首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
The Toxic Oil Syndrome (TOS) was an epidemic disease appeared in central Spain in 1981, causing over 400 deaths and affecting more than 20,000 people, mainly women and children. The disease was linked to the consumption of rapeseed oil denatured with aniline, illegally refined at the ITH oil refinery in Seville, mixed with other oils and sold as edible olive oil. Among the aniline derivatives detected in the oil batches generated by an uncontrolled deodorisation procedure during the refining process, fatty acid anilides were first postulated as the causal agents. Nevertheless, compounds identified as 3-(N-phenylamino)propane-1,2-diol (PAP) and its mono-, di-, and triacyl derivatives (mPAP, dPAP and tPAP, respectively), were subsequently considered better biomarkers of toxic oils and the best candidates for causing the intoxication. In this account, we will discuss the results obtained in recent years by our group concerning: (a) The effect of different variables intervening in the deodorisation process that could influence the formation of PAP derivatives. To this end we decided to take the aniline derivatives linked to oleic acid as compound models since this is the fatty acid present in highest amounts in rapeseed oil. The study was focused on the influence of different parameters on the formation of the diester PAP derivative (OOPAP) the monoester derivative (OPAP) and the corresponding amide (oleanilide, OA), and the interactions between any two of these variables. Of particular interest was the interaction observed between OOPAP and OA, due to its potential relevance to the final composition of the toxic oil model. (b) Xenobiochemical aspects of PAP derivatives, specifically: the stereospecific hydrolysis of OPAP and OOPAP by human pancreatic lipase, the in vitro activation of PAP by human and rat liver microsomes as well as by recombinant 450 enzymes, and the formation and stability of GSH and N-acetylcysteine adducts of a highly reactive iminoquinone intermediate generated in the biotransformation of PAP.  相似文献   

2.
Toxic oil syndrome (TOS), a multisystemic epidemic outbreak in 1981 in Spain, was caused by the ingestion of a cooking oil mixture containing rapeseed oil denatured with aniline. The mechanisms and causative agents responsible for the TOS are still not known. Although primary lesions observed in TOS patients could not be reproduced experimentally, the levels of fatty acid anilides (FAAs) and aniline in TOS-related cooking oil were considered proximate markers of TOS. Aniline, available from free aniline and FAAs ingested with TOS-related cooking oil, and its reconjugation with endogenous fatty acids could be an early event leading to TOS. Therefore, the present study was undertaken to determine the formation of FAAs following an oral dose of 2 mmol/kg aniline hydrochloride (AH) via gavage in rats. Here, 16:0, 18:0, 18:1, 18:2, 18:3, and 20:4 FAAs were analyzed in the whole blood, brown fat, liver, and pancreas at 0 (control), 0.25, 0.5, 1, 3, 6, 12, 24, and 48 hours. Generally, 16:0 and 18:1 FAAs were detected in the whole blood, brown fat, and liver of AH-treated rats with highest mean levels at 0.25 or 0.5 hour, except 3 hours for the whole blood. Only 16:0 FAA was detectable in the pancreas of AH-treated animals. The 18:0 FAA was also detected frequently in the liver while other FAAs were either in trace amounts or not detectable in the tissues analyzed in the present study. Overall, highest formation of the 16:0 FAA was found in the liver followed by pancreas and of 18:1 FAA in the whole blood and brown fat. These results indicate a rapid formation and further metabolism and disposition of FAAs in rat model and support our previous findings that 18:1 and 16:0 fatty acids are better substrates for the conjugation with aniline. Surprisingly, a small or trace amount of a few FAAs also detected in the tissues of control rats indicates their endogenous biosynthesis and/or presence. Results of 18:1 fatty acid incubation and aniline in the presence of fatty acid ethyl ester synthase, purified to homogeneity from rat liver microsome, suggest that formation of FAAs is catalyzed by an enzyme involved in the conjugation of fatty acids with xenobiotic alcohols. Because the FAAs are known to exert a wide range of toxicity in experimental animals and primary cell cultures, in vivo formation of FAAs could be an early event leading to TOS.  相似文献   

3.
Goal, Scope, and Background The main goal of the study is a comprehensive life cycle assessment of kerosene produced in a refinery located in Thessaloniki (Greece) and used in a commercial jet aircraft. Methods The Eco-Indicator 95 weighting method is used for the purpose of this study. The Eco-Indicator is a method of aggregation (or, as described in ISO draft 14042, 'weighting through categories') that leads to a single score. In the Eco-indicator method, the weighing factor (We) applied to an environmental impact index (greenhouse effect, ozone depletion, etc.) stems from the 'main' damage caused by this environmental impact. Results and Discussion The dominant source of greenhouse gas emissions is from kerosene combustion in aircraft turbines during air transportation, which contributes 99.5% of the total CO2 emissions. The extraction and refinery process of crude oil contribute by around 0.22% to the GWP. This is a logical outcome considering that these processes are very energy intensive. Transportation of crude oil and kerosene have little or no contribution to this impact category. The main source of CFC-11 equivalent emissions is refining of crude oil. These emissions derive from emissions that result from electricity production that is used during the operation of the refinery. NOx emissions contribute the most to the acidification followed by SO2 emissions. The main source is the use process in a commercial jet aircraft, which contributes approximately 96.04% to the total equivalent emissions. The refinery process of crude oil contributes by 2.11% mainly by producing SO2 emissions. This is due to the relative high content of sulphur in the input flows of these processes (crude oil) that results to the production of large amount of SO2. Transportation of crude oil by sea (0.76%) produces large amount of SO2 and NOx due to combustion of low quality liquid fuels (heavy fuel oil). High air emissions of NOx during kerosene combustion result in the high contribution of this subsystem to the eutrophication effect. Also, water emissions with high nitrous content during the refining and extraction of crude oil process have a big impact to the water eutrophication impact category. Conclusion The major environmental impact from the life cycle of kerosene is the acidification effect, followed by the greenhouse effect. The summer smog and eutrophication effect have much less severe effect. The main contributor is the combustion of kerosene to a commercial jet aircraft. Excluding the use phase, the refining process appears to be the most polluting process during kerosene's life cycle. This is due to the fact that the refining process is a very complicated energy intensive process that produces large amounts and variety of pollutant substances. Extraction and transportation of crude oil and kerosene equally contribute to the environmental impacts of the kerosene cycle, but at much lower level than the refining process. Recommendation and Perspective The study indicates a need for a more detailed analysis of the refining process which has a very high contribution to the total equivalent emissions of the acidification effect and to the total impact score of the system (excluding the combustion of kerosene). This is due to the relative high content of sulphur in the input flows of these processes (crude oil) that results to the production of large amount of SO2.  相似文献   

4.
高酸值花椒种籽油的碱炼及工艺   总被引:3,自引:0,他引:3  
在前人研究的基础上,对高酸值花椒籽油的碱炼除酸实用技术进步进一步的研究。结果表明,传统的常规碱炼技术可以对酸值在20以下的花椒籽油进行精炼;用采用稀溶液分步间歇式碱炼则可以处理酸值高达60-70的花椒籽油。实验室试验表明稀溶液分步间歇式碱炼的工艺流程,可以在低炼耗的水平上得到酸值较理想的花椒籽碱炼油,同时该碱炼方法 显著的降低花椒籽油的色度。  相似文献   

5.
花椒种籽油的含蜡量测定与脱蜡   总被引:7,自引:0,他引:7  
花椒种籽油的含蜡量测定与脱蜡是长期困扰花椒种籽油处理的一项关键技术,本研究通过分析混合压榨制备的花椒种籽油,花椒籽种壳油及种仁油的含蜡量,研究了5种脱蜡方法脱除花椒籽油中蜡质的脱蜡效果,确定了脱除花椒籽油中蜡质的有效方法,研究结果表明,花椒籽油的含蜡量在15-20%,左右,而这些蜡质基本上都含在种壳油内一即种壳上,种仁油基本不含蜡质,脱除花椒籽油中蜡质的合理方法应是:(1)含蜡量相对较低的精制粗油可选用表面活性剂法脱蜡;(2)当含蜡量相对较高时,为降低脱蜡过程中油的耗损率可选用分步脱蜡法脱蜡;(3)需进行碱炼的油,可在碱炼过程中将蜡质与游离脂肪酸一半除去。  相似文献   

6.
Crude oil blending is an important unit in petroleum refining industry. Many blend automation systems use real-time optimizer (RTO), which apply current process information to update the model and predict the optimal operating policy. The key unites of the conventional RTO are on-line analyzers. Sometimes oil fields cannot apply these analyzers. In this paper, we propose an off-line optimization technique to overcome the main drawback of RTO. We use the history data to approximate the output of the on-line analyzers, then the desired optimal inlet flow rates are calculated by the optimization technique. After this off-line optimization, the inlet flow rates are used for on-line control, for example PID control, which forces the flow rate to follow the desired inlet flow rates. Neural networks are applied to model the blending process from the history data. The new optimization is carried out via the neural model. The contributions of this paper are: (1) Stable learning for the discrete-time multilayer neural network is proposed. (2) Sensitivity analysis of the neural optimization is given. (3) Real data of a oil field is used to show effectiveness of the proposed method.  相似文献   

7.
花椒种籽油的脱色方法研究   总被引:1,自引:0,他引:1  
选择不同的脱色方法分别对处理方式不同的花椒种子籽油进行脱色实验,结果表明,化学脱色法对不同处理的花椒种籽油都有脱色能力。但由于未从根本上除去油中的色素和其它使油色加深的物质反而增大了油的粘度,碱为地的脱色效果明显较化学脱色法,处理后的油色可以满足食品及工业用油对色度的要求;脱蜡碱炼后进行吸附剂脱色的实验表明,如处置不当油的色度不会下降反而可能升高,蛋白质类发生降解形成了油溶性的红褐色物质,是导致花椒种籽油色泽加深的主要原因。  相似文献   

8.
Enzymatic phospholipid removal (degumming) is a fast-growing and environmentally friendly process for vegetable oil refining. Type C phospholipases (PLC) are the preferred enzymes since they provide an extra yield in the oil recovery.Bacillus cereus PLC can hydrolyze phosphatidylcholine (PC) but has a limited efficiency at removing phosphatidylethanolamine (PE), which together represent ∼70% of the phospholipids present in crude soybean oil. In the present work, we show that the B. cereus PLC mutant F66Y can remove up to 90% of PE while retaining its efficiency at hydrolyzing PC. Oil treatment with the engineered enzyme provides an extra yield of 1.84% making the B. cereus PLC F66Y mutant an attractive candidate for its industrial use.  相似文献   

9.
燃料油中含有一些有机氮化物,其含量虽不如硫化物多,但足以影响油品的颜色和抗氧化安定性,也能在催化裂化等原油精制过程中造成催化剂中毒,缩短催化剂的使用寿命。同时,有机氮化物具致癌、致突变性,在燃料油燃烧过程中转变为氮氧化物,形成酸雨污染环境。传统的加氢脱氮操作复杂,成本高,因此人们日益重视微生物脱氮。综述微生物脱除燃料油中芳香氮化合物的机理、调控及咔唑降解基因的分子遗传学研究进展,并对未来的研究方向提出了作者的见解。  相似文献   

10.
Metabolism and bioactivation of fluoroanilines was studied both in vitro in microsomal systems and in vivo. 4-Fluoroaniline and pentafluoroaniline and their non-para fluorinated analogues were used as the model compounds. Special attention was focussed on bioactivation to reactive benzoquinoneimines. Cytochrome P-450 dependent monooxygenation at a non-fluorinated para position in (fluoro)aniline derivatives proceeds by formation of the para hydroxylated derivative as the primary metabolite. Monooxygenation at a fluorinated para position in an aniline derivative, however, proceeds by formation of fluoride anion and the reactive benzoquinoneimine as primary reaction products. Thus, for fluoroanilines with a fluorine substituent at the para position bioactivation to the reactive benzoquinoneimine can be a direct result of the cytochrome P-450 dependent conversion. In systems containing NAD(P)H and/or other reducing equivalents part of the benzoquinoneimine can be chemically reduced to give the corresponding 4-hydroxyaniline. In vivo this reduced form of the metabolite can be sulphated or glucuronidated and excreted into urine. The results obtained point to increased chances of bioactivation for aniline derivatives with a fluorinated para position as compared to their non-para fluorinated analogues, both in vitro but also in vivo.  相似文献   

11.
The mechanism of the aniline hydroxylase activity of methaemoglobin in a monooxygenase system consisting of NADH as electron donor, riboflavin, FAD, FMN or methylene blue as electron carrier and methaemoglobin as the terminal oxidase has been studied. Hydrogen peroxide is produced from oxygen in a methaemoglobin-independent process. 4-Aminophenol is subsequently produced peroxidatively by an NADH-dependent process; NADH prevents a further oxidation of 4-aminophenol in the presence of haemoglobin. In the absence of electron carrier, NADH slowly reduces haemoglobin and then oxyhaemoglobin reacts with aniline to give 4-aminophenol. In the absence of electron donor and electron carrier, oxyhaemoglobin and aniline give rise to the reversible production of 4-aminophenol.  相似文献   

12.
Totah RA  Hanzlik RP 《Biochemistry》2004,43(24):7907-7914
Horseradish peroxidase (HRP) typically oxidizes aniline derivatives using hydrogen peroxide as the oxidant. The action of HRP on N-alkyl-N-phenylglycine derivatives 1b-1e (PhN(R)CH(2)COOH; R = Me, Et, n-Pr, i-Pr, respectively) is highly unusual if not unique. Under standard peroxidatic conditions (HRP/H(2)O(2)/air), the major product (ca. 70%) is the secondary aniline 2b-2e (PhNHR) resulting from the expected oxidative decarboxylation process, but a significant amount (ca. 30%) of the related tertiary aniline PhN(CH(3))R (3b-3e) arises from an unexpected nonoxidative decarboxylation process. Under anaerobic, peroxide-free conditions only the tertiary anilines 3b-3e are formed in a reaction that is extremely rapid compared to those in which H(2)O(2), molecular oxygen, or both are present. In D(2)O buffers, the product is exclusively the monodeutero tertiary aniline PhN(CH(2)D)R and the reaction is much slower (k(H(2)O)/k(D(2)O) = 5.7), suggesting that a proton transfer step is substantially rate-limiting in turnover. It is proposed that ferric HRP oxidizes 1 to a cation radical, which then decarboxylates to an alpha-amino radical having carbanion character on carbon; protonation of the latter, followed by electron capture from ferrous HRP, completes the cycle. Hydrogen peroxide and oxygen slow turnover by diverting ferric HRP toward the compound I/compound II forms or toward compound III, respectively. Finally, under peroxidatic conditions, 1a (R = cyclopropyl) inactivates HRP with concurrent formation of 2a but not N-phenylglycine, but under anaerobic, peroxide-free conditions, 1a inactivates HRP almost instantly with no detectable product formation.  相似文献   

13.

Purpose

Oil shale is an unconventional petroleum source that can be produced domestically in the USA. Oil shale resources are primarily located in Utah, Wyoming, and Colorado, within the Colorado River Basin. In this paper, we analyze the life cycle consumptive water use for oil shale production and its impacts on water resources of the Colorado River Basin.

Methods

The study is focused on life cycle consumptive water use for oil shale development. Consumptive water use is defined as “water that is evaporated, transpired, incorporated into products, or otherwise removed from the immediate water environment.” The analysis includes direct consumptive water requirements to extract, process, and refine shale oil, as well as indirect consumptive water use for generating the electricity associated with the extraction and processing. From the results, strategies for water supply certainty are discussed, and strategies for implementation are suggested. In addition, refining the shale oil outside of the oil shale region (removing the need for local water), using dry cooling systems for electricity generation, and building desalination plants in California (to replace water) are evaluated.

Results and discussion

Life cycle consumptive water use for oil shale is significant and could impact water availability for consumers in the lower Colorado River Basin. At a level of oil production of 2 million barrels per day, the life cycle consumptive water use would be significant: between 140 and 305 billion gallons (0.4 and 0.9 million acre-ft.) of water per year if surface mining and retorting is done, or between 150 and 340 billion gallons (0.5 and 1 million acre-ft.) of water per year if the Shell in situ process is used. Strategies could be implemented to provide water supply certainty including refining the shale oil outside of the region (removing some need for local water), using dry cooling systems for electricity generation, and building desalination plants in California (to replace water).

Conclusions

Water supply in the Colorado River Basin could be a primary constraint to the development of oil shale. At a level of oil production of 2 million barrels per day, the life cycle consumptive water use would be significant. Energy companies or governments may want to invest in water management and supply strategies that would eliminate the uncertainty associated with the water availability in the Colorado River Basin for oil shale development.  相似文献   

14.
Hydrazone formation and similar reactions are highly versatile and specific, but their application to biological systems has been limited by their characteristically slow reaction kinetics at neutral pH. Catalysis of these reactions through imine formation with aromatic amines such as aniline has broadened the applicability of these reactions to biomolecular labeling. High concentrations of the catalyst are necessary, which may be incompatible with the native structure of certain proteins. In this study, we investigated the utility of 4-aminophenylalanine (4a-Phe) as a catalyst for these reactions. We find that 4a-Phe is nearly as effective as aniline in catalyzing hydrazone formation between the reactive amino acid 3-formyltyrosine (3f-Tyr) and hydrazine-containing fluorophores, both free in solution and incorporated into the protein tubulin. The catalyst 4a-Phe maintains ~70% of the catalytic efficacy of aniline and is less detrimental to the native structure of tubulin. Examination of the temperature dependence of imine formation between 3f-Tyr and 4a-Phe shows an increase in imine concentration accompanying a decrease in temperature, confirming the exothermic nature of the equilibrium reaction. Interestingly, decreasing the temperature of the 4a-Phe-catalyzed hydrazone reaction between 3f-Tyr and the fluorophore 7-hydrazinyl-4-methylcoumarin increases the overall rate of the reaction. This result indicates that the temperature dependence of the catalyst-aldehyde equilibrium is greater than the temperature dependence of the rate constant for hydrazone formation from this intermediate, and that the rate of hydrazone formation a direct function of the concentration of the intermediate imine. These results provide a platform for conducting nucleophilic catalysis under conditions that are more compatible with biomolecular targets than previously demonstrated, thereby expanding the utility of hydrazone ligations in biological systems.  相似文献   

15.
A spectrophotometric study of the reduction of the Fe3+ microperoxidase-8-aniline (Fe3+-MP-8-An) complex has been carried out. Addition of NADH to a solution of Fe3+-MP-8-An under strictly anerobic conditions results in the formation of a species with lambda max = 414 nm (Fe3+-MP-8-An lambda max 407 nm). The kinetics of formation of this species show an induction period (tau) which follows saturation kinetics with respect to [aniline] with Km(app) = 2.2 x 10(-3) mol dm-3, i.e., close to that obtained in the preceding paper from O2 consumption kinetics mediated by MP-8. Addition of an anerobic solution of the NADH reduced MP-8-An complex, to a saturated O2 solution at pH 12 in the presence of 0.5 mM NADH and aniline 10 mM results in the virtual elimination of the induction phase, which has previously characterized O2 consumption kinetics in ferriprotoporphyrin IX oxygen activation systems. The Arrhenius activation energy for the reduction of the Fe3+-MP-8-An complex is close to that observed for the first reductive step in the cyt P-450 O2 activation cycle. Anerobic reduction of Fe3+-MP-8 by sodium dithionite in 20% MeOH/Aq at pH 8 followed by anerobic titration of the Fe2+-MP-8 (lambda max 420.5 nm) with aniline at pH 12 gives rise to a species lambda max 415 with KD for the process = 4.4 x 10(-3) mol dm-3 (+/- 1.2 x 10(-3) mol dm-3).  相似文献   

16.
The production of liquid and gaseous fuels and industrial chemicals from selected biomass by a process known as biorefining is reviewed. Four broad categories of biomass appear to be suitable feedstocks: woody biomass and forest residues, agricultural residues, directly fermentable crop-grown biomass, and municipal solid waste and sewage sludge. Through the development of suppressed methane fermentation techniques, it is possible to produce valuable organic chemicals such as acetic acid and ethyl acetate, and liquid fuel (rather than fuel gas) by exercising various processing alternatives. Thus the entire field of methane fermentation has been broadened. In the petroleum refining industry, it is usually desirable to produce from crude oil an optimal mixture of industrial organic chemicals and fuels, a concept known as coproduction. The biorefining process reviewed appears to be adaptable to this same concept of coproduction using biomass as a feedstock.  相似文献   

17.
无患子水提皂素液,经纤维二糖酶水解,以无患子水提水解液为底物,接种丘陵假丝酵母,将水提液中糖组分发酵转化为槐糖脂,得到天然皂素及生物表面活性剂复合产物。在发酵过程中,2%的丘陵假丝酵母菌种接种量,溶液中葡萄糖消耗速率最快;在水提水解液中额外添加大豆油作为补充碳源能较大幅度降低溶液表面张力。经过发酵转化,溶液中表面活性物质浓度达到52.48 g/L,比发酵前提高了23.4%,溶液表面张力值明显降低。无患子精制发酵液中不含糖类成分,是理想的液体洗涤剂生产原料。  相似文献   

18.
Aniline, a toxic, organic pollutant, occurs in a number of industrial effluents. Apart from carbonaceous oxygen demand, aniline imposes a nitrogenous oxygen demand, due to its nitrogen content, in excess of that required for cell growth. Incomplete biodegradation will result in ammonia production; this also exerts toxicity. Hence, nitrification of aniline should be ensured in the biological treatment before discharge into receiving streams. Aniline, however, is reported to inhibit the nitrification process. Aniline degradation was studied in laboratory continuous activated sludge with an acclimated culture developed in synthetic feed to determine the extent of complete biological degradation. Aniline-N (even at 400 mg/L aniline concentration)could be converted to nitrate-N with ammonium-N and nitrite-N formed as intermediates at a detention time of 24 h. The nitrification, however, was suppressed by aniline. The degradation of aniline to ammonia releases the suppression and the nitrification proceeds rapidly.  相似文献   

19.
N-Nitrosocarbaryl (N-methyl-1-naphthyl N-nitrosocarbamate) was intraperitoneally administered to male and female rats on four consecutive days at the following doses: 6.25 mg, 12.5 mg, 25 mg and 50 mg/kg body weight/day in olive oil solution; the controls received just the oil. In a second experiment, a daily intraperitoneal dose of 25 mg/kg of N-nitrosocarbaryl was given for 1, 2, 3 or 4 days; the animals were killed 24 h after the last treatment. The two following microsomal enzymatic activities were assayed: aniline aromatic hydroxylase and p-nitroanisole O-demethylase; the levels of cytochrome P-450, proteins and RNA were measured in the hepatic microsomal fraction. N-Nitrosocarbaryl is an inhibitor of the two investigated microsomal monooxygenases at doses of 25 and 50 mg/kg when administered on 4 consecutive days. During the daily administration, enzyme inhibition is seen in females after one day of treatment whereas cytochrome P-450 only becomes lowered after 4 days of administration. In males, no modification of this parameter is observed whereas the activities of microsomal monooxygenases are inhibited. These results suggest that N-nitrosocarbaryl could act on the active sites of the enzymes which metabolize aniline and p-nitroanisole.  相似文献   

20.
The successful microbial immobilisation along with fluidisation are keys to highly effective microbiological wastewater treatment. The Inverse Three-Phase Fluidised Bed (TPIFB) is a novel technique proposed for wastewater treatment. In the present work a method based on analysis of the factors governing the biofilm formation has been developed for production of biocarriers for packing in a TPIFB for biodegradation of aniline containing wastewater. Tests of the treated samples show that the procedure ensures forming of a steady biofilm. The continuous cultivation of Pseudomonas putuda and Ps. aeruginosa in TPIFB with aniline as a single substrate provides high biodegradation rates and stability of the process of wastewater treatment within one-year-long operation. Electrochemical probe for monitoring and control the biofilm growth proves its reliability and efficiency in TPIFB.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号