首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The organism integrity in onto-and phylogenesis is considered as an initial element of biosphere integrity and its evolution at the eukaryotic level. The Schmalhausen’s concept of organism integrity is discussed in the context of his original strategy of evolutionary synthesis and his works on stabilizing selection. The perspectives of investigations on the problem of integrity and development of the principle of dynamic stability in contemporary evolutionary biology as integrating factors are discussed.  相似文献   

2.
The study of group selection has developed along two autonomous lines. One approach, which we refer to as the adaptationist school, seeks to understand the evolution of existing traits by examining plausible mechanisms for their evolution and persistence. The other approach, which we refer to as the genetic school, seeks to examine how currently acting artificial or natural selection changes traits within populations and focuses on current evolutionary change. The levels of selection debate lies mainly within the adaptationist school, whereas the experimental studies of group selection lie within the genetic school. Because of the very different traditions and goals of these two schools, the experimental studies of group selection have not had a major impact on the group selection debate. We review the experimental results of the genetic school in the context of the group selection controversy and address the following questions: Under what conditions is group selection effective? What is the genetic basis of a response to group selection? How common is group selection in nature?  相似文献   

3.
When a species encounters novel environmental conditions, some phenotypic characters may develop differently than in the ancestral environment. Most environmental perturbations of development are likely to reduce fitness, and thus selection would usually be expected to favor genetic changes that restore the ancestral phenotype. I propose the term "genetic compensation" to refer to this form of adaptive evolution. Genetic compensation is a subset of genetic accommodation and the reverse of genetic assimilation. When genetic compensation has occurred along a spatial environmental gradient, the mean trait values of populations in different environments may be more similar in the field than when representatives of the same populations are raised in a common environment (i.e., countergradient variation). If compensation is complete, genetic divergence between populations may be cryptic, that is, not detectable in the field. Here I apply the concept of genetic compensation to three examples involving carotenoid-based sexual coloration and then use these and other examples to discuss the concept in a broader context. I show that genetic compensation may lead to a cryptic form of reproductive isolation between populations evolving in different environments, may explain some puzzling cases in which heritable traits exposed to strong directional selection fail to show the expected evolutionary response, and may complicate efforts to monitor populations for signs of environmental deterioration.  相似文献   

4.
Selection studies are useful if they can provide us with insights into the patterns and processes of evolution in populations under controlled conditions. In this context it is particularly valuable to be able to analyze the limitations of and constraints on evolutionary responses to allow predictions concerning evolutionary change. The concept of a selection pathway is presented as a means of visualizing this predictive process and the constraints that help define the population's response to selection. As pointed out by Gould and Lewontin, history and chance are confounding forces that can mask or distort the adaptive response. Students of the evolutionary responses of organisms are very interested in the effects of these confounding forces, since they play a critical role not only in the laboratory but also in natural selection in the field. In this article, we describe some methods that are a bit different from those used in most studies for examining data from laboratory selection studies. These analytical methods are intended to provide insights into the physiological mechanisms by which evolutionary responses to the environment proceed. Interestingly, selection studies often exhibit disparate responses in replicate populations. We offer methods for analyzing these disparate responses in replicate populations to better understand this very important source of variability in the evolutionary response. We review the techniques of Travisano et al. and show that these approaches can be used to investigate the relative roles of adaptation, history, and chance in the evolutionary responses of populations of Drosophila melanogaster to selection for enhanced desiccation resistance. We anticipate that a wider application of these techniques will provide valuable insights into the organismal, genetic, and molecular nature of the constraints, as well as the factors that serve to enhance or, conversely, to mask the effects of chance. Such studies should help to provide a more detailed understanding of the processes producing evolutionary change in populations.  相似文献   

5.
How many processes are responsible for phenotypic evolution?   总被引:1,自引:0,他引:1  
SUMMARY In addressing phenotypic evolution, this article reconsiders natural selection, random drift, developmental constraints, and internal selection in the new extended context of evolutionary developmental biology. The change of perspective from the "evolution of phenotypes" toward an "evolution of ontogenies" (evo-devo perspective) affects the reciprocal relationships among these different processes. Random drift and natural selection are sibling processes: two forms of post-productional sorting among alternative developmental trajectories, the former random, the latter nonrandom. Developmental constraint is a compound concept; it contains even some forms of natural ("external" and "internal") selection. A narrower definition ("reproductive constraints") is proposed. Internal selection is not a selection caused by an internal agent. It is a form of environment-independent selection depending on the level of the organism's internal developmental or functional coordination. Selection and constraints are the main deterministic processes in phenotypic evolution but they are not opposing forces. Indeed, they are continuously interacting processes of evolutionary change, but with different roles that should not be confused.  相似文献   

6.
Rapid and inexpensive sequencing technologies are making it possible to collect whole genome sequence data on multiple individuals from a population. This type of data can be used to quickly identify genes that control important ecological and evolutionary phenotypes by finding the targets of adaptive natural selection, and we therefore refer to such approaches as "reverse ecology." To quantify the power gained in detecting positive selection using population genomic data, we compare three statistical methods for identifying targets of selection: the McDonald-Kreitman test, the mkprf method, and a likelihood implementation for detecting d(N)/d(S) > 1. Because the first two methods use polymorphism data we expect them to have more power to detect selection. However, when applied to population genomic datasets from human, fly, and yeast, the tests using polymorphism data were actually weaker in two of the three datasets. We explore reasons why the simpler comparative method has identified more genes under selection, and suggest that the different methods may really be detecting different signals from the same sequence data. Finally, we find several statistical anomalies associated with the mkprf method, including an almost linear dependence between the number of positively selected genes identified and the prior distributions used. We conclude that interpreting the results produced by this method should be done with some caution.  相似文献   

7.
8.
Modern biology has been heavily influenced by the gene‐centric concept. Paradoxically, this very concept – on which bioresearch is based – is challenged by the success of gene‐based research in terms of explaining evolutionary theory. To overcome this major roadblock, it is essential to establish new theories, to not only solve the key puzzles presented by the gene‐centric concept, but also to provide a conceptual framework that allows the field to grow. This paper discusses a number of paradoxes and illustrates how they can be addressed by the genome‐centric concept in order to further resynthesize evolutionary theory. In particular, methodological breakthroughs that analyze genome evolution are discussed. The multiple interactions among different levels of a complex system provide the key to understanding the relationship between self‐organization and natural selection. Darwinian natural selection applies to the biological level due to its unique genetic and heterogeneous features, but does not simply or directly apply to either the lower non‐living level or higher intellectual society level. At the complex bio‐system level, the genome context (the entire package of genes and their genomic physical relationship or genomic topology), not the individual genes, defines the system and serves as the principle selection platform for evolution.  相似文献   

9.
Wolf JB  Harris WE  Royle NJ 《Genetica》2008,134(1):89-97
In theory, females of many species choose mates based on traits that are indicators of male genetic quality. A fundamental question in evolutionary biology is why genetic variation for such indicator traits persists despite strong persistent selection imposed by female preference, which is known as the lek paradox. One potential solution to the lek paradox suggests that the traits that are targets of mate choice should evolve condition-dependent expression and that condition should have a large genetic variance. Condition is expected to exhibit high genetic variance because it is affected by a large number of physiological processes and hence, condition-dependent traits should 'capture' variation contributed by a large number of loci. We suggest that a potentially important cause of variation in condition is competition for limited resources. Here, we discuss a pair of models to analyze the evolutionary genetics of traits affected by success in social competition for resources. We show that competition can contribute to genetic variation of 'competition-dependent' traits that have fundamentally different evolutionary properties than other sources of variation. Competition dependence can make traits honest indicators of genetic quality by revealing the relative competitive ability of males, can provide a component of heritable variation that does not contribute to trait evolution, and can help maintain heritable variation under directional selection. Here we provide a general introduction to the concept of competition dependence and briefly introduce two models to demonstrate the potential evolutionary consequences of competition-dependent trait expression.  相似文献   

10.
Frequency-dependent disruptive selection is widely recognized as an important source of genetic variation. Its evolutionary consequences have been extensively studied using phenotypic evolutionary models, based on quantitative genetics, game theory, or adaptive dynamics. However, the genetic assumptions underlying these approaches are highly idealized and, even worse, predict different consequences of frequency-dependent disruptive selection. Population genetic models, by contrast, enable genotypic evolutionary models, but traditionally assume constant fitness values. Only a minority of these models thus addresses frequency-dependent selection, and only a few of these do so in a multilocus context. An inherent limitation of these remaining studies is that they only investigate the short-term maintenance of genetic variation. Consequently, the long-term evolution of multilocus characters under frequency-dependent disruptive selection remains poorly understood. We aim to bridge this gap between phenotypic and genotypic models by studying a multilocus version of Levene's soft-selection model. Individual-based simulations and deterministic approximations based on adaptive dynamics theory provide insights into the underlying evolutionary dynamics. Our analysis uncovers a general pattern of polymorphism formation and collapse, likely to apply to a wide variety of genetic systems: after convergence to a fitness minimum and the subsequent establishment of genetic polymorphism at multiple loci, genetic variation becomes increasingly concentrated on a few loci, until eventually only a single polymorphic locus remains. This evolutionary process combines features observed in quantitative genetics and adaptive dynamics models, and it can be explained as a consequence of changes in the selection regime that are inherent to frequency-dependent disruptive selection. Our findings demonstrate that the potential of frequency-dependent disruptive selection to maintain polygenic variation is considerably smaller than previously expected.  相似文献   

11.
We analyze here the evolutionary consequences of selection with delay in a population genetics context. In the classical works on evolutionary dynamics, an individual produces off-springs in direct proportion to its fitness, a process in which mutations may occur. In the present scenario of delayed selection, individuals that acquire deleterious mutations can still reproduce unharmed for several generations. During this time delay, the damage passed on to off-springs can potentially be repaired by subsequent compensatory mutations. In the absence of such a repair, the individual becomes sterile. Here we study the population-genetic effects of such a time delay by means of both numerical simulations and theoretical modeling. The results show that delayed selection lowers the extinction threshold, endangering the survival of the population. Surprisingly, however, no traces of this delay effect are encountered in the sequence diversity of the population. These conclusions suggest that delayed selection is hard to detect in genetic data and thus could be a wide-spread but rarely detected phenomenon.  相似文献   

12.
Some years ago, Lynn Margulis proposed to envision symbiosis as a source of evolutionary innovation. Here we revisit this concept in the context of insect nutritional endosymbiosis, and discuss recent data suggesting that host–endosymbiont coevolution has led to the selection of innovative strategies towards endosymbiont maintenance and control by the host immune system.  相似文献   

13.
Levins's fitness set approach has shaped the intuition of many evolutionary ecologists about resource specialization: if the set of possible phenotypes is convex, a generalist is favored, while either of the two specialists is predicted for concave phenotype sets. An important aspect of Levins's approach is that it explicitly excludes frequency-dependent selection. Frequency dependence emerged in a series of models that studied the degree of character displacement of two consumers coexisting on two resources. Surprisingly, the evolutionary dynamics of a single consumer type under frequency dependence has not been studied in detail. We analyze a model of one evolving consumer feeding on two resources and show that, depending on the trait considered to be subject to evolutionary change, selection is either frequency independent or frequency dependent. This difference is explained by the effects different foraging traits have on the consumer-resource interactions. If selection is frequency dependent, then the population can become dimorphic through evolutionary branching at the trait value of the generalist. Those traits with frequency-independent selection, however, do indeed follow the predictions based on Levins's fitness set approach. This dichotomy in the evolutionary dynamics of traits involved in the same foraging process was not previously recognized.  相似文献   

14.
Hamilton's theory of kin selection has revolutionized and inspired fifty years of additional theories and experiments on social evolution. Whereas Hamilton's broader intent was to explain the evolutionary stability of cooperation, his focus on shared genetic history appears to have limited the application of his theory to populations within a single species rather than across interacting species. The evolutionary mechanisms for cooperation between species require both spatial and temporal correlations among interacting partners for the benefits to be not only predictable but of sufficient duration to be reliably delivered. As a consequence when the benefits returned by mutualistic partners are redirected to individuals other than the original donor, cooperation usually becomes unstable and parasitism may evolve. However, theoretically, such redirection of mutualistic benefits may actually reinforce, rather than undermine, mutualisms between species when the recipients of these redirected benefits are genetically related to the original donor. Here, I review the few mathematical models that have used Hamilton's theory of kin selection to predict the evolution of mutualisms between species. I go on to examine the applicability of these models to the most well‐studied case of mutualism, pollinating seed predators, where the role of kin selection may have been previously overlooked. Future detailed studies of the direct, and indirect, benefits of mutualism are likely to reveal additional possibilities for applying Hamilton's theory of kin selection to mutualisms between species.  相似文献   

15.
Heritable variation in regulatory or coding regions is the raw material for evolutionary processes. The advent of microarrays has recently promoted examination of the extent of variation in gene expression within and among taxa and examination of the evolutionary processes affecting variation. This review examines these issues. We find: (i) microarray-based measures of gene expression are precise given appropriate experimental design; (ii) there is large inter-individual variation, which is composed of a minor nongenetic component and a large heritable component; (iii) variation among populations and species appears to be affected primarily by neutral drift and stabilizing selection, and to a lesser degree by directional selection; and (iv) neutral evolutionary divergence in gene expression becomes nonlinear with greater divergence times due to functional constraint. Evolutionary analyses of gene expression reviewed here provide unique insights into partitioning of regulatory variation in nature. However, common limitations of these studies include the tendency to assume a linear relationship between expression divergence and species divergence, and failure to test explicit hypotheses that involve the ecological context of evolutionary divergence.  相似文献   

16.
MOTIVATION: Similarity-measure-based clustering is a crucial problem appearing throughout scientific data analysis. Recently, a powerful new algorithm called Affinity Propagation (AP) based on message-passing techniques was proposed by Frey and Dueck (2007a). In AP, each cluster is identified by a common exemplar all other data points of the same cluster refer to, and exemplars have to refer to themselves. Albeit its proved power, AP in its present form suffers from a number of drawbacks. The hard constraint of having exactly one exemplar per cluster restricts AP to classes of regularly shaped clusters, and leads to suboptimal performance, e.g. in analyzing gene expression data. RESULTS: This limitation can be overcome by relaxing the AP hard constraints. A new parameter controls the importance of the constraints compared to the aim of maximizing the overall similarity, and allows to interpolate between the simple case where each data point selects its closest neighbor as an exemplar and the original AP. The resulting soft-constraint affinity propagation (SCAP) becomes more informative, accurate and leads to more stable clustering. Even though a new a priori free parameter is introduced, the overall dependence of the algorithm on external tuning is reduced, as robustness is increased and an optimal strategy for parameter selection emerges more naturally. SCAP is tested on biological benchmark data, including in particular microarray data related to various cancer types. We show that the algorithm efficiently unveils the hierarchical cluster structure present in the data sets. Further on, it allows to extract sparse gene expression signatures for each cluster.  相似文献   

17.
To what extent is adaptive evolution over short timescales repeatable? To address this question, we studied the performance of crosses between replicate Drosophila melanogaster lines previously subject to selection for improved learning response in the context of oviposition substrate choice. Of the 10 pairwise F1 crosses among the five selection lines, four performed in the original learning assay similarly to the parental lines, whereas the remaining six showed learning scores significantly below the average of the parental lines. In particular, four F1 crosses (three involving the same line) showed no detectable learning, on a par with unselected control lines. This indicates that the response to selection in some lines involved allelic substitutions at different loci. Additional assays of crosses between two selection lines indicated that the loss of performance in hybrids generalized to another type of learning assay, and held for both short‐ and long‐term memory. Joint analysis of first‐ and second‐generation crosses between these two lines supported the hypothesis that the response to selection in these different lines was based on the spread of recessive alleles at different loci. These results show that the evolutionary trajectories of populations of the same origin subject to uniform selection may sometimes diverge over very short evolutionary timescales.  相似文献   

18.
Desai MM  Plotkin JB 《Genetics》2008,180(4):2175-2191
The distribution of genetic polymorphisms in a population contains information about evolutionary processes. The Poisson random field (PRF) model uses the polymorphism frequency spectrum to infer the mutation rate and the strength of directional selection. The PRF model relies on an infinite-sites approximation that is reasonable for most eukaryotic populations, but that becomes problematic when is large ( greater, similar 0.05). Here, we show that at large mutation rates characteristic of microbes and viruses the infinite-sites approximation of the PRF model induces systematic biases that lead it to underestimate negative selection pressures and mutation rates and erroneously infer positive selection. We introduce two new methods that extend our ability to infer selection pressures and mutation rates at large : a finite-site modification of the PRF model and a new technique based on diffusion theory. Our methods can be used to infer not only a "weighted average" of selection pressures acting on a gene sequence, but also the distribution of selection pressures across sites. We evaluate the accuracy of our methods, as well that of the original PRF approach, by comparison with Wright-Fisher simulations.  相似文献   

19.
Functional morphology and evolutionary biology   总被引:4,自引:1,他引:3  
In this study the relationship between functional morpholoy and evolutionary biology is analysed by confronting the main concepts in both disciplines.Rather than only discussing this connection theoretically, the analysis is carried out by introducing important practical and experimental studies, which use aspects from both disciplines. The mentioned investigations are methodologically analysed and the consequences for extensions of the relationship are worked out. It can be shown that both disciplines have a large domain of their own and also share a large common ground. Many disagreements among evolutionary biologists can be reduced to differences in general philosophy (idealism vs. realism), selection of phenomenona (structure vs. function), definition of concepts (natural selection) and the position of the concept theory as an explaining factor (neutralists vs. selectionists, random variation, determinate selection, etc.).The significance of functional morphology for evolutionary biology, and vice versa depends on these differences. For a neo-Darwinian evolutionary theory, contributions from functional and ecological morphology are indispensable. Of ultimate importance are the notions of internal selection and constraints in the constructions determining further development. In this context the concepts of random variation and natural selection need more detailed definition.The study ends with a recommendation for future research founded in a system-theoretical or structuralistic conception.  相似文献   

20.
This essay recapitulates major paths followed by the Russian tradition of what we refer to today as evolutionary developmental biology (“evo‐devo”). The article addresses several questions regarding the conceptual history of evolutionary embryological thought in its particularly Russian perspective: (1) the assertion by the St. Petersburg academician Wolff regarding the possible connections between environmental modifications during morphogenesis and the “transformation” of species, (2) the discovery of shared “principles” underlying animal development by von Baer, (3) the experimental expression of Baer's principles by Kowalevsky and Mechnikoff, (4) Severtsov's theory of phylembryogenesis, (5) Filatov's approach to the study of evolution using comparative “developmental mechanics”, and (6) Shmalgausen's concept of “stabilizing” selection as an attempt to elucidate the evolution of developmental mechanisms. The focus on comparative evolutionary embryology, which was established by Kowalevsky and Mechnikoff, still continues to be popular in present‐day “evo‐devo” research in Russia.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号