首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Studies continue to report ancient DNA sequences and viable microbial cells that are many millions of years old. In this paper we evaluate some of the most extravagant claims of geologically ancient DNA. We conclude that although exciting, the reports suffer from inadequate experimental setup and insufficient authentication of results. Consequently, it remains doubtful whether amplifiable DNA sequences and viable bacteria can survive over geological timescales. To enhance the credibility of future studies and assist in discarding false-positive results, we propose a rigorous set of authentication criteria for work with geologically ancient DNA.  相似文献   

2.
Apparently ancient DNA has been reported from amber-preserved insects many millions of years old. Rigorous attempts to reproduce these DNA sequences from amber- and copal-preserved bees and flies have failed to detect any authentic ancient insect DNA. Lack of reproducibility suggests that DNA does not survive over millions of years even in amber, the most promising of fossil environments.  相似文献   

3.
Amplification and analysis of Miocene plant fossil DNA.   总被引:3,自引:0,他引:3  
Ancient DNA has been extracted and sequenced from several animal and plant specimens. Previous considerations of the damage to ancient DNA have suggested that both the age and size of DNA fragments that can be retrieved and sequenced may be limited, the former to between several thousand and at most tens of thousands of years old, and the latter to at most a few hundred bases. A recent report of a 770 base pair (b.p.) sequence from the chloroplast gene rbcL from a Miocene Magnolia latahensis leaf indicates that both estimated limitations may be too conservative. Further work has indicated that analysis of Miocene fossil DNA can be replicated, and can, therefore, open up the prospects for future development of the field of molecular palaeontology. Successful amplification of fossil DNA is sometimes confounded by factors inherent to fossil DNA or to samples with minimal amounts of target DNA. Techniques that alter denaturation, reduce inhibitors and the problem of contaminants, and repair DNA prior to polymerase chain reaction amplification can increase the probability of success.  相似文献   

4.
Assessments of plant population dynamics in space and time have depended on dated records of fossil pollen synthesized on a subcontinental scale. Genetic analyses of extant populations have revealed spatial relationships that are indicative of past spatial dynamics, but lack an explicit timescale. Synthesis of these data requires genetic analyses from abundant dated fossil material, and this has hitherto been lacking. Fossil pollen is the most abundant material with which to fill this data gap. Here we report genetic analyses of fossil pollen retrieved from Holtjärnen postglacial lake sediment in Sweden and show that plastid DNA is recoverable from Scots Pine and Norway spruce pollen grains that are 100 and 10 000 years old. By sequencing clones from two short plastid PCR products and by using multiple controls we show that the ancient sequences were endogenous to the fossil grains. Comparison of ancient sequences and those obtained from an extant population of Scots pine establishes the first genetic link between extant and fossil samples in this species, providing genetic continuity through time. The finding of one common haplotype present in modern, 100-year old and 10 000-year old samples suggests that it may have persisted near Holtjärnen throughout the postglacial period. This retrieval of ancient DNA from pollen has major implications for plant palaeoecology in conifer species by allowing direct estimates of population dynamics in space and time.  相似文献   

5.
Palaeontology provides the only direct record for morphological and genetic change through time and uniquely contributes to systematics in two ways: by providing access to denser taxon sampling than is otherwise possible and by dating divergence times. Claims that ancient DNA has survived millions of years in certain fossils suggested the possibility that palaeontology could contribute directly to molecular systematic studies. Unfortunately, none of the supposed geologically ancient DNA records stands up to detailed scrutiny and fossils therefore contribute primarily through the morphological information they preserve. Denser taxon sampling can improve the accuracy of phylogenetic estimates primarily through allowing better discrimination of homoplasy from homology. This in turn leads to more accurate hypotheses of character transformation. Denser taxon sampling also offers the opportunity for more accurate rooting, since more characters can be polarized by reference to a stem-group taxon than to an extant sister-group taxon. Missing data can be a problem for fossils, but is not crippling. Finally the temporal order of clade appearances in the fossil record can provide ancillary evidence for selecting a working phylogeny from among a number of equally most parsimonious cladograms.  相似文献   

6.
In this paper, we characterise three sex-specific genes (ZFX/Y, SRY, AMLX/Y) for all eight extant bear species and propose a new, robust and accurate molecular procedure to identify the sex of bears from non-invasive samples and fossil remains. These materials contain tiny amounts of poorly preserved deoxyribonucleic acid (DNA), leaving Polymerase Chain Reaction (PCR) amplification very prone to contamination and difficult to analyse. By taking into account the ancient DNA requirements, the duplex procedures that we developed are efficient not only on DNA extracted from bear faeces but also on ancient DNA extracted from a brown bear fossil 7,500 years old. Defined specifically for ursids, the procedure for faecal samples (co-amplification of ZFX/Y and SRY markers) appears more accurate than other published procedures, as it prevents cross-amplification of potential ingested prey and contamination (19 non-ursid species tested). This system can be applied to threatened bear populations to improve the reliability of sex-ratio and population-size estimates based on non-invasive samples. Electronic supplementary material  The online version of this article (doi:) contains supplementary material, which is available to authorised users.  相似文献   

7.
High‐capacity sequencing technologies have dramatically reduced both the cost and time required to generate complete human genome sequences. Besides expanding our knowledge about existing diversity, the nature of these technologies makes it possible to extend knowledge in yet another dimension: time. Recently, the complete genome sequence of a 4,000‐year‐old human from the Saqqaq culture of Greenland was determined to 20‐fold coverage. These data make it possible to investigate the population affinities of this enigmatic culture and, by identifying several phenotypic traits of this individual, provide a limited glimpse into how these people may have looked. While undoubtedly a milestone in ancient DNA research, the cost to generate an ancient genome, even from such an exceptionally preserved specimen, remains out of reach for most. Nonetheless, recently developed DNA capture methods, already applied to Neanderthal and fossil human mitochondrial DNA, may soon make large‐scale genome‐wide analysis of ancient human diversity a reality, providing a fresh look at human population history.  相似文献   

8.
The field of molecular paleontology has recently made significant contributions to anthropology and biology. Hundreds of ancient DNA studies have been published, but none has targeted fossil coralline algae. Using regions of the SSU gene, we analyzed rDNA from fossil coralline algae of varying ages and states of preservation from Spain, Papua New Guinea (PNG), and the Great Barrier Reef (GBR). Specimens from PNG, GBR, and some localities from Spain did not contain endogenous ancient DNA. Reproducible sequence data were obtained from specimens ~550 years old from near Cadiz, Spain, and from rocky‐shore deposits in Carboneras, Almeria Province of Spain (~78,000 years before present [YBP]). Based on BLAST searches and a phylogenetic analysis of sequences, an undescribed coralline alga belonging to the Melobesioideae was discovered in the Carboneras material as well as the following coralline genera: Jania, Lithophyllum, Lithothamnion, Mesophyllum, and Phymatolithon. DNA from fleshy brown and red macroalgae was also discovered in the specimens from Carboneras. The coralline algae identified using molecular techniques were in agreement with those based on morphological methods. The identified taxa are common in the present‐day southeastern Spain littoral zone. Amino acid racemization, concentration ratios, and specific concentrations failed to show a correlation between biomolecular preservation and PCR amplification success. Results suggest that molecular investigations on fossil algae, although limited by technical difficulties, are feasible. Validity of our results was established using authentication criteria and a self‐critical approach to compliance.  相似文献   

9.
Recent palaeogenetic studies have demonstrated the occurrence of preserved ancient DNA (aDNA) in various types of fossilised material. Environmental aDNA sequences assigned to modern species have been recovered from marine sediments dating to the Pleistocene. However, the match between the aDNA and the fossil record still needs to be evaluated for the environmental DNA approaches to be fully exploited. Here, we focus on foraminifera in sediments up to one thousand years old retrieved from the Hornsund fjord (Svalbard). We compared the diversity of foraminiferal microfossil assemblages with the diversity of aDNA sequenced from subsurface sediment samples using both cloning and high‐throughput sequencing (HTS). Our study shows that 57% of the species archived in the fossil record were also detected in the aDNA data. However, the relative abundance of aDNA sequence reads and fossil specimens differed considerably. We also found a limited match between the stratigraphic occurrence of some fossil species and their aDNA sequences, especially in the case of rare taxa. The aDNA data comprised a high proportion of non‐fossilised monothalamous species, which are known to dominate in modern foraminiferal communities of the Svalbard region. Our results confirm the relevance of HTS for studying past micro‐eukaryotic diversity and provide insight into its ability to reflect fossil assemblages. Palaeogenetic studies including aDNA analyses of non‐fossilised groups expand the range of palaeoceanographical proxies and therefore may increase the accuracy of palaeoenvironmental reconstructions.  相似文献   

10.
Studies characterizing geologically ancient DNA in plants are rare, and all have reportedly obtained plastid DNA sequences from Miocene fossils in a remarkable state of preservation. Recently, a group made the extraordinary claim of having amplified a geologically ancient Miocene plastid DNA fragment (the rbcL gene) from Dominican amber nuggets, and the organismal source of this DNA was identified as Hymenaea protera (Fabaceae), the plant that produced the fossilized Dominican amber. Assuming that the Miocene sequence is error‐free, reanalysis of the sequence indicates it is probably a technical artifact or an rbcL pseudogene. Furthermore, BLAST similarity searches and phylogenetic analyses strongly suggest that the putative Miocene sequence retrieved from fossilized amber is in fact a modern contaminant from one of the most widely used model plants, Arabidopsis thaliana. © 2013 The Linnean Society of London, Biological Journal of the Linnean Society, 2014, 111 , 234–240.  相似文献   

11.
There exists a remarkable correlation between genetic distance as measured by protein or DNA dissimilarity and time of species divergence as inferred from fossil records. This observation has provoked the molecular clock hypothesis. However, data inconsistent with the hypothesis have steadily accumulated in recent years from studies of extant organisms. Here the published DNA and protein sequences from ancient fossil specimens were examined to see if they would support the molecular clock hypothesis. The hypothesis predicts that ancient specimens cannot be genetically more distant to an outgroup than extant sister species are. Also, two distinct ancient specimens cannot be genetically more distant than their extant sister species are. The findings here do not conform to these predictions. Neanderthals are more distant to chimpanzees and gorillas than modern humans are. Dinosaurs are more distant to frogs than extant birds are. Mastodons are more distant to opossums than other placental mammals are. The genetic distance between dinosaurs and mastodons is greater than that between extant birds and mammals. Therefore, while the molecular clock hypothesis is consistent with some data from extant organisms, it has yet to find support from ancient fossils. Far more damaging to the hypothesis than data from extant organisms, which merely question the constancy of mutation rate, the study of ancient fossil organisms here challenges for the first time the fundamental premise of modern evolution theory that genetic distances had always increased with time in the past history of life on Earth.  相似文献   

12.
13.
The invention and development of next or second generation sequencing methods has resulted in a dramatic transformation of ancient DNA research and allowed shotgun sequencing of entire genomes from fossil specimens. However, although there are exceptions, most fossil specimens contain only low (~ 1% or less) percentages of endogenous DNA. The only skeletal element for which a systematically higher endogenous DNA content compared to other skeletal elements has been shown is the petrous part of the temporal bone. In this study we investigate whether (a) different parts of the petrous bone of archaeological human specimens give different percentages of endogenous DNA yields, (b) there are significant differences in average DNA read lengths, damage patterns and total DNA concentration, and (c) it is possible to obtain endogenous ancient DNA from petrous bones from hot environments. We carried out intra-petrous comparisons for ten petrous bones from specimens from Holocene archaeological contexts across Eurasia dated between 10,000-1,800 calibrated years before present (cal. BP). We obtained shotgun DNA sequences from three distinct areas within the petrous: a spongy part of trabecular bone (part A), the dense part of cortical bone encircling the osseous inner ear, or otic capsule (part B), and the dense part within the otic capsule (part C). Our results confirm that dense bone parts of the petrous bone can provide high endogenous aDNA yields and indicate that endogenous DNA fractions for part C can exceed those obtained for part B by up to 65-fold and those from part A by up to 177-fold, while total endogenous DNA concentrations are up to 126-fold and 109-fold higher for these comparisons. Our results also show that while endogenous yields from part C were lower than 1% for samples from hot (both arid and humid) parts, the DNA damage patterns indicate that at least some of the reads originate from ancient DNA molecules, potentially enabling ancient DNA analyses of samples from hot regions that are otherwise not amenable to ancient DNA analyses.  相似文献   

14.
Owing to exceptional biomolecule preservation, fossil avian eggshell has been used extensively in geochronology and palaeodietary studies. Here, we show, to our knowledge, for the first time that fossil eggshell is a previously unrecognized source of ancient DNA (aDNA). We describe the successful isolation and amplification of DNA from fossil eggshell up to 19 ka old. aDNA was successfully characterized from eggshell obtained from New Zealand (extinct moa and ducks), Madagascar (extinct elephant birds) and Australia (emu and owl). Our data demonstrate excellent preservation of the nucleic acids, evidenced by retrieval of both mitochondrial and nuclear DNA from many of the samples. Using confocal microscopy and quantitative PCR, this study critically evaluates approaches to maximize DNA recovery from powdered eggshell. Our quantitative PCR experiments also demonstrate that moa eggshell has approximately 125 times lower bacterial load than bone, making it a highly suitable substrate for high-throughput sequencing approaches. Importantly, the preservation of DNA in Pleistocene eggshell from Australia and Holocene deposits from Madagascar indicates that eggshell is an excellent substrate for the long-term preservation of DNA in warmer climates. The successful recovery of DNA from this substrate has implications in a number of scientific disciplines; most notably archaeology and palaeontology, where genotypes and/or DNA-based species identifications can add significantly to our understanding of diets, environments, past biodiversity and evolutionary processes.  相似文献   

15.
The isolation and examination DNA segments from prehistoric and fossil bone samples has become one of the biggest challenges in anthropology within the past years. By using specially developed and/or adapted genetic methods, it is possible under laboratory conditions to amplify portions of DNA from bone remains in states of good preservation by the polymerase chain reaction (PCR). DNA sequence data can provide far more specific answers to palaeanthropological questions than one would expect solely by morphologic comparison. Here we introduce an alternative approach for the classification of total ancient DNA by means of Southern hybridisation techniques.  相似文献   

16.
We present the first set of microsatellite markers developed exclusively for an extinct taxon. Microsatellite data have been analysed in thousands of genetic studies on extant species but the technology can be problematic when applied to low copy number (LCN) DNA. It is therefore rarely used on substrates more than a few decades old. Now, with the primers and protocols presented here, microsatellite markers are available to study the extinct New Zealand moa (Aves: Dinornithiformes) and, as with single nucleotide polymorphism (SNP) technology, the markers represent a means by which the field of ancient DNA can (preservation allowing) move on from its reliance on mitochondrial DNA. Candidate markers were identified using high throughput sequencing technology (GS-FLX) on DNA extracted from fossil moa bone and eggshell. From the 'shotgun' reads, >60 primer pairs were designed and tested on DNA from bones of the South Island giant moa (Dinornis robustus). Six polymorphic loci were characterised and used to assess measures of genetic diversity. Because of low template numbers, typical of ancient DNA, allelic dropout was observed in 36-70% of the PCR reactions at each microsatellite marker. However, a comprehensive survey of allelic dropout, combined with supporting quantitative PCR data, allowed us to establish a set of criteria that maximised data fidelity. Finally, we demonstrated the viability of the primers and the protocols, by compiling a full Dinornis microsatellite dataset representing fossils of c. 600-5000 years of age. A multi-locus genotype was obtained from 74 individuals (84% success rate), and the data showed no signs of being compromised by allelic dropout. The methodology presented here provides a framework by which to generate and evaluate microsatellite data from samples of much greater antiquity than attempted before, and opens new opportunities for ancient DNA research.  相似文献   

17.
BACKGROUND: The reconstruction of biological processes and human activities during the last glacial cycle relies mainly on data from biological remains. Highly abundant tissues, such as wood, are candidates for a genetic analysis of past populations. While well-authenticated DNA has now been recovered from various fossil remains, the final 'proof' is still missing for wood, despite some promising studies. SCOPE: The goal of this study was to determine if ancient wood can be analysed routinely in studies of archaeology and palaeogenetics. An experiment was designed which included blind testing, independent replicates, extensive contamination controls and rigorous statistical tests. Ten samples of ancient wood from major European forest tree genera were analysed with plastid DNA markers. CONCLUSIONS: Authentic DNA was retrieved from wood samples up to 1,000 years of age. A new tool for real-time vegetation history and archaeology is ready to use.  相似文献   

18.
A protocol using insect specimens or parts thereof allows for sequencing of sections of nuclear 28S rDNA. In the present note it is demonstrated that this protocol can readily be applied to strongly degraded DNA (ancient, fixed or contaminated). Primers that are specifically designed to discriminate against human DNA but also other non‐arthropod species are tested on a range of species covering all insect groups (59 insect species from all 33 orders). Additionally, the samples represent a selection of various, mostly DNA‐degrading, preservation methods, including the most common fixatives used for morphological investigations and for long‐term storage in collections. Successful amplification was possible for all tested samples including ca. 200 year‐old dried museum specimens as well as for over 4000 year‐old fossil insects embedded in copal. When the NCBI database contained information on the tested species an unambiguous taxonomic discrimination was possible. This approach is based on a standardized protocol that guarantees easy application. This note presents primer pairs for 28S rDNA that can be a useful tool for ancient DNA (aDNA) research.  相似文献   

19.
Millions to billions of DNA sequences can now be generated from ancient skeletal remains thanks to the massive throughput of next‐generation sequencing platforms. Except in cases of exceptional endogenous DNA preservation, most of the sequences isolated from fossil material do not originate from the specimen of interest, but instead reflect environmental organisms that colonized the specimen after death. Here, we characterize the microbial diversity recovered from seven c. 200‐ to 13 000‐year‐old horse bones collected from northern Siberia. We use a robust, taxonomy‐based assignment approach to identify the microorganisms present in ancient DNA extracts and quantify their relative abundance. Our results suggest that molecular preservation niches exist within ancient samples that can potentially be used to characterize the environments from which the remains are recovered. In addition, microbial community profiling of the seven specimens revealed site‐specific environmental signatures. These microbial communities appear to comprise mainly organisms that colonized the fossils recently. Our approach significantly extends the amount of useful data that can be recovered from ancient specimens using a shotgun sequencing approach. In future, it may be possible to correlate, for example, the accumulation of postmortem DNA damage with the presence and/or abundance of particular microbes.  相似文献   

20.
Two intervals of coastal sandrock development are proved by the occurrence of sandrock boulders in a fossil beach that is itself preserved in sandrock. The fossil beach also contains driftwood, and carbon dates obtained by previous workers indicate that its age is greater than 40,000 years. The ancient beach rises 3 m above the present ocean beach and is the highest Pleistocene shoreline recognized on Queensland's southern coast. It is therefore likely to represent the warmest interval of the last two million years. Several lines of evidence indicate that the fossil beach is hundreds of thousands of years old. This is in agreement with tentative correlations with other Pleistocene events described in a previous paper where an age of 400,000 years was attributed to it.Large amounts of aluminium can be extracted with alkaline ammonium citrate from the two sandrocks, which are composed of quartz sands cemented with organic matter. Gibbsite is present in the older sandrock and in the boulders of older sandrock in the fossil beach. There is much less C relative to Al than in the younger sandrock. This is possibly due to decomposition of Al-humate by loss of organic matter, leaving Al in situ. If the rate of decomposition could be calibrated, by for example radiocarbon dating of the younger sandrock, it might be possible to use the C/Al ratios to date the older sandrock.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号