首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
Ampullosporin A and alamethicin are two members of the peptaibol family of antimicrobial peptides. These compounds are produced by fungi and are characterized by a high content of hydrophobic amino acids, and in particular the α-tetrasubstituted amino acid residue α-aminoisobutyric acid. Here ampullosporin A and alamethicin were uniformly labeled with 15N, purified and reconstituted into oriented phophatidylcholine lipid bilayers and investigated by proton-decoupled 15N and 31P solid-state NMR spectroscopy. Whereas alamethicin (20 amino acid residues) adopts transmembrane alignments in 1-palmitoyl-2-oleoyl-sn-glycero-3-phosphocholine (POPC) or 1,2-dimyristoyl-sn-glycero-3-phosphocholine (DMPC) membranes the much shorter ampullosporin A (15 residues) exhibits comparable configurations only in thin membranes. In contrast the latter compound is oriented parallel to the membrane surface in 1,2-dimyristoleoyl-sn-glycero-3-phosphocholine and POPC bilayers indicating that hydrophobic mismatch has a decisive effect on the membrane topology of these peptides. Two-dimensional 15N chemical shift - 1H-15N dipolar coupling solid-state NMR correlation spectroscopy suggests that in their transmembrane configuration both peptides adopt mixed α-/310-helical structures which can be explained by the restraints imposed by the membranes and the bulky α-aminoisobutyric acid residues. The 15N solid-state NMR spectra also provide detailed information on the helical tilt angles. The results are discussed with regard to the antimicrobial activities of the peptides.  相似文献   

2.
Solid-state NMR spectroscopy is being developed at a fast pace for the structural investigation of immobilized and non-crystalline biomolecules. These include proteins and peptides associated with phospholipid bilayers. In contrast to solution NMR spectroscopy, where complete or almost complete averaging leads to isotropic values, the anisotropic character of nuclear interactions is apparent in solid-state NMR spectra. In static samples the orientation dependence of chemical shift, dipolar or quadrupolar interactions, therefore, provides angular constraints when the polypeptides have been reconstituted into oriented membranes. Furthermore, solid-state NMR spectroscopy of aligned samples offers distinct advantages in allowing access to dynamic processes such as topological equilibria or rotational diffusion in membrane environments. Alternatively, magic angle sample spinning (MAS) results in highly resolved NMR spectra, provided that the sample is sufficiently homogenous. MAS spinning solid-state NMR spectra allow to measure distances and dihedral angles with high accuracy. The technique has recently been developed to selectively establish through-space and through-bond correlations between nuclei, similar to the approaches well-established in solution-NMR spectroscopy.  相似文献   

3.
The solution structure and the mode of action of arenicin isoform 1, an antimicrobial peptide with a unique 18-residue loop structure, from the lugworm Arenicola marina were elucidated here. Arenicin folds into a two-stranded antiparallel beta-sheet. It exhibits high antibacterial activity at 37 and 4 degrees C against Gram-negative bacteria, including polymyxin B-resistant Proteus mirabilis. Bacterial killing occurs within minutes and is accompanied by membrane permeabilization, membrane detachment and release of cytoplasm. Interaction of arenicin with reconstituted membranes that mimic the lipopolysaccharide-containing outer membrane or the phospholipid-containing plasma membrane of Gram-negative bacteria exhibited no pronounced lipid specificity. Arenicin-induced current fluctuations in planar lipid bilayers correspond to the formation of short-lived heterogeneously structured lesions. Our results strongly suggest that membrane interaction plays a pivotal role in the antibacterial activity of arenicin.  相似文献   

4.
Summary A three-dimensional 1H chemical shift/1H-15N dipolar coupling/15N chemical shift correlation spectrum was obtained on a sample of specifically 15N-labeled magainin peptides oriented in lipid bilayers between glass plates in a flat-coil probe. The spectrum showed complete resolution of the resonances from two labeled amide sites in all three dimensions. The three orientationally dependent frequencies associated with each resonance enabled the orientation of the peptide planes to be determined relative to the direction of the applied magnetic field. These results demonstrate the feasibility of multiple-pulse spectroscopy in a flat-coil probe, the ability to measure three spectral parameters from each site in a single experiment, and the potential for resolving among many labeled sites in oriented membrane proteins.  相似文献   

5.
Zheng Z  Yang R  Bodner ML  Weliky DP 《Biochemistry》2006,45(43):12960-12975
The human immunodeficiency virus (HIV) fusion peptide (HFP) is the N-terminal apolar region of the HIV gp41 fusion protein and interacts with target cell membranes and promotes membrane fusion. The free peptide catalyzes vesicle fusion at least to the lipid mixing stage and serves as a useful model fusion system. For gp41 constructs which lack the HFP, high-resolution structures show trimeric protein and suggest that at least three HFPs interact with the membrane with their C-termini in close proximity. In addition, previous studies have demonstrated that HFPs which are cross-linked at their C-termini to form trimers (HFPtr) catalyze fusion at a rate which is 15-40 times greater than that of non-cross-linked HFP. In the present study, the structure of membrane-associated HFPtr was probed with solid-state nuclear magnetic resonance (NMR) methods. Chemical shift and intramolecular (13)CO-(15)N distance measurements show that the conformation of the Leu-7 to Phe-11 region of HFPtr has predominant helical conformation in membranes without cholesterol and beta strand conformation in membranes containing approximately 30 mol % cholesterol. Interstrand (13)CO-(13)CO and (13)CO-(15)N distance measurements were not consistent with an in-register parallel strand arrangement but were consistent with either (1) parallel arrangement with adjacent strands two residues out-of-register or (2) antiparallel arrangement with adjacent strand crossing between Phe-8 and Leu-9. Arrangement 1 could support the rapid fusion rate of HFPtr because of placement of the apolar N-terminal regions of all strands on the same side of the oligomer while arrangement 2 could support the assembly of multiple fusion protein trimers.  相似文献   

6.
The designed antimicrobial peptide KIGAKIKIGAKIKIGAKI possesses enhanced membrane selectivity for bacterial lipids, such as phosphatidylethanolamine and phosphatidylglycerol. The perturbation of the bilayer by the peptide was first monitored using oriented bilayer samples on glass plates. The alignment of POPE/POPG model membranes with respect to the bilayer normal was severely altered at 4 mol% KIGAKI while the alignment of POPC bilayers was retained. The interaction mechanism between the peptide and POPE/POPG bilayers was investigated by carefully comparing three bilayer MLV samples (POPE bilayers, POPG bilayers, and POPE/POPG 4/1 bilayers). KIGAKI induces the formation of an isotropic phase for POPE/POPG bilayers, but only a slight change in the (31)P NMR CSA line shape for both POPE and POPG bilayers, indicating the synergistic roles of POPE and POPG lipids in the disruption of the membrane structure by KIGAKI. (2)H NMR powder spectra show no reduction of the lipid chain order for both POPG and POPE/POPG bilayers upon peptide incorporation, supporting the evidence that the peptide acts as a surface peptide. (31)P longitudinal relaxation studies confirmed that different dynamic changes occurred upon interaction of the peptide with the three different lipid bilayers, indicating that the strong electrostatic interaction between the cationic peptide KIGAKI and anionic POPG lipids is not the only factor in determining the antimicrobial activity. Furthermore, (31)P and (2)H NMR powder spectra demonstrated a change in membrane characteristics upon mixing of POPE and POPG lipids. The interaction between different lipids, such as POPE and POPG, in the mixed bilayers may provide the molecular basis for the KIGAKI carpet mechanism in the permeation of the membrane.  相似文献   

7.
The designed antimicrobial peptide KIGAKIKIGAKIKIGAKI possesses enhanced membrane selectivity for bacterial lipids, such as phosphatidylethanolamine and phosphatidylglycerol. The perturbation of the bilayer by the peptide was first monitored using oriented bilayer samples on glass plates. The alignment of POPE/POPG model membranes with respect to the bilayer normal was severely altered at 4 mol% KIGAKI while the alignment of POPC bilayers was retained. The interaction mechanism between the peptide and POPE/POPG bilayers was investigated by carefully comparing three bilayer MLV samples (POPE bilayers, POPG bilayers, and POPE/POPG 4/1 bilayers). KIGAKI induces the formation of an isotropic phase for POPE/POPG bilayers, but only a slight change in the 31P NMR CSA line shape for both POPE and POPG bilayers, indicating the synergistic roles of POPE and POPG lipids in the disruption of the membrane structure by KIGAKI. 2H NMR powder spectra show no reduction of the lipid chain order for both POPG and POPE/POPG bilayers upon peptide incorporation, supporting the evidence that the peptide acts as a surface peptide. 31P longitudinal relaxation studies confirmed that different dynamic changes occurred upon interaction of the peptide with the three different lipid bilayers, indicating that the strong electrostatic interaction between the cationic peptide KIGAKI and anionic POPG lipids is not the only factor in determining the antimicrobial activity. Furthermore, 31P and 2H NMR powder spectra demonstrated a change in membrane characteristics upon mixing of POPE and POPG lipids. The interaction between different lipids, such as POPE and POPG, in the mixed bilayers may provide the molecular basis for the KIGAKI carpet mechanism in the permeation of the membrane.  相似文献   

8.
The orientation and dynamics of an 18-residue antimicrobial peptide, ovispirin, has been investigated using solid-state NMR spectroscopy. Ovispirin is a cathelicidin-like model peptide (NH(2)-KNLRRIIRKIIHIIKKYG-COOH) with potent, broad-spectrum bactericidal activity. (15)N NMR spectra of oriented ovispirin reconstituted into synthetic phospholipids show that the helical peptide is predominantly oriented in the plane of the lipid bilayer, except for a small portion of the helix, possibly at the C-terminus, which deviates from the surface orientation. This suggests differential insertion of the peptide backbone into the lipid bilayer. (15)N spectra of both oriented and unoriented peptides show a reduced (15)N chemical shift anisotropy at room temperature compared with that of rigid proteins, indicating that the peptide undergoes uniaxial rotational diffusion around the bilayer normal with correlation times shorter than 10(-4) s. This motion is frozen below the gel-to-liquid crystalline transition temperature of the lipids. Ovispirin interacts strongly with the lipid bilayer, as manifested by the significantly reduced (2)H quadrupolar splittings of perdeuterated palmitoyloleoylphosphatidylcholine acyl chains upon peptide binding. Therefore, ovispirin is a curved helix residing in the membrane-water interface that executes rapid uniaxial rotation. These structural and dynamic features are important for understanding the antimicrobial function of this peptide.  相似文献   

9.
Solid-state NMR spectroscopy is a powerful technique for the investigation of membrane-associated peptides and proteins as well as their interactions with lipids, and a variety of conceptually different approaches have been developed for their study. The technique is unique in allowing for the high-resolution investigation of liquid disordered lipid bilayers representing well the characteristics of natural membranes. Whereas magic angle solid-state NMR spectroscopy follows approaches that are related to those developed for solution NMR spectroscopy the use of static uniaxially oriented samples results in angular constraints which also provide information for the detailed analysis of polypeptide structures. This review introduces this latter concept theoretically and provides a number of examples. Furthermore, ongoing developments combining solid-state NMR spectroscopy with information from solution NMR spectroscopy and molecular modelling as well as exploratory studies using dynamic nuclear polarization solid-state NMR will be presented.  相似文献   

10.
Knowledge of the structure, dynamics and interactions of polypeptides when associated with phospholipid bilayers is key to understanding the functional mechanisms of channels, antibiotics, signal- or translocation peptides. Solid-state NMR spectroscopy on samples uniaxially aligned relative to the magnetic field direction offers means to determine the alignment of polypeptide bonds and domains relative to the bilayer normal. Using this approach the 15N chemical shift of amide bonds provides a direct indicator of the approximate helical tilt, whereas the 2H solid-state NMR spectra acquired from peptides labelled with 3,3,3-2H3-alanines contain valuable complimentary information for a more accurate analysis of tilt and rotation pitch angles. The deuterium NMR line shapes are highly sensitive to small variations in the alignment of the Cα–Cβ bond relative to the magnetic field direction and, therefore, also the orientational distribution of helices relative to the membrane normal. When the oriented membrane samples are investigated with their normal perpendicular to the magnetic field direction, the rate of rotational diffusion can be determined in a semi-quantitative manner and thereby the aggregation state of the peptides can be analysed. Here the deuterium NMR approach is first introduced showing results from model amphipathic helices. Thereafter investigations of the viral channel peptides Vpu1–27 and Influenza A M222–46 are shown. Whereas the 15N chemical shift data confirm the transmembrane helix alignments of these hydrophobic sequences, the deuterium spectra indicate considerable mosaic spread in the helix orientations. At least two peptide populations with differing rotational correlation times are apparent in the deuterium spectra of the viral channels suggesting an equilibrium between monomeric peptides and oligomeric channel configurations under conditions where solid-state NMR structural studies of these peptides have previously been performed. Dedicated to Prof. K. Arnold on the occasion of his 65th birthday.  相似文献   

11.
Doherty T  Waring AJ  Hong M 《Biochemistry》2006,45(44):13323-13330
The conformation and membrane topology of the disulfide-stabilized antimicrobial peptide tachyplesin I (TP) in lipid bilayers are determined by solid-state NMR spectroscopy. The backbone (phi and psi) torsion angles of Val(6) are found to be -133 degrees and 142 degrees , respectively, and the Val(6) CO-Phe(8) H(N) distance is 4.6 A. These constrain the middle of the N-terminal strand to a relatively ideal antiparallel beta-sheet conformation. In contrast, the phi angle of Gly(10) is +/-85 degrees , consistent with a beta-turn conformation. Thus, TP adopts a beta-hairpin conformation with straight strands, similar to its structure in aqueous solution but different from a recently reported structure in DPC micelles where bending of the two beta-strands was observed. The Val(6) and Gly(10) CO groups are both 6.8 A from the lipid (31)P, while the Val(6) side chain is in (1)H spin diffusion contact with the lipid acyl chains. These results suggest that TP is immersed in the glycerol backbone region of the membrane and is oriented roughly parallel to the plane of the membrane. This depth of insertion and orientation differs from those of the analogous beta-sheet antimicrobial peptide protegrin-1 and suggest the importance of structural amphiphilicity in determining the location and orientation of membrane peptides in lipid bilayers.  相似文献   

12.
Solid-state NMR spectroscopic techniques provide valuable information about the structure, dynamics and topology of membrane-inserted polypeptides. In particular antimicrobial peptides (or 'host defence peptides') have early on been investigated by solid-state NMR spectroscopy and many technical innovations in this domain have been developed with the help of these compounds when reconstituted into oriented phospholipid bilayers. Using solid-state NMR spectroscopy it could be shown for the first time that magainins or derivatives thereof exhibit potent antimicrobial activities when their cationic amphipathic helix is oriented parallel to the bilayer surface, a configuration found in later years for many other linear cationic amphipathic peptides. In contrast transmembrane alignments or lipid-dependent tilt angles have been found for more hydrophobic sequences such as alamethicin or β-hairpin antimicrobials. This review presents various solid-state NMR approaches and develops the basic underlying concept how angular information can be obtained from oriented samples. It is demonstrated how this information is used to calculate structures and topologies of peptides in their native liquid-disordered phospholipid bilayer environment. Special emphasis is given to discuss which NMR parameters provide the most complementary information, the minimal number of restraints needed and the effect of motions on the analysis of the NMR spectra. Furthermore, recent (31)P and (2)H solid-state NMR measurements of lipids are presented including some unpublished data which aim at investigating the morphological and structural changes of oriented or non-oriented phospholipids. Finally the structural models that have been proposed for the mechanisms of action of these peptides will be presented and discussed in view of the solid-state NMR and other biophysical experiments.  相似文献   

13.
The 2H solid-state NMR spectra of deuterated fatty acyl chains provide direct access to the order of the hydrophobic membrane interior. From the deuterium order parameter profiles of perdeuterated fatty acyl chains the membrane hydrophobic thickness can be calculated. Here we show data obtained from POPC, POPE and mixed POPE/POPG bilayers, representative of bacterial membranes, in the presence of cholesterol or ergosterol and antimicrobial peptaibols. Whereas sterols have a strong ordering effect also on these membranes, the peptides exhibit neutral or disordering effects. By comparing with data from the literature it becomes obvious that cationic amphipathic peptides that probably reside within the interface of phospholipid membranes tend to strongly disorder the packing of the fatty acyl chains, an effect that has been correlated to antimicrobial and DNA transfection activities. In contrast transmembrane sequences or hydrophobic peptides that probably partition deeply into the membrane tend to have only modest disordering activities. The 2H solid-state NMR approach has also been used to monitor the lateral separation of domains rich in anionic phospholipids in the presence of cationic peptides and has thereby provided important insights into their mechanisms of action.  相似文献   

14.
β‐Hairpin antimicrobial peptides are among the most potent peptide antibiotics of animal origin. Arenicins, isolated earlier from marine polychaeta lugworm Arenicola marina, belong to a family of β‐hairpin antimicrobial peptides and display a broad spectrum of biological activities. However, despite being potent antimicrobials, arenicins are partially unapplicable as therapeutics as a result of their relatively high cytotoxicity against mammalian cells. In this study, a template‐based approach was used to create therapeutically valuable analogs of arenicin‐1 and identify amino acid residues important for antibacterial and cytotoxic activities of the peptide. The plasmids encoding recombinant analogs were constructed by mutagenesis technique based on inverse PCR amplification of the whole arenicin‐1 expression plasmid. The analogs were produced as a part of the fusion proteins in Escherichia coli. It was shown that an obvious reduction in hemolytic activity without lose of antimicrobial activity can be achieved by a single amino acid substitution in the non‐polar face of the molecule with hydrophilic residues such as serine and arginine. As the result, the selective analog with 50‐fold improved therapeutic index was developed. The circular dichroism spectra demonstrated that the secondary structure of the analog was similar to the natural arenicin‐1 in water solution and sodium dodecyl sulfate micelles but significantly differed in the presence of dodecylphosphocholine micelles mimicking mammalian membranes. Similarly to arenicin‐1, the designed analog killed bacteria via induction of the membrane damage, assessed using the fluorescent dye SYTOX Green uptake. Our results afford molecular insight into mechanism of antimicrobial action of the designed arenicin analogs and their possible clinical application. Copyright © 2014 European Peptide Society and John Wiley & Sons, Ltd.  相似文献   

15.
16.
Buffy JJ  Waring AJ  Lehrer RI  Hong M 《Biochemistry》2003,42(46):13725-13734
The dynamics and aggregation of a beta-sheet antimicrobial peptide, protegrin-1 (PG-1), are investigated using solid-state NMR spectroscopy. Chemical shift anisotropies of F12 and V16 carbonyl carbons are uniaxially averaged in 1,2-dilauryl-sn-glycero-3-phosphatidylcholine (DLPC) bilayers but approach rigid-limit values in the thicker 1-palmitoyl-2-oleoyl-sn-glycerol-3-phosphatidylcholine (POPC) bilayers. The Calpha-Halpha dipolar coupling of L5 is scaled by a factor of 0.16 in DLPC bilayers but has a near-unity order parameter of 0.96 in POPC bilayers. The larger couplings of PG-1 in POPC bilayers indicate immobilization of the peptide, suggesting that PG-1 forms oligomeric aggregates at the biologically relevant bilayer thickness. Exchange NMR experiments on F12 (13)CO-labeled PG-1 show that the peptide undergoes slow reorientation with a correlation time of 0.7 +/- 0.2 s in POPC bilayers. This long correlation time suggests that in addition to aggregation, geometric constraints in the membrane may also contribute to PG-1 immobilization. The PG-1 aggregates contact both the surface and the hydrophobic center of the POPC bilayer, as determined by (1)H spin-diffusion measurements. Thus, solid-state NMR provides a wide range of information about the molecular details of membrane peptide immobilization and aggregation in lipid bilayers.  相似文献   

17.
Arenicin-3 is an amphipathic β-hairpin antimicrobial peptide that is produced by the lugworm Arenicola marina. In this study, we have investigated the mechanism of action of arenicin-3 and an optimized synthetic analogue, AA139, by studying their effects on lipid bilayer model membranes and Escherichia coli bacterial cells. The results show that simple amino acid changes can lead to subtle variations in their interaction with membranes and therefore alter their pre-clinical potency, selectivity and toxicity. While the mechanism of action of arenicin-3 is primarily dependent on universal membrane permeabilization, our data suggest that the analogue AA139 relies on more specific binding and insertion properties to elicit its improved antibacterial activity and lower toxicity, as exemplified by greater selectivity between lipid composition when inserting into model membranes i.e. the N-terminus of AA139 seems to insert deeper into lipid bilayers than arenicin-3 does, with a clear distinction between zwitterionic and negatively charged lipid bilayer vesicles, and AA139 demonstrates a cytoplasmic permeabilization dose response profile that is consistent with its greater antibacterial potency against E. coli cells compared to arenicin-3.  相似文献   

18.
《Biophysical journal》2022,121(8):1512-1524
Antimicrobial peptides are promising therapeutic agents to mitigate the global rise of antibiotic resistance. They generally act by perturbing the bacterial cell membrane and are thus less likely to induce resistance. Because they are membrane-active molecules, it is critical to verify and understand their potential action toward eukaryotic cells to help design effective and safe drugs. In this work, we studied the interaction of two antimicrobial peptides, aurein 1.2 and caerin 1.1, with red blood cell (RBC) membranes using in situ 31P and 2H solid-state NMR (SS-NMR). We established a protocol to integrate up to 25% of deuterated fatty acids in the membranes of ghosts, which are obtained when hemoglobin is removed from RBCs. Fatty acid incorporation and the integrity of the lipid bilayer were confirmed by SS-NMR and fluorescence confocal microscopy. Leakage assays were performed to assess the lytic power of the antimicrobial peptides. The in situ perturbation of the ghost membranes by aurein 1.2 and caerin 1.1 revealed by 31P and 2H SS-NMR is consistent with membrane perturbation through a carpet mechanism for aurein 1.2, whereas caerin 1.1 acts on RBCs via pore formation. These results are compatible with fluorescence microscopy images of the ghosts. The peptides interact with eukaryotic membranes following similar mechanisms that take place in bacteria, highlighting the importance of hydrophobicity when determining such interactions. Our work bridges model membranes and in vitro studies and provides an analytical toolbox to assess drug toxicity toward eukaryotic cells.  相似文献   

19.
Solid-state nuclear magnetic resonance spectroscopy was used to study the motion of 2H and 19F probes attached to the skeletal muscle actin residues Cys-10, Lys-61 and Cys-374. The probe resonances were observed in dried and hydrated G-actin, F-actin and F-actin-myosin subfragment-1 complexes. Restricted motion was exhibited by 19F probes attached to Cys-10 and Cys-374 on actin. The dynamics of probes attached to dry cysteine powder or F-actin were very similar and the binding of myosin had little effect indicating that the local probe environment imposes the major influence on motion in the solid state. Correlation times determined for the solid state probes indicated that they were undergoing some rapid internal motion in both G-actin and F-actin such as domain twisting. The probe size influenced the motion in G-actin and appeared to sense monomer rotation but not in F-actin where segmental mobility and intramonomer co-ordination appeared to dominate.  相似文献   

20.
Linear peptide antibiotics have been isolated from amphibians, insects and humans and used as templates to design cheaper and more potent analogues for medical applications. Peptides such as cecropins or magainins are < or = 40 amino acids in length. Many of them have been prepared by solid-phase peptide synthesis with isotopic labels incorporated at selected sites. Structural analysis by solid-state NMR spectroscopy and other biophysical techniques indicates that these peptide antibiotics strongly interact with lipid membranes. In bilayer environments they exhibit amphipathic alpha-helical conformations and alignments of the helix axis parallel to the membrane surface. This contrasts the transmembrane orientations observed for alamethicin or gramicidin A. Models that have been proposed to explain the antibiotic and pore-forming activities of membrane-associated peptides, as well as other experimental results, include transmembrane helical bundles, wormholes, carpets, detergent-like effects or the in-plane diffusion of peptide-induced bilayer instabilities.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号