首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 8 毫秒
1.
2.
3.
4.
Ants inhabiting ant‐plants can respond to cues of herbivory, such as the presence of herbivores, leaf damage, and plant sap, but experimental attempts to quantify the dynamic nature of biotic defenses have been restricted to a few associations between plants and ants. We studied the relationship between certain features of the ant‐shrub Maieta poeppigii Cogn. (Melastomataceae) and the presence or absence of ant patrolling on the leaf surface in plants occupied by the ant Pheidole minutula Mayr (Hymenoptera: Formicidae). We also carried out field experiments to examine ant behavior following plant damage, and the potential cues that induce ant recruitment. These experiments included clipping of the leaf apex, as well as the presentation of a potential herbivore (live termite worker) and a foliar extract from Maieta on treatment leaves. The presence of ants patrolling the leaves of M. poeppigii is influenced by the number of domatia on the plant. Ant patrolling on the leaves of M. poeppigii was constant throughout a 24 h cycle, but the mean number of patrolling ants decreased from young to mature leaves, and from leaves with domatia to those without domatia. There was an overall increase in the number of ants on experimental leaves following all treatments, compared to control leaves. Visual and chemical cues associated with herbivory are involved in the induction of ant recruitment in the Maieta–Pheidole system. The continuous patrolling behavior of ants, associated with their ability to respond rapidly to foliar damage, may result in the detection and repellence/capture of most insect herbivores before they can inflict significant damage to the leaves.  相似文献   

5.
Summary We manipulated soil fertility and insect attack for two species of Eucalyptus in natural stands of subalpine woodland on shallow, infertile granitic soils. E. pauciflora and E. stellulata responded in similar ways to simultaneous insecticide and fertilizer treatments. Eliminating herbivorous insects produced the largest changes — improved plant growth, increased leaf N and P, and reduced leaf specific density. Fertilizer regime modified some leaf properties, but had little effect on tree growth. E. stellulata trees were initially shorter than E. pauciflora, but grew faster without herbivores; by the end of the experiment both species were the same size when herbivores were removed. Foliage N and P levels increased most in trees with the most balanced fertilizer addition (NPK), and increased in all trees protected from insects, regardless of fertilizer regime. In this system, herbivorous insects exacerbated the effects of nutrientpoor soils, and may affect dominance of Eucalyptus species in mature forests.  相似文献   

6.
Multispecies interactions between plants and natural enemies are ubiquitous, and often lead to diffuse interactions between plants and their herbivores. Non-specific induced responses, where responses induced by one species affect other species, are one potential mechanism generating diffuse interactions. Using 57 inbred lines of the Ivyleaf morning glory, Ipomoea hederacea, in a greenhouse experiment, we examined whether simulated mammalian herbivory induced responses that could affect plant resistance to the generalist insect herbivore, Spodoptera exigua. Inbred lines were highly variable for induced responses, ranging from induced resistance to induced susceptibility, with the rank-order for resistance in inbred lines changing between clipping and control treatments. We failed to detect significant genetic correlations between induced responses and trichome density, or that clipping modified the negative relationship between trichome density and Spodoptera exigua consumption and biomass. Our results suggest that non-specific induced responses can mediate the diffuse evolutionary relationship between I. hederacea and its herbivores, and that genetic variation in induced responses are an important component of this interaction. Handling Error: Heikki Hokkanen  相似文献   

7.
Plasticity and overcompensation in grass responses to herbivory   总被引:5,自引:0,他引:5  
Several hypotheses predict defoliation-induced increases in individual plant fitness. In this paper we examine three such hypotheses: the Herbivore Optimization Hypothesis (HOH); the Continuum of Responses Hypothesis (CRH); and the Growth Rate Model (GRM). All three have in common predictions based on responses of defoliated individuals with the objective of explaining community and higher level phenomena. The latter two extend theory by specifying conditions for overcompensatory responses. They differ in whether overcompensation is sensitive to conditions external (CRH) or internal (GRM) to the plant. We tested these hypotheses with field experiments in a grassland system in which two native, perennial grass species replace each other along a short topographic/resource gradient. We detected positive, neutral, and negative changes in plant mass in response to partial defoliation. Patterns of responses to the edaphic and competitive environment combinations were unique to each species and neither the CRH nor the GRM were able to consistently predict responses in these grasses. Predictions of the HOH were fully supported only by the species naturally limited to lower-resource environments: overcompensation occurred in natural environments and it occurred at herbivory levels these plants experience naturally. Thus, the overcompensatory response can be important for the maintenance of local plant population distributions. However, new mechanistic theory is needed to account for the trend common to both species: overcompensatory responses to herbivory were greater in the edaphic environment in which each species was naturally most abundant.  相似文献   

8.
昆虫取食诱导的植物防御反应   总被引:18,自引:3,他引:18  
秦秋菊  高希武 《昆虫学报》2005,48(1):125-134
植物被昆虫取食后可产生直接防御或间接防御。直接防御通过增加有毒的次生代谢产物或防御蛋白对昆虫生理代谢产生不利的影响,但对植物的消耗较大。间接防御通过释放挥发性化合物吸引天敌昆虫,并以此控制植食性昆虫。特异性的昆虫激发子(insect specific elicitors)能够诱导挥发性化合物的释放。多种信号途径参与昆虫取食诱导的植物防御反应,它们之间的相互作用协同或拮抗。了解昆虫取食诱导的植物防御反应,对于害虫综合治理策略的完善具有重要的意义。  相似文献   

9.
  1. Download : Download high-res image (126KB)
  2. Download : Download full-size image
  相似文献   

10.
Seasonal changes in leaf traits and the herbivory pattern ofQuercus mongolica var.grosseserrata were studied, and simulated herbivory experiments were carried out in order to evaluate leaf trait responses. Leaves ofQ. mongolica emerged simultaneously in spring and most were retained until autumn. Nitrogen concentration was highest when leaves first emerged and decreased rapidly with leaf age. Leaf mass per area (LMA) increased with leaf age. Herbivore attack was concentrated in the first 20 days after bud-break, which corresponded to the high nutritional value of the leaves for herbivores at this time. Simulated herbivory experiments indicated that LMA increased with artificial leaf damage, suggesting an increase in leaf toughness, and that nitrogen concentration decreased later in the season in comparison with intact leaves. As a result, herbivore attack following artificial leaf damage decreased with increasing initial leaf damage. However, leaf longevity was not affected by initial leaf damage. These responses were considered to be a strategy to disperse herbivory damage among leaves.  相似文献   

11.
12.
13.
14.
Vergés A  Pérez M  Alcoverro T  Romero J 《Oecologia》2008,155(4):751-760
Herbivory can induce changes in plant traits that may involve both tolerance mechanisms that compensate for biomass loss and resistance traits that reduce herbivore preference. Seagrasses are marine vascular plants that possess many attributes that may favour tolerance and compensatory growth, and they are also defended with mechanisms of resistance such as toughness and secondary metabolites. We quantified phenotypic changes induced by herbivore damage on the temperate seagrass Posidonia oceanica in order to identify specific compensatory and resistance mechanisms in this plant, and to assess any potential trade-offs between these two strategies of defence. We simulated three natural levels of fish herbivory by repeatedly clipping seagrass leaves during the summer period of maximum herbivory. Compensatory responses were determined by measuring shoot-specific growth, photosynthetic rate, and the concentration of nitrogen and carbon resources in leaves and rhizomes. Induced resistance was determined by measuring the concentration of phenolic secondary metabolites and by assessing the long-term effects of continued clipping on herbivore feeding preferences using bioassays. Plants showed a significant ability to compensate for low and moderate losses of leaf biomass by increasing aboveground growth of damaged shoots, but this was not supported by an increase in photosynthetic capacity. Low levels of herbivory induced compensatory growth without any measurable effects on stored resources. In contrast, nitrogen reserves in the rhizomes played a crucial role in the plant’s ability to compensate and survive herbivore damage under moderate and high levels of herbivory, respectively. We found no evidence of inducibility of long-term resistance traits in response to herbivory. The concentration of phenolics decreased with increasing compensatory growth despite all treatments having similar carbon leaf content, suggesting reallocation of these compounds towards primary functions such as cell-wall construction.  相似文献   

15.
16.
Herbivory results in an array of physiological changes in the host that are separable from the associated physical damage. We have made the surprising observation that an Arabidopsis line (pdko3) mutated in genes encoding plasmodesmal proteins is defective in some, but not all, of the typical plant responses to herbivory. We tested the responses of plasma transmembrane potential (Vm) depolarization, voltage gated K+ channel activity, cytosolic calcium [Ca2+]cyt and reactive oxygen species (ROS) (H2O2 and NO) release, shoot‐to‐root signaling, biosynthesis of the phytohormone jasmonic acid (JA) and the elicitation of volatile organic compounds (VOCs). Following herbivory and the release of factors present in insect oral secretions (including a putative β‐galactofuranose polysaccharide), both the pdko3 and wild type (WT) plants showed a increased accumulation of [Ca2+]cyt, NO and H2O2. In contrast, unlike WT plants, the mutant line showed an almost complete loss of voltage gated K+ channel activity and Vm depolarization, a loss of shoot‐induced root‐Vm depolarization, a loss of activation and regulation of gene expression of the JA defense pathway, and a much diminished release and altered profile of VOCs. The mutations in genes for plasmodesmal proteins have provided valuable genetic tools for the dissection of the complex spectrum of responses to herbivory and shown us that the responses to herbivory can be separated into a calcium‐activated oxidative response and a K+‐dependent Vm‐activated jasmonate response associated with the release of VOCs.  相似文献   

17.
18.
Causes of cellular immunodeficiency frequently associated with cancer remain poorly understood. One possible mechanism is tumor cell membrane shedding of immunosuppressive molecules, such as the sialic acid-containing glycosphingolipids, gangliosides. To explore this interesting hypothesis and establish structure-activity relationships, we examined the effects of a series of highly purified human gangliosides on T cell function. In all, ten individual molecular species of two major biosynthetic pathways were compared for their ability to inhibit human T cell proliferative responses. They include GM1, GD1a, GD1b, and GT1b (the predominant normal brain species), and GM4, GM3, GM2, GD3, GD2 and GQ1b. Strikingly, each HPLC-purified molecule, from the simplest monosialoganglioside to the most complex polysialoganglioside, had potent inhibitory activity; even the ganglioside with the most elemental carbohydrate structure (GM4, one sialic acid linked to a monosaccharide) strongly inhibits T cell proliferative responses to tetanus toxoid (ID90 = 1.5 microM). The data also reveal a complex interplay between elements of oligosaccharide structure in determining immunosuppressive activity. Sialic acid is critical to maximal activity, and (i) immunosuppression is most potent in gangliosides containing a terminal sialic acid. (ii) Total desialylation almost abolishes activity and (iii) partial alteration (lactone formation) reduces activity. (iv) Activity is generally but not always higher with higher numbers of sialic acid residues/molecule, and (v) some larger neutral glycosphingolipids retain measurable immunosuppressive activity. Overall, the potent inhibition by gangliosides supports the hypothesis that shedding of these molecules by tumors creates a highly immunosuppressive microenvironment around the tumor, thereby inhibiting the function of infiltrating host leukocytes and contributing to diminished T cell responses in cancer.  相似文献   

19.
The vigorous production of oxygenated fatty acids (oxylipins) is a characteristic response to pathogenesis and herbivory, and is often accompanied by the substantial release of small and reactive lipid-fragmentation products. Some oxylipins, most notably those of the jasmonate family, have key roles as potent regulators. Recent advances have been made in understanding oxylipin-regulated signal transduction in response to attack. Much jasmonate signaling takes place via a genetically defined signal network that is linked to the ethylene, auxin, and salicylic acid signal pathways, but a second aspect of jasmonate signaling is emerging. Some jasmonates and several newly discovered cyclopentenone lipids can activate or repress gene expression through the activities of a conserved electrophilic atom group.  相似文献   

20.
Drought is a global threat, increasing in severity and frequency throughout tropical ecosystems. Although plants often face drought in conjunction with biotic stressors, such as herbivory or disease, experimental studies infrequently test the simultaneous effects of drought and biotic stress. Because multiple simultaneous stressors may have non-additive and complex effects on plant performance, it is difficult to predict plant responses to multiple threats from research examining one stress at a time. Using an experimental approach in the greenhouse, we investigated potential non-additivity in seedling growth and survival to simulated drought and herbivory across a phylogenetically diverse pool of ten Hawaiian plant species. Overall, seedlings showed limited tolerance, defined as similar growth and survival in stressed compared with control (non-stressed) plants, to simulated herbivory and drought, with the combined effects of both stressors to be generally additive and negative across species. Significant variation in stress tolerance was detected among species, and species variation was explained, at least in part, by functional traits such that species with larger root/shoot ratios and smaller seeds, tended to demonstrate greater herbivory and drought tolerance. Future research incorporating additional trait analysis and different stressors could shed light on mechanisms underlying seedling stress tolerance and clarify whether additivity, as detected in this study, extends across other combinations of stressors. Such work will provide needed insights into the regeneration of seedlings in tropical forests under threats of herbivory and climate change.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号