首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 718 毫秒
1.
Indirect genetic effects (IGEs) occur when the phenotype of an individual, and possibly its fitness, depends, at least in part, on the genes of its social partners. The effective result is that environmental sources of phenotypic variance can themselves evolve. Simple models have shown that IGEs can alter the rate and direction of evolution for traits involved in interactions. Here we expand the applicability of the theory of IGEs to evolution in metapopulations by including nonlinear interactions between individuals and population genetic structure. Although population subdivision alone generates some dramatic and nonintuitive evolutionary dynamics for interacting phenotypes, the combination of nonlinear interactions with subdivision reveals an even greater importance of IGEs. The presence of genetic structure links the evolution of interacting phenotypes and the traits that influence their expression ("effector traits") even in the absence of genetic correlations. When nonlinear social effects occur in subdivided populations, evolutionary response is altered and can even oppose the direction expected due to direct selection. Because population genetic structure allows for multilevel selection, we also investigate the role of IGEs in determining the response to individual and group selection. We find that nonlinear social effects can cause interference between levels of selection even when they act in the same direction. In some cases, interference can be so extreme that the actual evolutionary response to multilevel selection is opposite in direction to that predicted by summing selection at each level. This theoretical result confirms empirical data that show higher levels of selection cannot be ignored even when selection acts in the same direction at all levels.  相似文献   

2.
Social selection and indirect genetic effects (IGEs) are established concepts in both behavioural ecology and evolutionary genetics. While IGEs describe effects of an individual’s genotype on phenotypes of social partners (and may thus affect their fitness indirectly), the concept of social selection assumes that a given phenotype in one individual affects the fitness of other individuals directly. Although different frameworks, both have been used to investigate the evolution of social traits, such as cooperative behaviour. Despite their similarities (both concepts consider interactions among individuals), they differ in the type of interaction. It remains unclear whether the two concepts make the same predictions about evolutionary trajectories or not. To address this question, we investigate four possible scenarios of social interactions and compare the effects of IGEs and social selection for trait evolution in a multi-trait multi-member model. We show that the two mechanisms can yield similar evolutionary outcomes and that both can create selection pressure at the group level. However, the effect of IGEs can be stronger due to the possibility of feedback loops. Finally, we demonstrate that IGEs, but not social selection gradients, may lead to differences in the direction of evolutionary response between genotypes and phenotypes.  相似文献   

3.
Social interactions can give rise to indirect genetic effects (IGEs), which occur when genes expressed in one individual affect the phenotype of another individual. The evolutionary dynamics of traits can be altered when there are IGEs. Sex often involves indirect effects arising from first‐order (current) or second‐order (prior) social interactions, yet IGEs are infrequently quantified for reproductive behaviors. Here, we use experimental populations of burying beetles that have experienced bidirectional selection on mating rate to test for social plasticity and IGEs associated with focal males mating with a female either without (first‐order effect) or with (second‐order effect) prior exposure to a competitor, and resource defense behavior (first‐order effect). Additive IGEs were detected for mating rate arising from (first‐order) interactions with females. For resource defense behavior, a standard variance partitioning analysis provided no evidence of additive genetic variance—either direct or indirect. However, behavior was predicted by focal size relative to that of the competitor, and size is also heritable. Assuming that behavior is causally dependent on relative size, this implies that both DGEs and IGEs do occur (and may potentially interact). The relative contribution of IGEs may differ among social behaviors related to mating which has consequences for the evolutionary trajectories of multivariate traits.  相似文献   

4.
Indirect genetics effects (IGEs)—when the genotype of one individual affects the phenotypic expression of a trait in another—may alter evolutionary trajectories beyond that predicted by standard quantitative genetic theory as a consequence of genotypic evolution of the social environment. For IGEs to occur, the trait of interest must respond to one or more indicator traits in interacting conspecifics. In quantitative genetic models of IGEs, these responses (reaction norms) are termed interaction effect coefficients and are represented by the parameter psi (Ψ). The extent to which Ψ exhibits genetic variation within a population, and may therefore itself evolve, is unknown. Using an experimental evolution approach, we provide evidence for a genetic basis to the phenotypic response caused by IGEs on sexual display traits in Drosophila serrata. We show that evolution of the response is affected by sexual but not natural selection when flies adapt to a novel environment. Our results indicate a further mechanism by which IGEs can alter evolutionary trajectories—the evolution of interaction effects themselves.  相似文献   

5.
Indirect genetic effects (IGEs), which occur when phenotypic expression in one individual is influenced by genes in another conspecific individual, may have a drastic effect on evolutionary response to selection. General evolutionary models of IGEs have been developed using two distinct theoretical frameworks derived from maternal effects theory. The first framework is trait-based and focuses on how phenotypes are influenced by specific traits in a social partner, with the strength of interactions defined by the matrix Ψ. The second framework partitions total genetic variance into components representing direct effects, indirect effects, and the covariance between them, without identifying specific social traits responsible for IGEs. The latter framework has been employed more commonly by empiricists because the methods for estimating variance components are relatively straightforward. Here, we show how these two theoretical frameworks are related to each other and derive equations that can be used to translate between them. This translation leads to a generalized method that can be used to estimate Ψ via standard quantitative genetic breeding designs or pedigrees from natural populations. This method can be used in a very general set of circumstances and is widely applicable to all IGEs, including maternal effects and other interactions among relatives.  相似文献   

6.
Interactions among conspecifics influence social evolution through two distinct but intimately related paths. First, they provide the opportunity for indirect genetic effects (IGEs), where genes expressed in one individual influence the expression of traits in others. Second, interactions can generate social selection when traits expressed in one individual influence the fitness of others. Here, we present a quantitative genetic model of multivariate trait evolution that integrates the effects of both IGEs and social selection, which have previously been modeled independently. We show that social selection affects evolutionary change whenever the breeding value of one individual covaries with the phenotype of its social partners. This covariance can be created by both relatedness and IGEs, which are shown to have parallel roles in determining evolutionary response. We show that social selection is central to the estimation of inclusive fitness and derive a version of Hamilton's rule showing the symmetrical effects of relatedness and IGEs on the evolution of altruism. We illustrate the utility of our approach using altruism, greenbeards, aggression, and weapons as examples. Our model provides a general predictive equation for the evolution of social phenotypes that encompasses specific cases such as kin selection and reciprocity. The parameters can be measured empirically, and we emphasize the importance of considering both IGEs and social selection, in addition to relatedness, when testing hypotheses about social evolution.  相似文献   

7.
A fundamental part of the quantitative genetic theory deals with the partitioning of the phenotypic variance into additive genetic and environmental components. During interaction with conspecifics, the interaction partner becomes a part of the environment from the perspective of the focal individual. If the interaction effects have a genetic basis, they are called indirect genetic effects (IGEs) and can evolve along with direct genetic effects. Sexual reproduction is a classic context where potential conflict between males and females can arise from trade‐offs between current and future investments. We studied five female fecundity traits, egg length and number, egg pod length and number and latency to first egg pod, and estimated the direct and IGEs using a half‐sib breeding design in the grasshopper Chorthippus biguttulus. We found that the male IGEs were an order of magnitude lower than the direct genetic effects and were not significantly different from zero. However, there was some indication that IGEs were larger shortly after mating, consistent with the idea that IGEs fade with time after interaction. Female direct heritabilities were moderate to low. Simulation shows that the variance component estimates can appear larger with less data, calling for care when interpreting variance components estimated with low power. Our results illustrate that the contribution of male IGEs is overall low on the phenotypic variance of female fecundity traits. Thus, even in the relevant context of sexual conflict, the influence of male IGEs on the evolutionary trajectory of female reproductive traits is likely to be small.  相似文献   

8.
BackgroundIndirect genetic effects (IGEs) occur when genes expressed in one individual alter the expression of traits in social partners. Previous studies focused on the evolutionary consequences and evolutionary dynamics of IGEs, using equilibrium solutions to predict phenotypes in subsequent generations. However, whether or not such steady states may be reached may depend on the dynamics of interactions themselves.ResultsIn our study, we focus on the dynamics of social interactions and indirect genetic effects and investigate how they modify phenotypes over time. Unlike previous IGE studies, we do not analyse evolutionary dynamics; rather we consider within-individual phenotypic changes, also referred to as phenotypic plasticity. We analyse iterative interactions, when individuals interact in a series of discontinuous events, and investigate the stability of steady state solutions and the dependence on model parameters, such as population size, strength, and the nature of interactions. We show that for interactions where a feedback loop occurs, the possible parameter space of interaction strength is fairly limited, affecting the evolutionary consequences of IGEs. We discuss the implications of our results for current IGE model predictions and their limitations.  相似文献   

9.
Indirect genetic effects (IGEs) occur when genes expressed in one individual alter the phenotype of an interacting partner. IGEs can dramatically affect the expression and evolution of social traits. However, the interacting phenotype(s) through which they are transmitted are often unknown, or cryptic, and their detection would enhance our ability to accurately predict evolutionary change. To illustrate this challenge and possible solutions to it, we assayed male leg‐tapping behavior using inbred lines of Drosophila melanogaster paired with a common focal male strain. The expression of tapping in focal males was dependent on the genotype of their interacting partner, but this strong IGE was cryptic. Using a multiple‐regression approach, we identified male startle response as a candidate interacting phenotype: the longer it took interacting males to settle after being startled, the less focal males tapped them. A genome‐wide association analysis identified approximately a dozen candidate protein‐coding genes potentially underlying the IGE, of which the most significant was slowpoke. Our methodological framework provides information about candidate phenotypes and candidate single‐nucleotide polymorphisms that underpin a strong yet cryptic IGE. We discuss how this approach can facilitate the detection of cryptic IGEs contributing to unusual evolutionary dynamics in other study systems.  相似文献   

10.
P Bijma 《Heredity》2014,112(1):61-69
Indirect genetic effects (IGE) occur when the genotype of an individual affects the phenotypic trait value of another conspecific individual. IGEs can have profound effects on both the magnitude and the direction of response to selection. Models of inheritance and response to selection in traits subject to IGEs have been developed within two frameworks; a trait-based framework in which IGEs are specified as a direct consequence of individual trait values, and a variance-component framework in which phenotypic variance is decomposed into a direct and an indirect additive genetic component. This work is a selective review of the quantitative genetics of traits affected by IGEs, with a focus on modelling, estimation and interpretation issues. It includes a discussion on variance-component vs trait-based models of IGEs, a review of issues related to the estimation of IGEs from field data, including the estimation of the interaction coefficient Ψ (psi), and a discussion on the relevance of IGEs for response to selection in cases where the strength of interaction varies among pairs of individuals. An investigation of the trait-based model shows that the interaction coefficient Ψ may deviate considerably from the corresponding regression coefficient when feedback occurs. The increasing research effort devoted to IGEs suggests that they are a widespread phenomenon, probably particularly in natural populations and plants. Further work in this field should considerably broaden our understanding of the quantitative genetics of inheritance and response to selection in relation to the social organisation of populations.  相似文献   

11.
The expression of an individual's phenotypic traits can be influenced by genes expressed in its social partners. Theoretical models predict that such indirect genetic effects (IGEs) on reproductive traits should play an important role in determining the evolutionary outcome of sexual conflict. However, empirical tests of (i) whether reproductive IGEs exist, (ii) how they vary among genotypes, and (iii) whether they are uniform for different types of reproductive traits are largely lacking. We addressed this in a series of experiments in the simultaneously hermaphroditic flatworm Macrostomum lignano. We found strong evidence for IGEs on both morphological and behavioral reproductive traits. Partner genotype had a significant impact on the testis size of focal individuals—varying up to 2.4‐fold—suggesting that IGEs could mediate sexual conflicts that target the male sex function. We also found that time to first copulation was affected by a genotype × genotype interaction between mating partners, and that partner genotype affected the propensity to copulate and perform the postcopulatory suck behavior, which may mediate conflicts over the fate of received ejaculate components. These findings provide clear empirical evidence for IGEs on multiple behavioral and morphological reproductive traits, which suggests that the evolutionary dynamics of these traits could be altered by genes contained in the social environment.  相似文献   

12.
S W Alemu  P Berg  L Janss  P Bijma 《Heredity》2014,112(2):197-206
Social interactions among individuals are widespread, both in natural and domestic populations. As a result, trait values of individuals may be affected by genes in other individuals, a phenomenon known as indirect genetic effects (IGEs). IGEs can be estimated using linear mixed models. The traditional IGE model assumes that an individual interacts equally with all its partners, whether kin or strangers. There is abundant evidence, however, that individuals behave differently towards kin as compared with strangers, which agrees with predictions from kin-selection theory. With a mix of kin and strangers, therefore, IGEs estimated from a traditional model may be incorrect, and selection based on those estimates will be suboptimal. Here we investigate whether genetic parameters for IGEs are statistically identifiable in group-structured populations when IGEs differ between kin and strangers, and develop models to estimate such parameters. First, we extend the definition of total breeding value and total heritable variance to cases where IGEs depend on relatedness. Next, we show that the full set of genetic parameters is not identifiable when IGEs differ between kin and strangers. Subsequently, we present a reduced model that yields estimates of the total heritable effects on kin, on non-kin and on all social partners of an individual, as well as the total heritable variance for response to selection. Finally we discuss the consequences of analysing data in which IGEs depend on relatedness using a traditional IGE model, and investigate group structures that may allow estimation of the full set of genetic parameters when IGEs depend on kin.  相似文献   

13.
Indirect genetic effects (IGEs) occur when genes expressed in one individual affect the phenotype of a conspecific. Theoretical models indicate that the evolutionary consequences of IGEs critically depend on the genetic architecture of interacting traits, and on the strength and direction of phenotypic effects arising from social interactions, which can be quantified by the interaction coefficient Ψ. In the context of sexually selected traits, strong positive Ψ tends to exaggerate evolutionary change, whereas negative Ψ impedes sexual trait elaboration. Despite its theoretical importance, whether and how Ψ varies among geographically distinct populations is unknown. Such information is necessary to evaluate the potential for IGEs to contribute to divergence among isolated or semi-isolated populations. Here, we report substantial variation in Ψ for a behavioural trait involved in sexual selection in the field cricket Teleogryllus oceanicus: female choosiness. Both the strength and direction of Ψ varied among geographically isolated populations. Ψ also changed over time. In a contemporary population of crickets from Kauai, experience of male song increased female choosiness. In contrast, experience of male song decreased choosiness in an ancestral population from the same location. This rapid change corroborates studies examining the evolvability of Ψ and demonstrates how interpopulation variation in the interaction coefficient might influence sexual selection and accelerate divergence of traits influenced by IGEs that contribute to reproductive isolation in nascent species or subspecies.  相似文献   

14.
While it is universally recognised that environmental factors can cause phenotypic trait variation via phenotypic plasticity, the extent to which causal processes operate in the reverse direction has received less consideration. In fact individuals are often active agents in determining the environments, and hence the selective regimes, they experience. There are several important mechanisms by which this can occur, including habitat selection and niche construction, that are expected to result in phenotype–environment correlations (i.e. non-random assortment of phenotypes across heterogeneous environments). Here we highlight an additional mechanism – intraspecific competition for preferred environments – that may be widespread, and has implications for phenotypic evolution that are currently underappreciated. Under this mechanism, variation among individuals in traits determining their competitive ability leads to phenotype–environment correlation; more competitive phenotypes are able to acquire better patches. Based on a concise review of the empirical evidence we argue that competition-induced phenotype–environment correlations are likely to be common in natural populations before highlighting the major implications of this for studies of natural selection and microevolution. We focus particularly on two central issues. First, competition-induced phenotype–environment correlation leads to the expectation that positive feedback loops will amplify phenotypic and fitness variation among competing individuals. As a result of being able to acquire a better environment, winners gain more resources and even better phenotypes – at the expense of losers. The distinction between individual quality and environmental quality that is commonly made by researchers in evolutionary ecology thus becomes untenable. Second, if differences among individuals in competitive ability are underpinned by heritable traits, competition results in both genotype–environment correlations and an expectation of indirect genetic effects (IGEs) on resource-dependent life-history traits. Theory tells us that these IGEs will act as (partial) constraints, reducing the amount of genetic variance available to facilitate evolutionary adaptation. Failure to recognise this will lead to systematic overestimation of the adaptive potential of populations. To understand the importance of these issues for ecological and evolutionary processes in natural populations we therefore need to identify and quantify competition-induced phenotype–environment correlations in our study systems. We conclude that both fundamental and applied research will benefit from an improved understanding of when and how social competition causes non-random distribution of phenotypes, and genotypes, across heterogeneous environments.  相似文献   

15.
By determining access to limited resources, social dominance is often an important determinant of fitness. Thus, if heritable, standard theory predicts mean dominance should evolve. However, dominance is usually inferred from the tendency to win contests, and given one winner and one loser in any dyadic contest, the mean proportion won will always equal 0.5. Here, we argue that the apparent conflict between quantitative genetic theory and common sense is resolved by recognition of indirect genetic effects (IGEs). We estimate selection on, and genetic (co)variance structures for, social dominance, in a wild population of red deer Cervus elaphus, on the Scottish island of Rum. While dominance is heritable and positively correlated with lifetime fitness, contest outcomes depend as much on the genes carried by an opponent as on the genotype of a focal individual. We show how this dependency imposes an absolute evolutionary constraint on the phenotypic mean, thus reconciling theoretical predictions with common sense. More generally, we argue that IGEs likely provide a widespread but poorly recognized source of evolutionary constraint for traits influenced by competition.  相似文献   

16.
How and why cooperation evolves, particularly among nonrelatives, remains a major paradox for evolutionary biologists and behavioral ecologists. Although much attention has focused on fitness consequences associated with cooperating, relatively little is known about the second component of evolutionary change, the inheritance of cooperation or reciprocity. The genetics of behaviors that can only be expressed in the context of interactions are particularly difficult to describe because the relevant genes reside in multiple social partners. Indirect genetic effects (IGEs) describe the influence of genes carried in social partners on the phenotype of a focal individual and thus provide a novel approach to quantifying the genetics underlying interactions such as reciprocal cooperation. We used inbred lines of guppies and a novel application of IGE theory to describe the dual genetic control of predator inspection and social behavior, both classic models of reciprocity. We identified effects of focal strain, social group strain, and interactions between focal and group strains on variation in focal behavior. We measured ψ, the coefficient of the interaction, which describes the degree to which an individual's phenotype is influenced by the phenotype of its social partners. The genetic identity of social partners substantially influences inspection behavior, measures of threat assessment, and schooling and does so in positively reinforcing manner. We therefore demonstrate strong IGEs for antipredator behavior that represent the genetic variation necessary for the evolution of reciprocity.  相似文献   

17.
Indirect Genetic Effects (IGEs), also known as associative effects, are the heritable effects that an individual has on the phenotype of its social partners. Selection for IGEs has been proposed as a method to reduce harmful behaviours, in particular aggression, in livestock and aquaculture. The mechanisms behind IGEs, however, have rarely been studied. The objective was therefore to assess aggression in pigs which were divergently selected for IGEs on growth (IGEg). In a one generation selection experiment, we studied 480 offspring of pigs (Sus scrofa) that were selected for relatively high or low IGEg and housed in homogeneous IGEg groups in either barren or enriched environments. Skin lesion scores, a proxy measure of aggression, and aggressive behaviours were recorded. The two distinct IGEg groups did not differ in number of skin lesions, or in amount of reciprocal fighting, both under stable social conditions and in confrontation with unfamiliar pigs in a 24 h regrouping test. Pigs selected for a positive effect on the growth of their group members, however, performed less non-reciprocal biting and showed considerably less aggression at reunion with familiar group members after they had been separated during a 24 h regrouping test. The enriched environment was associated with more skin lesions but less non-reciprocal biting under stable social conditions. Changes in aggression between pigs selected for IGEg were not influenced by G×E interactions with regard to the level of environmental enrichment. It is likely that selection on IGEg targets a behavioural strategy, rather than a single behavioural trait such as aggressiveness.  相似文献   

18.
Despite strong purifying or directional selection, variation is ubiquitous in populations. One mechanism for the maintenance of variation is indirect genetic effects (IGEs), as the fitness of a given genotype will depend somewhat on the genes of its social partners. IGEs describe the effect of genes in social partners on the expression of the phenotype of a focal individual. Here, we ask what effect IGEs, and variation in IGEs between abiotic environments, has on locomotion in Drosophila. This trait is known to be subject to intralocus sexually antagonistic selection. We estimate the coefficient of interaction, Ψ, using six inbred lines of Drosophila. We found that Ψ varied between abiotic environments, and that it may vary across among male genotypes in an abiotic environment specific manner. We also found evidence that social effects of males alter the value of a sexually dimorphic trait in females, highlighting an interesting avenue for future research into sexual antagonism. We conclude that IGEs are an important component of social and sexual interactions and that they vary between individuals and abiotic environments in complex ways, with the potential to promote the maintenance of phenotypic variation.  相似文献   

19.
Our understanding of the evolutionary stability of socially selected traits is dominated by sexual selection models originating with R. A. Fisher, in which genetic covariance arising through assortative mating can trigger exponential, runaway trait evolution. To examine whether nonreproductive, socially selected traits experience similar dynamics—social runaway—when assortative mating does not automatically generate a covariance, we modeled the evolution of socially selected badge and donation phenotypes incorporating indirect genetic effects (IGEs) arising from the social environment. We establish a social runaway criterion based on the interaction coefficient, ψ , which describes social effects on badge and donation traits. Our models make several predictions. (1) IGEs can drive the original evolution of altruistic interactions that depend on receiver badges. (2) Donation traits are more likely to be susceptible to IGEs than badge traits. (3) Runaway dynamics in nonsexual, social contexts can occur in the absence of a genetic covariance. (4) Traits elaborated by social runaway are more likely to involve reciprocal, but nonsymmetrical, social plasticity. Models incorporating plasticity to the social environment via IGEs illustrate conditions favoring social runaway, describe a mechanism underlying the origins of costly traits, such as altruism, and support a fundamental role for phenotypic plasticity in rapid social evolution.  相似文献   

20.
Female mating preferences are often flexible, reflecting the social environment in which they are expressed. Associated indirect genetic effects (IGEs) can affect the rate and direction of evolutionary change, but sexual selection models do not capture these dynamics. We incorporate IGEs into quantitative genetic models to explore how variation in social environments and mate choice flexibility influence Fisherian sexual selection. The importance of IGEs is that runaway sexual selection can occur in the absence of a genetic correlation between male traits and female preferences. Social influences can facilitate the initiation of the runaway process and increase the rate of trait elaboration. Incorporating costs to choice do not alter the main findings. Our model provides testable predictions: (1) genetic covariances between male traits and female preferences may not exist, (2) social flexibility in female choice will be common in populations experiencing strong sexual selection, (3) variation in social environments should be associated with rapid sexual trait divergence, and (4) secondary sexual traits will be more elaborate than previously predicted. Allowing feedback from the social environment resolves discrepancies between theoretical predictions and empirical data, such as why indirect selection on female preferences, theoretically weak, might be sufficient for preferences to become elaborated.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号