首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
We investigated patterns of maternal expenditure and its influenceon juvenile survival in the polygynous monomorphic guanaco (Lama guanicoe)in southern Chile from 1990 to 1994. Birth weight and growth rate(until age 1) of males and females were similar. Suckling ratesof males and females were not significantly different, althoughmothers of males rejected suckling attempts more often thanmothers of females during fall and winter. Mothers with sonsterminated suckling bouts in equal proportion as did motherswith daughters. Our estimated level of reproductive effort for guanacosfalls within the range of species exhibiting no sex-biased maternal expenditureon offspring. Mean yearly birth weight was negatively correlated withpopulation density. Mean suckling time throughout the year differedamong cohorts, as did the mean number of suckling attempts andrejected suckling attempts per hour throughout the year. Juvenilesurvival was estimated until age 1. Of the model with five covariatesincluding juvenile sex, birth weight, adult female aggressiontoward taggers, mean suckling time, and population density,only mean suckling time and population density were significantly relatedto survival. The risk ratio for mean suckling time indicatesthat the risk of mortality increases as suckling time increases,whereas the risk ratio for population density indicates thatthe risk of mortality decreases as population density increases.Under some conditions increasing population density may be correlatedwith lower offspring birth weight, yet enhanced juvenile survival.This effect on survival was possibly associated with the numberof predators on the study area from year to year.  相似文献   

2.
The mortality of Sea of Okhotsk pink salmon in the winter and spring varies significantly from year to year, which complicates forecasts of its arrival in the following year based on data on the downstream migration of fry and surveys in the fall. The size-selective mortality of pink salmon was studied and the possibility of using the size and weight parameters of juveniles for predicting their return was evaluated through measurements of scale increments in juvenile pink salmon that were caught in the southern Sea of Okhotsk in the fall of 2007 and 2008 and in fish of these year classes that came back to spawn. In the 2007 year class, which had a low overwinter survival level in the ocean, the average scale increments for the first year of life were considerably smaller than those in adult fish that returned to the spawning grounds. In the pink salmon of 2008, which had a very high level of overwinter survival, the values of scale increments in juveniles and adults were similar. This confirms the hypothesis of a critical size and a critical period, according to which slowly growing juveniles that do not accumulate enough energy reserves for summer are eliminated in the winter to a greater extent as compared to fast-growing fish. Correlation analysis revealed a significant negative relationship between the size and weight of juvenile pink salmon and their mortality in the ocean. After conducting further and more extensive studies this will allow using the size parameters of juvenile pink salmon as one of predictors of its return for the year following the fall surveys. These results emphasize how important it is to take the size and growth rate of juvenile salmon into account when forecasting their return.  相似文献   

3.
Studies of population dynamics of long-lived species have generally focused on adult survival because population growth should be most sensitive to this parameter. However, actual variations in population size can often be driven by other demographic parameters, such as juvenile survival, when they show high temporal variability. We used capture–recapture data from a long-term study of a hunted, migratory species, the greater snow goose (Chen caerulescens atlantica), to assess temporal variability in first-year survival and the relative importance of natural and hunting mortality. We also conducted a parasite-removal experiment to determine the effect of internal parasites and body condition on temporal variation in juvenile survival. We found that juvenile survival showed a higher temporal variability than adult survival and that natural mortality was more important than hunting mortality, unlike in adults. Parasite removal increased first-year survival and reduced its annual variability in females only. Body condition at fledging was also positively correlated with first-year survival in treated females. With reduced parasite load, females, which are thought to invest more in their immune system than males according to Bateman’s principle, could probably reallocate more energy to growth than males, leading to a higher survival. Treated birds also had a higher survival than control ones during their second year, suggesting a developmental effect that manifested later in life. Our study shows that natural factors such as internal parasites may be a major source of variation in juvenile survival of a long-lived, migratory bird, which has implications for its population dynamics.  相似文献   

4.
Differences in the survival rates of males and females over the period from hatching to recruitment can have important impacts on individual fitness and population demographics. However, whilst the influence of an individual's sex on nestling growth and survival has been well studied, less is known about sex‐specific survival over the period between fledging and recruitment. Here, we analyse nestling survival and recruitment in an isolated, island population of house sparrows (Passer domesticus), using data collected over a 4‐year period. Nestlings that had a greater mass at 1 day old were more likely to fledge. Recruitment was also positively associated with day 11 mass. The positive influence of nestling mass on survival to fledging also increased as brood size increased. There was no difference in the survival of male and female individuals prior to fledging. In contrast, over the period from fledging to recruitment, females had significantly less mortality than males. Recruitment was also positively associated with 11‐day‐old mass. Neither the nestling sex ratio nor the fledging sex ratio deviated from 0.5, but the sex ratio amongst recruits was female biased. Our study shows that sex can influence juvenile survival, but also shows that its effect varies between different life‐history stages; therefore, these stages should be considered separately if we want to understand at what point sex‐specific differences in juvenile survival occur. © 2010 The Linnean Society of London, Biological Journal of the Linnean Society, 2010, 101 , 680–688.  相似文献   

5.
In migrant birds, survival estimates for the different life‐history stages between fledging and first breeding are scarce. First‐year survival is shown to be strongly reduced compared with annual survival of adult birds. However, it remains unclear whether the main bottleneck in juvenile long‐distant migrants occurs in the postfledging period within the breeding ranges or en route. Quantifying survival rates during different life‐history stages and during different periods of the migration cycle is crucial to understand forces driving the evolution of optimal life histories in migrant birds. Here, we estimate survival rates of adult and juvenile barn swallows (Hirundo rustica L.) in the breeding and nonbreeding areas using a population model integrating survival estimates in the breeding ranges based on a large radio‐telemetry data set and published estimates of demographic parameters from large‐scale population‐monitoring projects across Switzerland. Input parameters included the country‐wide population trend, annual productivity estimates of the double‐brooded species, and year‐to‐year survival corrected for breeding dispersal. Juvenile survival in the 3‐week postfledging period was low (S = 0.32; SE = 0.05), whereas in the rest of the annual cycle survival estimates of adults and juveniles were similarly high (S > 0.957). Thus, the postfledging period was the main survival bottleneck, revealing the striking result that nonbreeding period mortality (including migration) is not higher for juveniles than for adult birds. Therefore, focusing future research on sources of variation in postfledging mortality can provide new insights into determinants of population dynamics and life‐history evolution of migrant birds.  相似文献   

6.
We explored sex-biased mortality patterns in a species showing the most extreme sexual dimorphism among birds, the great bustard Otis tarda . Between 1991 and 2005 we studied juvenile and immature survival in a sample of 361 great bustards radio-tagged at two different populations in Spain, Villafáfila and Madrid. Mortality decreased with age, from high rates during the first year (0.70), to 0.10 in the second year. Using the known-fate model in program MARK we found that monthly survival increased throughout the first year. Offspring showing higher body mass at marking, i.e. those hatched earlier in the season and those with better body condition, survived in higher proportion. This was probably related to the earlier breeding dates of more experienced mothers, as well as to the observed decrease in food availability as the season progresses. Monthly survival estimates were higher in females than in males, which suggests that juvenile males are more vulnerable to reduced food availability and other factors due to their much faster growth rates. The proportion of non-natural deaths increased with age, and was higher in the Madrid population, where illegal hunting and collision with powerlines showed a high incidence. The male-biased mortality found in young birds in this study explains the female-biased population sex ratios observed in great bustard populations. The different degrees of incidence of human-induced causes of mortality found between both populations studied suggest that such differences may contribute to the variation observed in the adult sex ratio among populations.  相似文献   

7.
Steller sea lions were listed as endangered following a collapse of the western distinct population beginning in the late 1970s. Low juvenile survival has been implicated as a factor in the decline. I conducted a multistate mark-recapture analysis to estimate juvenile survival in an area of the western population where sea lions are showing signs of recovery. Survival for males and females was 80% between 3 weeks and 1 year of age. Approximately 20% of juveniles continued to be nursed by their mothers between ages 1 and 2 and 10% between ages 2 and 3. Survival for juveniles that suckled beyond 1 year was 88.2% and 89.9% to ages 2 and 3, respectively. In contrast, survival for individuals weaned by age 1 was 40.6% for males and 64.2% for females between ages 1 and 2. Birth mass positively influenced survival for juveniles weaned at age 1 but had little effect on individuals continuing to suckle. Cumulative survival to age 4 was double that estimated during the population decline in this region. Evidence suggests that western Steller sea lions utilize a somewhat different maternal strategy than those in the eastern distinct population. Western adult females generally invest more in their pups during the first year but wean offspring by age 1 more often. This results in better survival to age 1, but greater mortality between ages 1 and 3 compared to the eastern population. Different maternal strategies may reflect density dependent pressures of populations at opposite levels of abundance.  相似文献   

8.
ABSTRACT The distribution and abundance of swift foxes (Vulpes velox) has declined from historic levels. Causes for the decline include habitat loss and fragmentation, incidental poisoning, changing land use practices, trapping, and predation by other carnivores. Coyotes (Canis latrans) overlap the geographical distribution of swift foxes, compete for similar resources, and are a significant source of mortality amongst many swift fox populations. Current swift fox conservation and management plans to bolster declining or recovering fox populations may include coyote population reduction to decrease predation. However, the role of coyote predation in swift fox population dynamics is not well-understood. To better understand the interactions of swift foxes and coyotes, we compared swift fox population demographics (survival rates, dispersal rates, reproduction, density) between areas with and without coyote population reduction. On the Piñon Canyon Maneuver Site, Colorado, USA, we monitored 141 swift foxes for 65,226 radio-days from 15 December 1998 to 14 December 2000 with 18,035 total telemetry locations collected. Juvenile swift fox survival rate was increased and survival was temporarily prolonged in the coyote removal area. Adult fox survival patterns were also altered by coyote removal, but only following late-summer coyote removals and, again, only temporarily. Coyote predation remained the main cause of juvenile and adult fox mortality in both areas. The increase in juvenile fox survival in the coyote removal area resulted in a compensatory increase in the juvenile dispersal rate and an earlier pulse in dispersal movements. Adult fox dispersal rate was more consistent throughout the year in the coyote removal area. Coyote removal did not influence the reproductive parameters of the swift foxes. Even though juvenile survival increased, swift fox density remained similar between the areas due to the compensatory dispersal rate among juvenile foxes. We concluded that the swift fox population in the area was saturated. Although coyote predation appeared additive in the juvenile cohort, it was compensatory with dispersal.  相似文献   

9.
Detailed data on juvenile survival are rare in the literature. Although many studies estimate recruitment, if you cannot distinguish between permanent dispersal and mortality, the management implications for a population may be unclear. We estimated juvenile survival in a reintroduced North Island robin (Petroica longipes) population in a protected sanctuary surrounded by an unprotected landscape where the species is extirpated. The population has had marginal population growth due to poor recruitment so we modeled 3 types of data (resighting of fledglings, radio-telemetry of independent juveniles, resighting of adults) in an integrated framework to determine the life stages where high mortality was occurring, and to distinguish mortality from dispersal. Approximately 16% of birds that fledged (n = 109) were present at the start of the next breeding season, consistent with recruitment rates from previous years. Low survival in the first 6 weeks after fledging was the primary cause of poor recruitment. Only 50% survived to independence (4 weeks after fledging), and 18% survived to the end of the radio-tracking period (14 weeks), after which juvenile survival matched adult survival. No dispersal from the sanctuary occurred during the radio-tracking period. Juveniles moved between adjacent forest fragments within the sanctuary, but did not leave the sanctuary. This information, which demonstrates the importance of distinguishing between natal mortality and dispersal, is important for ongoing management of the site and selection of future reintroduction sites for this species. © 2019 The Wildlife Society.  相似文献   

10.
Horning M  Mellish JA 《PloS one》2012,7(1):e30173
The endangered western stock of the Steller sea lion (Eumetopias jubatus)--the largest of the eared seals--has declined by 80% from population levels encountered four decades ago. Current overall trends from the Gulf of Alaska to the Aleutian Islands appear neutral with strong regional heterogeneities. A published inferential model has been used to hypothesize a continuous decline in natality and depressed juvenile survival during the height of the decline in the mid-late 1980's, followed by the recent recovery of juvenile survival to pre-decline rates. However, these hypotheses have not been tested by direct means, and causes underlying past and present population trajectories remain unresolved and controversial. We determined post-weaning juvenile survival and causes of mortality using data received post-mortem via satellite from telemetry transmitters implanted into 36 juvenile Steller sea lions from 2005 through 2011. Data show high post-weaning mortality by predation in the eastern Gulf of Alaska region. To evaluate the impact of such high levels of predation, we developed a conceptual framework to integrate density dependent with density independent effects on vital rates and population trajectories. Our data and model do not support the hypothesized recent recovery of juvenile survival rates and reduced natality. Instead, our data demonstrate continued low juvenile survival in the Prince William Sound and Kenai Fjords region of the Gulf of Alaska. Our results on contemporary predation rates combined with the density dependent conceptual framework suggest predation on juvenile sea lions as the largest impediment to recovery of the species in the eastern Gulf of Alaska region. The framework also highlights the necessity for demographic models based on age-structured census data to incorporate the differential impact of predation on multiple vital rates.  相似文献   

11.
Guy Bachelet 《Hydrobiologia》1986,142(1):233-248
Because of methodological problems, macrobenthic studies usually neglect the juvenile stages of invertebrate communities, due to the fact that appearance of recruits in samples is only detected some weeks or even months after their true recruitment. During this period, the temporary meiobenthos undergoes high rates of mortality. From year to year, juvenile survival rate is thus responsible for temporal patterns observed in adult population densities.The results presented here relate to the population dynamics of the tellinid bivalve Macoma balthica (L.). A study of temporary meiobenthos was conducted over two consecutive years in an intertidal Macoma-community located at the mouth of the Gironde Estuary in southwest France. Sampling of juvenile stages required short intervals (2 weeks) between successive samplings and a fine sieving mesh size (63 µm). Other population parameters, such as temporal patterns in density, reproductive cycle, and individual growth, were recorded.Recruitment processes showed a year-to-year variability, with regard to settlement density, settlement period, and survival rate. In 1983, recruitment was moderate and protracted over several months. Only one main recruitment period was detected in 1984, resulting in a high juvenile density. In a previous study (1977), by contrast, recruitment was almost non-existent.This variability is discussed as a function of climatic and sedimentological conditions which prevailed in the estuary throughout the study period. However, none of these physical factors appeared to underlie the recruitment fluctuation in Macoma balthica. It is suggested that biological interactions are of prime importance in regulating population densities in this community.  相似文献   

12.
Low levels of genetic heterozygosity are commonly considered a major threat to the survival of wild and captive populations. However, intense focus on genetic issues may obscure the importance of extrinsic factors influencing species' survival in wild and captive environments. A key example for this is the cheetah (Acinonyx jubatus), which is frequently cited as suffering from unusually high juvenile mortality and decreased fecundity in captivity due to genetic monomorphism at the species level. It has also been suggested that as a consequence of such extreme homozygosity, juvenile mortality rates of young from related vs. unrelated parents would not be expected to differ significantly. However, examination of current studbook data and breeding records of the North American captive population showed that juvenile mortality of young from related parents was significantly higher than that of young from unrelated parents, largely as a result of intrinsic causes, such as stillbirths and congenital defects, that may have a genetic basis. This indicates that in spite of the cheetah's homozygosity, effects of further inbreeding depression may still occur in the captive population, and deleterious recessive alleles are being segregated. Furthermore, juvenile mortality has declined over time and differs significantly among facilities, even when only young from unrelated parents are considered, suggesting that differences in management practices may be largely responsible for observed changes in mortality rate. Contrary to previous reports, cheetah juvenile mortality is not unusually high when compared to other captive-bred felids. In addition, cheetahs were found to have consistently higher litter sizes and the highest average number of surviving cubs per litter when compared to other captive-bred felid species. These findings cast doubt on the significance of overall homozygosity in this species for its juvenile survival and breeding performance and emphasize the key role of management practice in promoting breeding of endangered species. © 1996 Wiley-Liss. Inc.  相似文献   

13.
Although senescence has been described for various fitness components in a wide range of animal species, few studies have studied senescence in long‐lived species, and little is known about its interactions with varying environmental conditions. Using a 32 year capture–mark–recapture dataset on the griffon vulture Gyps fulvus, we examined the demographic patterns of actuarial senescence and the patterns of year‐to‐year variation in survival rates. We found a significant, surprisingly late, decrease of annual survival probabilities from the age of 28 years onward and divided individual lifetimes into to three categories (juvenile, mid‐age and senescent birds). In agreement with the environmental canalization hypothesis, our analyses uncovered 1) higher temporal variation of annual survival probabilities in both the juvenile and senescent age classes compared to the mid‐age class and 2) low sensitivity of the population growth rate to the survival of both the juvenile and senescent age classes. Our results further suggested that the temporal variation in the survival of senescent birds might be related to intra‐annual changes in air temperature amplitudes. Finally, using population dynamics modeling, we revealed contrasting effects of the inclusion of the senescent age class on predicted population growth, depending on how survival rates were modeled. Altogether, our results demonstrate the existence of a class of senescent birds that exhibit distinct demographic properties compared to juvenile and mid‐age classes.  相似文献   

14.
Trawl surveys in the estuary of the River Medway in the autumns of 1987–1991 have shown that the distribution of juvenile sea bass Dicentrarchus labrax is strongly associated with the warm-water outflow from Kingsnorth power station. In years of low abundance of first-year bass, very few were caught outside the warm-water discharge channel, whereas proportionately more fish of abundant year classes occupied the main river. About 15% of the available juvenile bass population died on the cooling-water intake screens at Kingsworth in the autumn and winter of 1987 and 1988. However, growth and survival of first-year bass in the Medway Estuary may be enhanced by the power station's warm-water effluent, such that overwinter mortality due to inadequate nutritional reserves and low temperatures may be considerably reduced.  相似文献   

15.
A stock-recruitment model with a temperature component was used to estimate the effect of an increase in temperature predicted by climate change projections on population persistence and distribution of twaite shad Alosa fallax. An increase of 1 and 2° C above the current mean summer (June to August) water temperature of 17·8° C was estimated to result in a three and six-fold increase in the population, respectively. Climate change is also predicted to result in an earlier commencement to their spawning migration into fresh water. The model was expanded to investigate the effect of any additional mortality that might arise from a tidal power barrage across the Severn Estuary. Turbine mortality was separated into two components: (1) juvenile (pre-maturation) on their out migration during their first year and on their first return to the river to spawn and (2) post-maturation mortality on adults on the repeat spawning component of the population. Under current conditions, decreasing pre-maturation and post-maturation survival by 8% is estimated to result in the stock becoming extinct. It is estimated that an increase in mean summer water temperature of 1° C would mean that survival pre and post-maturation would need to be reduced by c. 10% before the stock becomes extinct. Therefore, climate change is likely to be beneficial to populations of A. fallax within U.K. rivers, increasing survival and thus, population persistence.  相似文献   

16.
《Journal of Ornithology》2010,151(1):51-60
Autumn postnuptial migration is critical in the dabbling duck annual cycle, when first-year birds in particular suffer high losses to natural and hunting mortality. Mortality rates in this age-class are generally unknown in Europe where winter ringing predominates. We used data from large-scale wing collections from hunters in Finland, Denmark and France to test the prediction that juvenile proportions among killed Teal (Anas crecca) would decline with distance along the flyway. As expected, this proportion decreased from 89% in Northern Finland to 58% in Western France. Potential biases linked with age determination from the wings, differential migration of age-classes, relative susceptibility to different forms hunting and gradual improvement of juvenile survival as they learn to avoid hunters could not explain the observed decline of juveniles in the shot population. This pattern was therefore considered to be genuine, the result of the cumulative depletion of first-years along the flyway, likely through hunting. On this assumption, combined with known adult monthly survival rates during August–November (94.2%), monthly juvenile survival rate was estimated at 52.8%, i.e. 14.7% (range 13.9–15.4% based on extreme values of adult survival) amongst Scandinavian juveniles reaching wintering quarters in Western France. Despite lack of precision in such estimates based on relative proportions, there is little doubt about the magnitude of autumn juvenile mortality and its consequences for the population dynamics of Teal. Lack of correlations between annual proportions of juveniles in the hunting bag and an index of Teal breeding success in Finland may result from such high and variable inter-annual mortality.  相似文献   

17.
Detailed studies on mammals and birds have shown that the effects of climate variation on population dynamics often depend on population composition, because weather affects different subsets of a population differently. It is presently unknown whether this is also true for ectothermic animals such as reptiles. Here we show such an interaction between weather and demography for an ectothermic vertebrate by examining patterns of survival and reproduction in six populations of a threatened European snake, the asp viper ( Vipera aspis ), over six to 17 years. Survival was lowest among juvenile and highest among adult snakes. The estimated annual probability for females to become gravid ranged from 26% to 60%, and was independent of whether females had reproduced in the year before or not. Variation in juvenile survival was strongly affected by winter temperature, whereas adult survival was unaffected by winter harshness. A matrix population model showed that winter weather affected population dynamics predominantly through variation in juvenile survival, although the sensitivity of the population growth rate to juvenile survival was lower than to adult survival. This study on ectothermic vipers revealed very similar patterns to those found in long-lived endothermic birds and mammals. Our results thus show that climate and life history can interact in similar ways across biologically very different vertebrate species, and suggest that these patterns may be very general.  相似文献   

18.
Variation in timing of reproduction and subsequent juvenile survival often plays an important role in population dynamics of temperate and boreal ungulates. Tropical ungulates often give birth year round, but survival effects of birth season for tropical ungulate species are unknown. We used a population of giraffe in the Tarangire Ecosystem of northern Tanzania, East Africa to determine whether calf survival varied by season of birth. Variation in juvenile survival according to season of birth was significant, with calves born during the dry season experiencing the highest survival probability. Phenological match may confer a juvenile survival advantage to offspring born during the dry season from greater accumulated maternal energy reserves in mothers who conceive in the long rainy season, high-protein browse in the late dry-early short rainy seasons supplementing maternal and calf resources, reduced predation due to decreased stalking cover, or some combination of these. Asynchrony is believed to be the ancestral state of all ungulates, and this investigation has illustrated how seasonal variation in vegetation can affect juvenile survival and may play a role in the evolution of synchronous births.  相似文献   

19.
The arctic fox Alopex lagopus L population in Sweden is small and its numbers fluctuate widely with food availability, l e rodent populations This fluctuation is mediated through differences in recruitment rates between years The recruitment can be divided into three phases number of litters born, number of cubs per litter and cub survival rates The number of litters and their sizes have been shown to depend on food availability during winter and spring To examine cub survival during the summer and how it relates to food availability, we conducted a feeding experiment m northern Sweden during 1990, a year of low rodent density, involving six occupied arctic fox dens Feeding at dens lowered cub mortality rates However, condition and growth rates of juveniles were not influenced by supplementary feeding at dens, nor were they related to the probability of survival for an individual Thus arctic foxes seem to minimize risks rather than maximize growth The juvenile mortality from weaning and over the next 6 wk was 21%, mostly due to starvation Only 82% survived from weaning to the first breeding season Of the one-year-old foxes, 50% survived their second year Supplementary feeding of juveniles had no effect on the final survival rates over these two years However, the immediate, positive effect on cub survival could be used in a long-term, extensive management programme if combined with winter feeding  相似文献   

20.
American Woodcocks (Scolopax minor) are a high priority species of conservation need across most of their breeding range due to long‐term population declines. Survival of juveniles may be key to understanding these population declines, but there have been few direct estimates of juvenile woodcock survival rates, and no recent assessment of the possible effect of radio‐tagging on juvenile survival. In 2011 and 2012, we radio‐tagged 73 juvenile American Woodcocks in west‐central Minnesota and compared survival rates of radio‐tagged (N = 58) and non‐radio‐tagged (N = 82) juveniles during the period from hatching to fledging. We compared survival rates of juveniles with known fates and used logistic‐exposure models to assess the potential impact of radio‐transmitters on survival. We evaluated variables related to juvenile survival including age, hatch date, maximum and minimum temperature, precipitation, and year to assess the possible effects of radio‐transmitters. The best‐supported model of survival rate of juvenile American Woodcocks included the interaction of age and year and a negative effect of precipitation (β = ?0.76, 85% CI: ?1.08 to ?0.43), but did not include a negative effect of transmitters. Our results suggest that radio‐transmitters did not impact survival of juvenile American Woodcocks and that transmitters are a reliable tool for studying survival of juvenile American Woodcocks, and perhaps other precocial shorebirds.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号