habitat of the herbivores. These results support the hypothesis of Associational Palatability. In addition, our results show that the relative decline in cover of S. nigra and Salix spp. over a certain period was negatively correlated with the cover of S. nigra in the beginning of this period, presenting some evidence for the Associational Resistance and Aggregational Resistance hypothesis. Our research shows aspects necessary for the woodland–grassland cycle, such as a strong decline of woody vegetation at high numbers of large herbivores and regeneration of shrubs and trees at low densities. Thorny shrubs, which are important for the cycle, have not yet established in the grasslands. It seems that a temporary decline in herbivore numbers is necessary to create a window of opportunity for the establishment of these woody species.  相似文献   

11.
马祖飞  李典谟 《生态学报》2003,23(12):2702-2710
影响种群绝灭的随机干扰可分为种群统计随机性、环境随机性和随机灾害三大类。在相对稳定的环境条件下和相对较短的时间内,以前两类随机干扰对种群绝灭的影响为生态学家关注的焦点。但是,由于自然种群动态及其影响因子的复杂特征,进一步深入研究随机干扰对种群绝灭的作用在理论上和实践上都必须发展新的技术手段。本文回顾了种群统计随机性与环境随机性的概念起源与发展,系统阐述了其分析方法。归纳了两类随机性在种群绝灭研究中的应用范围、作用方式和特点的异同和区别方法。各类随机作用与种群动态之间关系的理论研究与对种群绝灭机理的实践研究紧密相关。根据理论模型模拟和自然种群实际分析两方面的研究现状,作者提出了进一步深入研究随机作用与种群非线性动态方法的策略。指出了随机干扰影响种群绝灭过程的研究的方向:更多的研究将从单纯的定性分析随机干扰对种群动力学简单性质的作用,转向结合特定的种群非线性动态特征和各类随机力作用特点具体分析绝灭极端动态的成因,以期做出精确的预测。  相似文献   

12.
The joint effects of multiple herbivores on their shared host plant have received increasing interest recently. The influence of herbivores on population dynamics of their host plants, especially the relative roles of different types of damage, is, however, still poorly understood. Here, we present a modelling approach, including both deterministic and stochastic matrix modelling, to be used in estimating fitness effects of multiple herbivores on perennial plants. We examined the effects and relative roles of two specialist herbivores, a pre-dispersal seed predator, Euphranta connexa, and a leaf-feeding moth, Abrostola asclepiadis, on the population dynamics and long-term fitness of their shared host plant, a long-lived perennial herb Vincetoxicum hirundinaria (Asclepiadaceae). We collected demographic data during 3 years and combined these data with the effects of natural levels of herbivory measured from the same individuals. We found that both seed predation and leaf herbivory reduced population growth of V. hirundinaria, but only very high damage levels changed the growth trend of the vigorously growing study populations from positive to negative. Demographic modelling indicated that seed predation had a greater impact on plant population growth than leaf herbivory. The effect of leaf herbivory was weaker and diminished with increasing level of seed predation. Evaluation of individual fitness components, however, suggested that leaf herbivory contributed more strongly to host plant fitness than seed predation. Our results emphasize that understanding the effects of a particular herbivore on plant population dynamics requires also knowledge on other herbivores present in the system, because the effect of a particular type of herbivory on plant population dynamics is likely to vary according to the intensity of other types of herbivory. Furthermore, evaluating herbivore impact from using individual fitness components does not necessarily reflect the long-term effects on total plant fitness.  相似文献   

13.
14.
The birth and death transition rates for a population are modelled as functions of both the population size and the environmental condition. An assortment of important theoretical results and techniques that can be utilized to analyze such a population’s behaviour is covered. Consequently, these results and techniques are used to study two examples. Firstly, we study a population with a stable equilibrium state, whose per capita birth and death rates are linearly related to the environmental condition. (The environmental condition in turn is modelled as an Ornstein–Uhlenbeck process.) Secondly, we study a population affected by two interdependent environmental factors.  相似文献   

15.
16.
17.
Helms SE  Hunter MD 《Oecologia》2005,145(2):196-203
In the attempt to use results from small-scale studies to make large-scale predictions, it is critical that we take into account the greater spatial heterogeneity encountered at larger spatial scales. An important component of this heterogeneity is variation in plant quality, which can have a profound influence on herbivore population dynamics. This influence is particularly relevant when we consider that the strength of density dependence can vary among host plants and that the strength of density dependence determines the difference between exponential and density- dependent growth. Here, we present some simple models and analyses designed to examine the impact of variable plant quality on the dynamics of insect herbivore populations, and specifically the consequences of variation in the strength of density dependence among host plants. We show that average values of herbivore population growth parameters, calculated from plants that vary in quality, do not predict overall population growth. Furthermore, we illustrate that the quality of a few individual plants within a larger plant population can dominate herbivore population growth. Our results demonstrate that ignoring spatial heterogeneity that exists in herbivore population growth on plants that differ in quality can lead to a misunderstanding of the mechanisms that underlie population dynamics.  相似文献   

18.
1. Although both endogenous and exogenous processes regulate populations, the current understanding of the contributions from density dependence and climate to the population dynamics of eruptive herbivores remains limited. 2. Using a 17‐year time series of three cereal aphid species [Rhopalosiphum padi L., Metopolophium dirhodum (Walker), and Diuraphis noxia (Kurdumov)] compiled from a trapping network spanning the northwestern U.S.A., temporal and spatial patterns associated with population fluctuations, and modelled density dependence in aphid abundances were tested. These models were used to analyse correlations between climate and aphid abundances in the presence and absence of residual variance as a result of density‐dependent effects. 3. The temporal dynamics of aphid population fluctuations indicated periodicity, with no clear evidence for a spatial pattern underlying population fluctuations. 4. Aphid abundances oscillated in a manner consistent with delayed density dependence for all three aphid species, although the strength of these feedbacks differed among species. 5. Diuraphis noxia abundances were negatively correlated with increasing temperatures in the absence of density‐dependent effects, whereas M. dirhodum abundances were positively correlated with increasing cumulative precipitation in the presence of density‐dependent effects; yet, R. padi abundances were unrelated to climate variables irrespective of population feedbacks. 6. Our analysis suggests that endogenous feedbacks differentially regulate aphid populations in the northwestern U.S.A., and these feedbacks may operate at an expansive spatial scale. It is concluded that the contributions of density dependence and climate to aphid population dynamics are species‐specific in spite of similar ecological niches, with implications for assessing species responses to climate variability.  相似文献   

19.
Summary The hypothesis of exploitation ecosystems was reanalysed using the model of Armstrong (1979) which simultaneously deals with population dynamics and evolution. The results indicate that the prediction of Oksanenet al. (1981) of strict predation limitation of herbivores in productive ecosystems does not hold for coevolved systems. Depending on the nature of herbivore-carnivore coevolution, herbivore biomass may level off at a threshold productivity value or increase monotonously with increasing primary productivity, though at a strongly reduced rate in productive ecosystems. Under both circumstances, increasing primary productivity is predicted to be accompanied by gradual replacement of genuine folivores by semi-granivores and true granivores. The dominating guild members are predicted to show some degree of resource-limitation, although only granivores are predicted to be chiefly resource-limited even in the most productive ecosystems. Data on arctic-to-temperate patterns in the community structure of herbivorous vertebrates conform to the implications of the analysis.  相似文献   

20.
Empirical work suggest that long‐lived organisms have adopted risk sensitive reproductive strategies where individuals trade the amount of resources spent on reproduction versus survival according to expected future environmental conditions. Earlier studies also suggest that climate affects population dynamics both directly by affecting population vital rates and indirectly through long‐term changes in individual life histories. Using a seasonal and state‐dependent individual‐based model we investigated how environmental variability affects the selection of reproductive strategies and their effect on population dynamics. We found that: (1) dynamic, i.e. plastic, reproductive strategies were optimal in a variable climate. (2) Females in poor and unpredictable climatic regimes allocated fewer available resources in reproduction and more in own somatic growth. This resulted in populations with low population densities, and a high average female age and body mass. (3) Strong negative density dependence on offspring body mass and survival, along with co‐variation between climatic severity and population density, resulted in no clear negative climatic effects on reproductive success and offspring body mass. (4) Time series analyses of population growth rates revealed that populations inhabiting benign environments showed the clearest response to climatic perturbations as high population density prohibited an effective buffering of adverse climatic effects as individuals were not able to gain sufficient body reserves during summer. Regularly occurring harsh winters ‘harvested’ populations, resulting in persistent low densities, and released them from negative density dependent effects, resulting in high rewards for a given resource allocation.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号