首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 78 毫秒
1.
To assess the spectral sensitivities of the retinal visual pigments from the North Atlantic right whale (Eubalaena glacialis), we have cloned and sequenced two exons from the rod opsin gene and two exons from the middle‐wavelength sensitive (MWS) cone opsin gene in order to determine the amino acids at positions known to be key regulators of the spectral location of the absorbance maximum (λmax). Based on previous mutagenesis models we estimate that the right whale possesses a rod visual pigment with a λmax of 499 nm and a MWS cone visual pigment with a λmax of 524 nm. Although the MWS cone visual pigment from the right whale is blue‐shifted in its spectral sensitivity like those from odontocetes, the spectral sensitivity of the right whale rod visual pigment is similar to those from terrestrial mammals.  相似文献   

2.
ABSTRACT

Ultrasonic echolocation abilities are well documented in several dolphin species, but hearing characteristics are unknown for most whales. Vocalization data suggest whale hearing spans infra- to ultrasonic ranges. This paper presents an overview of whale ear anatomy and analyzes 1) how whale ears are adapted for underwater hearing and 2) how inner ear differences relate to different hearing capacities among whales.

Whales have adaptations for rapid, deep diving and long submersion; e.g., broad- bore Eustachian tubes, no pinnae, and no air-filled external canals, that impact sound reception. In odontocetes, two soft tissue channels conduct sound to the ear. In mysticetes, bone and soft tissue conduction are likely. The middle ear is air-filled but has an extensible mucosa. Cochlear structures are hypertrophied and vestibular components are reduced. Auditory ganglion cell densities are double land mammal averages (2000–4000/mm). Basilar membrane lengths range 20–70 mm; gradients are larger than in terrestrial mammals. Odontocetes have 20–60% bony membrane support and basal ratios >0.6, consistent with hearing >150 kHz. Mysticetes have apical ratios <0.002 and no bony lateral support, implying acute infrasonic hearing. Cochlear hypertrophy may be adaptive for high background noise. Vestibular loss is consistent with cervical fusion. Exceptionally high auditory fiber counts suggest both mysticetes and odontocetes have ears “wired” for more complex signal processing mechanisms than most land mammals.  相似文献   

3.
Bottlenose dolphins in Shark Bay, Australia, live in a large, unbounded society with a fission-fusion grouping pattern. Potential cognitive demands include the need to develop social strategies involving the recognition of a large number of individuals and their relationships with others. Patterns of alliance affiliation among males may be more complex than are currently known for any non-human, with individuals participating in 2-3 levels of shifting alliances. Males mediate alliance relationships with gentle contact behaviours such as petting, but synchrony also plays an important role in affiliative interactions. In general, selection for social intelligence in the context of shifting alliances will depend on the extent to which there are strategic options and risk. Extreme brain size evolution may have occurred more than once in the toothed whales, reaching peaks in the dolphin family and the sperm whale. All three 'peaks' of large brain size evolution in mammals (odontocetes, humans and elephants) shared a common selective environment: extreme mutual dependence based on external threats from predators or conspecific groups. In this context, social competition, and consequently selection for greater cognitive abilities and large brain size, was intense.  相似文献   

4.
The brains of odontocetes (toothed whales) look grossly different from their terrestrial relatives. Because of their adaptation to the aquatic environment and their reliance on echolocation, the odontocetes'' auditory system is both unique and crucial to their survival. Yet, scant data exist about the functional organization of the cetacean auditory system. A predominant hypothesis is that the primary auditory cortex lies in the suprasylvian gyrus along the vertex of the hemispheres, with this position induced by expansion of ‘associative′ regions in lateral and caudal directions. However, the precise location of the auditory cortex and its connections are still unknown. Here, we used a novel diffusion tensor imaging (DTI) sequence in archival post-mortem brains of a common dolphin (Delphinus delphis) and a pantropical dolphin (Stenella attenuata) to map their sensory and motor systems. Using thalamic parcellation based on traditionally defined regions for the primary visual (V1) and auditory cortex (A1), we found distinct regions of the thalamus connected to V1 and A1. But in addition to suprasylvian-A1, we report here, for the first time, the auditory cortex also exists in the temporal lobe, in a region near cetacean-A2 and possibly analogous to the primary auditory cortex in related terrestrial mammals (Artiodactyla). Using probabilistic tract tracing, we found a direct pathway from the inferior colliculus to the medial geniculate nucleus to the temporal lobe near the sylvian fissure. Our results demonstrate the feasibility of post-mortem DTI in archival specimens to answer basic questions in comparative neurobiology in a way that has not previously been possible and shows a link between the cetacean auditory system and those of terrestrial mammals. Given that fresh cetacean specimens are relatively rare, the ability to measure connectivity in archival specimens opens up a plethora of possibilities for investigating neuroanatomy in cetaceans and other species.  相似文献   

5.

Background

Diversity of hair in marine mammals was suggested as an evolutionary innovation to adapt aquatic environment, yet its genetic basis remained poorly explored. We scanned α-keratin genes, one major structural components of hair, in 16 genomes of mammalian species, including seven cetaceans, two pinnipeds, polar bear, manatee and five terrestrial species.

Results

Extensive gene loss and high pseudogenization rate of α-keratin genes were identified in cetaceans when compared to terrestrial artiodactylans (average number of α-keratins 37.29 vs. 58.33; pseudogenization rate 29.89% vs. 8.00%), especially of hair follicle-specific keratin genes (average pseudogenization rate in cetaceans of 43.88% relative to 3.80% artiodactylian average). Compared to toothed whale, the much more number of intact functional α-keratin genes was examined in the baleen whale that had specific keratinized baleen. In contrast, the number of keratin genes in pinnipeds, polar bear and manatee were comparable to those of their respective terrestrial relatives. Additionally, four keratin genes (K39, K9, K42, and K74) were found to be pseudogenes or lost uniquely in cetaceans and manatees.

Conclusions

Species-specific evolution of α-keratin gene family identified in the marine mammals might be responsible for their different hair characteristics. Increased gene loss and pseudogenization rate identified in cetacean lineages was likely to contribute to hair-less phenotype to adaptation for complete aquatic environment. However, the fully aquatic manatee still remained the comparable number of intact genes to its terrestrial relative, probably due to its perioral bristles and bristle-like hairs on the oral disk. By contrast, similar evolution pattern of α-keratin gene repertoire in the pinnipeds, polar bear and their terrestrial relatives was likely due to abundant hair to keep warm when they went ashore. Interestingly, some keratin genes were exclusively lost in cetaceans and manatees, likely as a result of convergent hair-loss phenotype to inhabit completely aquatic environment in both groups.
  相似文献   

6.
The transition from terrestrial ancestry to a fully pelagic life profoundly altered the body systems of cetaceans, with extreme morphological changes in the skull and feeding apparatus. The Oligocene Epoch was a crucial time in the evolution of cetaceans when the ancestors of modern whales and dolphins (Neoceti) underwent major diversification, but details of dental structure and evolution are poorly known for the archaeocete-neocete transition. We report the morphology of teeth and ultrastructure of enamel in archaeocetes, and fossil platanistoids and delphinoids, ranging from late Oligocene (Waitaki Valley, New Zealand) to Pliocene (Caldera, Chile). Teeth were embedded in epoxy resin, sectioned in cross and longitudinal planes, polished, etched, and coated with gold palladium for scanning electron microscopy (SEM) observation. SEM images showed that in archaeocetes, squalodontids and Prosqualodon (taxa with heterodont and nonpolydont/limited polydont teeth), the inner enamel was organized in Hunter-Schreger bands (HSB) with an outer layer of radial enamel. This is a common pattern in most large-bodied mammals and it is regarded as a biomechanical adaptation related to food processing and crack resistance. Fossil Otekaikea sp. and delphinoids, which were polydont and homodont, showed a simpler structure, with inner radial and outer prismless enamel. Radial enamel is regarded as more wear-resistant and has been retained in several mammalian taxa in which opposing tooth surfaces slide over each other. These observations suggest that the transition from a heterodont and nonpolydont/limited polydont dentition in archaeocetes and early odontocetes, to homodont and polydont teeth in crownward odontocetes, was also linked to a marked simplification in the enamel Schmelzmuster. These patterns probably reflect functional shifts in food processing from shear-and-mastication in archaeocetes and early odontocetes, to pierce-and-grasp occlusion in crownward odontocetes, with the implication of less demanding feeding biomechanics as seen in most extant odontocetes.  相似文献   

7.
The genomes of all extant cetaceans are characterized by the presence of the so-called common cetacean DNA satellite. In the mysticetes (whalebone whales) the repeat length of the satellite is 1,760 bp. In the odontocetes (toothed whales), other than the family Delphinidae, the repeat length is usually approximately 1,740 bp. The Delphinidae are characterized by a repeat length of approximately 1,580 bp. It has been shown in odontocetes that the satellite evolves in concert and that differences between species, with respect to the sequence of the satellite, correspond reasonably well to their evolutionary distances. In the present study the sequence of the satellite was determined in three repeats in each of seven mysticete species, and a consensus for each species established. Parsimony and neighbor-joining analyses based upon sequences of all repeats showed that the primary evolutionary distinction among the mysticetes is between the Balaenidae sensu stricto (i.e., the bowhead whale and the right whale) and all remaining species, including the pygmy right whale, a species that usually has been included in the Balaenidae. The comparisons also showed that the humpback whale and the gray whale were approximately equidistant from the blue whale and the fin whale (genus Balaenoptera). Concerted evolution of the satellite was also demonstrated among the mysticetes, but it appeared to evolve more slowly in the mysticetes than in the odontocetes.  相似文献   

8.
Crustaceans are known for their unrivalled diversity of sexual systems, as well as peculiar mating associations to achieve maximum mating success and fertilization accomplishment. Although sexes are separate in most species, various types of hermaphroditism characterize these predominantly aquatic arthropods. A low operational sex ratio between female and male, together with temporally limited receptivity of females towards males, imposes restrictions on the structuring of mating systems in crustaceans. The basic mating systems consist of monogamy, polygamy, mate guarding and pure searching. Understandably, ecological influences may also play a determinative role in the evolution of such sexual and mating systems in crustaceans. An important outcome of the crustacean sexual biology is the development of complex social structures in many aquatic species, in much the same way insects have established them in terrestrial conditions. In addition, groups like isopods and certain families of brachyuran crabs have shown terrestrial adaptation, exhibiting peculiar reproductive modes, sometimes reminiscent of their terrestrial counterparts, insects. Many caridean shrimps, living in symbiotic relationship with other marine invertebrates in the coral reef habitats, have reached pinnacle of complexity in sexuality and peculiar mating behaviours, resulting in communal living and establishing advanced social systems, such as eusociality.  相似文献   

9.
Hexavalent chromium (Cr(VI)) is emerging as a major concern for aquatic environments, particularly marine environments. Medaka (Oryzias latipes) has been used as a model species for human and aquatic health, including the marine environment, though few studies have directly compared toxicological responses in medaka to humans or other aquatic species. We used a medaka fin cell line to compare the genotoxic response of medaka to Cr(VI) to the response observed in North Atlantic right whale cells to see if responses in medaka were similar to those of other aquatic species, particularly aquatic mammals. We used the production of chromosomal aberrations as a measure of genotoxicity. We found that in medaka cells, concentrations of 1, 5 and 10 microM sodium chromate damaged 17, 32 and 43% of metaphases, respectively and these same concentrations 1, 2.5, 5 and 10 microM sodium chromate damaged 14, 24 and 49% of metaphases, respectively, in North Atlantic right whale lung cells and 11, 32 and 41% of metaphases, respectively, in North Atlantic right whale testes cells. These data show that genotoxic responses in medaka are comparable to those seen in North Atlantic right whale cells, consistent with the hypothesis that medaka are a useful model for other aquatic species.  相似文献   

10.
In the sperm whale (Physeter macrocephalus) two different repeat types (A and B) of the common cetacean DNA satellite were identified. The evolution of each group of repeats appears to be independent from that of the other. The sequence similarity between the two groups is less than the similarity between group A and repeats of the satellite in related whale species. The systematic relationship within and between the families Physeteridae (sperm whales) and Ziphiidae (beaked whales) was addressed by both sequence analysis of the satellite and comparisons with the families Delphinidae and Phocoenidae. The mysticete blue whale (Balaenoptera musculus) was used as an outgroup in the comparisons. The molecular phylogeny, when maximum-parsimony analysis and the neighbor-joining method were used, grouped together species of each family. At the family level the ziphiids grouped closet to the families Phocoenidae and Delphinidae. The similarities between the common cetacean satellite of the blue whale and the sperm whale were greater than those between the blue whale and the other odontocetes included, suggesting that the evolution of the satellite is slower in the sperm whale than in the other odontocetes.   相似文献   

11.
Several studies have indicated that in birds breathing frequency ( f , breaths min−1) scales to the −1/3 of body weight ( W , kg); this is different from the −1/4 of mammals. We wondered if this discrepancy was due to the peculiar scaling pattern of aquatic birds, as is the case of aquatic mammals. In fact, we had noted previously that the allometric scaling of f differs considerably between aquatic and terrestrial mammals, respectively, W −0.42 and W −0.25. Measurements of f were obtained in 48 aquatic birds of 22 species and in 35 terrestrial birds of 27 species, during resting conditions on land. Additional data from 11 aquatic and 14 terrestrial species, different from the ones measured, were obtained from the literature. The allometric curve of all species combined (terrestrial and aquatic, n =74) was f =13.3 W −0.36, similar to what is reported in previous studies. However, the allometric curve of the aquatic species ( n =33, f =14.5 W −0.56) differed greatly ( P <0.001) from that of the terrestrial species ( n =41, f =13.4 W −0.26). On average, f of aquatic birds of the 3–5 kg range was 63%, and that of birds of larger size was 57%, of the values of terrestrial birds of similar W . We conclude that, as in mammals, also in terrestrial birds f scales to the −1/4 exponent of W . The similarity of the scaling patterns of f between aquatic birds and mammals suggests a common breathing adaptation to life in the aquatic environment irrespective of phylogenetic relations.  相似文献   

12.
Marine mammals are important models for studying convergent evolution and aquatic adaption, and thus reference genomes of marine mammals can provide evolutionary insights. Here, we present the first chromosome‐level marine mammal genome assembly based on the data generated by the BGISEQ‐500 platform, for a stranded female sperm whale (Physeter macrocephalus). Using this reference genome, we performed chromosome evolution analysis of the sperm whale, including constructing ancestral chromosomes, identifying chromosome rearrangement events and comparing with cattle chromosomes, which provides a resource for exploring marine mammal adaptation and speciation. We detected a high proportion of long interspersed nuclear elements and expanded gene families, and contraction of major histocompatibility complex region genes which were specific to sperm whale. Using comparisons with sheep and cattle, we analysed positively selected genes to identify gene pathways that may be related to adaptation to the marine environment. Further, we identified possible convergent evolution in aquatic mammals by testing for positively selected genes across three orders of marine mammals. In addition, we used publicly available resequencing data to confirm a rapid decline in global population size in the Pliocene to Pleistocene transition. This study sheds light on the chromosome evolution and genetic mechanisms underpinning sperm whale adaptations, providing valuable resources for future comparative genomics.  相似文献   

13.
In this paper on the ontogenesis and evolutionary biology of odontocete cetaceans (toothed whales), we investigate the head morphology of three perinatal pantropical spotted dolphins (Stenella attenuata) with the following methods: computer-assisted tomography, magnetic resonance imaging, conventional X-ray imaging, cryo-sectioning as well as gross dissection. Comparison of these anatomical methods reveals that for a complete structural analysis, a combination of modern imaging techniques and conventional morphological methods is needed. In addition to the perinatal dolphins, we include series of microslides of fetal odontocetes (S. attenuata, common dolphin Delphinus delphis, narwhal Monodon monoceros). In contrast to other mammals, newborn cetaceans represent an extremely precocial state of development correlated to the fact that they have to swim and surface immediately after birth. Accordingly, the morphology of the perinatal dolphin head is very similar to that of the adult. Comparison with early fetal stages of dolphins shows that the ontogenetic change from the general mammalian bauplan to cetacean organization was characterized by profound morphological transformations of the relevant organ systems and roughly seems to parallel the phylogenetic transition from terrestrial ancestors to modern odontocetes.  相似文献   

14.
The development of the brain was studied in several species of toothed whales (harbour porpoise, spotted dolphin, narwhal, and sperm whale). As embryos, odontocetes show the general mammalian bauplan. The olfactory bulb, lacking in adult toothed whales, forms in embryos but then disappears in early fetal development. In contrast, the terminal nerve persists and shows a great increase in neuron number. Some components of the limbic system are reduced while others grow to become relatively large. The pyramidal tract is inconspicuous. The auditory system and the extrapyramidal system show rapid size increase. In the sperm whale, growth of the telencephalic hemispheres relative to the size of the brain as a whole (telencephalization) and expansion of the cortical areas (neocorticalization) are greater than in other mammals. Increases in the diameters of the cranial nerves seem to be correlated with their presumed functional roles in the postnatal animal.  相似文献   

15.
Organ scaling in mammals: the kidneys   总被引:2,自引:0,他引:2  
Values of kidney weight in adult male and female mammals, both terrestrial and aquatic, as well as values for renal blood flow and glomerular number and diameter, were submitted to linear (log-log) regression analysis. The slope of the regression line for kidney weight in 63 species of adult terrestrial mammals was 0.85 %/- 0.01. No statistically significant difference was found between the slopes of the regression lines for male and female terrestrial mammals. The slope of regression line for kidney weight in eight species of adult aquatic mammals was 0.92 +/- 0.01. Again, no statistically significant difference was found between the slopes for males and females. However, the slope (0.92) of the regression line for aquatic mammals was significantly different from the slope (0.85) for terrestrial mammals (P much less than 0.001). The slope of the regression of renal blood flow on body weight was 0.82 +/- 0.01. This value is consistent with the hypothesis that renal blood flow represents a constant fraction of cardiac output (over about 3.4 orders of magnitude in body weight). The slopes of the regression lines for glomerular number (per kidney) and mean glomerular diameter were 0.59 +/- 0.02 and 0.11 +/- 0.01, respectively. A schematic model representing the scaling of energy-partitioning in mammals is introduced.  相似文献   

16.
A cribriform plate, a perpendicular plate, and two lateral masses are major components of the ethmoid bone of mammals. Notwithstanding the noticeable bone, virtually sitting in the center of the skull, extensive modifications of the skull of modern cetaceans, especially odontocetes (toothed whales), and the lack of clarity as to what characteristics delimit each element of the ethmoid has made the problem of the nature of the cetacean ethmoid more complicated and elusive than in other, less modified mammals. Furthermore, contention as to whether a perpendicular plate of the ethmoid, or the mesethmoid, exists in all mammals including cetaceans has remained unsettled. In odontocetes, the mesethmoid has been variably identified not only as the osseous nasal septum but also as the mediodorsal region of the posterior wall of the nasal passage below the nasals, as a mass of bone encased by the vomer in front of the osseous nasal cavity at the base of the rostrum, and as a combination of some portions mentioned above. The presence or absence of the mesethmoid in various groups of mammals has attracted the attention of some biologists, and here, I demonstrate that cetaceans have no mesethmoid. The close inspection of the ontogenetic changes of the basicranial elements in cetaceans reveals that a mass of bone ensheathed by the vomer in front, or at the level of the osseous nasal cavity is actually the presphenoid. It is highly likely that in odontocetes the posterior wall of the nasal passages below the nasals consists of the combination of the frontal, the imperforated cribriform plate, the paired ectethmoids, and the vomer, the latter three of which partially concealing the presphenoid dorsally and laterally as the ontogeny proceeds. In contrast, mysticetes clearly display ethmoturbinates and a cribriform plate, which are morphologically similar to those in terrestrial mammals. J. Morphol. 277:1661–1674, 2016. © 2016 Wiley Periodicals, Inc.  相似文献   

17.
Since the transition from terrestrial to marine environments poses strong osmoregulatory and energetic challenges, temporal and spatial fluctuations in oceanic salinity might influence salt and water balance (and hence, body condition) in marine tetrapods. We assessed the effects of salinity on three species of sea snakes studied by mark-recapture in coral-reef habitats in the Neo-Caledonian Lagoon. These three species include one fully aquatic hydrophiine (Emydocephalus annulatus), one primarily aquatic laticaudine (Laticauda laticaudata), and one frequently terrestrial laticaudine (Laticauda saintgironsi). We explored how oceanic salinity affected the snakes' body condition across various temporal and spatial scales relevant to each species' ecology, using linear mixed models and multimodel inference. Mean annual salinity exerted a consistent and negative effect on the body condition of all three snake species. The most terrestrial taxon (L. saintgironsi) was sensitive to salinity over a short temporal scale, corresponding to the duration of a typical marine foraging trip for this species. In contrast, links between oceanic salinity and body condition in the fully aquatic E. annulatus and the highly aquatic L. laticaudata were strongest at a long-term (annual) scale. The sophisticated salt-excreting systems of sea snakes allow them to exploit marine environments, but do not completely overcome the osmoregulatory challenges posed by oceanic conditions. Future studies could usefully explore such effects in other secondarily marine taxa such as seabirds, turtles, and marine mammals.  相似文献   

18.
心率即心脏跳动的速度,不仅反映了心脏的功能,还与寿命的长短及能量代谢有关。与大多数陆生哺乳动物相比,鲸类心率显著降低。降低的心率有助于鲸类寿命的延长及能量的高效利用,便于其适应极端的海洋环境,而这一适应的分子机制尚不清楚。鉴于此,本研究采用基于最大似然法的枝模型、枝位点模型结合蛋白质功能差异分析等方法,对控制心率的环状腺苷酸结合蛋白(Epac1 和Epac2)基因进行适应性探究。分析结果表明,Epac1在长寿鲸类即须鲸类和抹香鲸(Physeter macrocephalus)组合进化支中检测到加速进化过程,且枝位点模型在须鲸类祖先支中检测到的强烈的正选择位点均位于功能重要的催化区;另外,该蛋白质在鲸类中还发生了显著的功能修饰(θ=0.5296 ± 0.1300;P<0.001)。对Epac2进行相同的分析发现,该基因在寿命长达200年之久的弓头鲸(Balaena mysticetus)中检测到的正选择位点同样位于功能重要的催化区。上述结果提示Epac1和Epac2在鲸类中均产生了适应性进化,这一方面可能有助于鲸类心率降低,另一方面也可能与其较长的寿命及高效的能量利用有关。  相似文献   

19.
Transitions from Drag-based to Lift-based Propulsion in Mammalian Swimming   总被引:7,自引:5,他引:2  
The evolution of fully aquatic mammals from quadrupedal, terrestrialmammals was associated with changes in morphology and swimmingmode. Drag is minimized by streamlining body shape and appendages.Improvement in speed, thrust production and efficiency is accomplishedby a change of swimming mode. Terrestrial and semiaquatic mammalsemploy drag-based propulsion with paddling appendages, whereasfully aquatic mammals use lift-based propulsion with oscillatinghydrofoils. Aerobic efficiencies are low for drag-based swimming,but reach a maximum of 30% for lift-based propulsion. Propulsiveefficiency is over 80% for lift-based swimming while only 33%for paddling. In addition to swimming mode, the transition tohigh performance propulsion was associated with a shift fromsurface to submerged swimming providing a reduction in transportcosts. The evolution of aquatic mammals from terrestrial ancestorsrequired increased swimming performance with minimal compromiseto terrestrial movement. Examination of modern analogs to transitionalswimming stages suggests that only slight modification to theneuromotor pattern used for terrestrial locomotion is requiredto allow for a change to lift-based propulsion.  相似文献   

20.
Ecological diversification into new environments presents new mechanical challenges for locomotion. An extreme example of this is the transition from a terrestrial to an aquatic lifestyle. Here, we examine the implications of life in a neutrally buoyant environment on adaptations of the axial skeleton to evolutionary increases in body size. On land, mammals must use their thoracolumbar vertebral column for body support against gravity and thus exhibit increasing stabilization of the trunk as body size increases. Conversely, in water, the role of the axial skeleton in body support is reduced, and, in aquatic mammals, the vertebral column functions primarily in locomotion. Therefore, we hypothesize that the allometric stabilization associated with increasing body size in terrestrial mammals will be minimized in secondarily aquatic mammals. We test this by comparing the scaling exponent (slope) of vertebral measures from 57 terrestrial species (23 felids, 34 bovids) to 23 semi‐aquatic species (pinnipeds), using phylogenetically corrected regressions. Terrestrial taxa meet predictions of allometric stabilization, with posterior vertebral column (lumbar region) shortening, increased vertebral height compared to width, and shorter, more disc‐shaped centra. In contrast, pinniped vertebral proportions (e.g. length, width, height) scale with isometry, and in some cases, centra even become more spool‐shaped with increasing size, suggesting increased flexibility. Our results demonstrate that evolution of a secondarily aquatic lifestyle has modified the mechanical constraints associated with evolutionary increases in body size, relative to terrestrial taxa.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号