首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Methylglyoxal (MG) has been identified as an intermediate in non-enzymatic glycation, and increased levels have been reported in patients with diabetes. In this study, the effect of MG on the structure and function of human Cu,Zn-superoxide dismutase (SOD) was investigated. MG modifies Cu,Zn-SOD, as indicated by the formation of fluorescent products. When Cu, Zn-SOD was incubated with MG, covalent crosslinking of the protein increased progressively. MG-mediated modification of Cu,Zn-SOD led to loss of enzymatic activity and release of copper ions from the protein. Radical scavengers inhibited the crosslinking of Cu,Zn-SOD. When Cu,Zn-SOD that had been exposed to MG was analyzed, glycine, histidine, lysine, and valine residues were found to be particularly sensitive. It is suggested that oxidative damage to Cu,Zn-SOD by MG may perturb cellular antioxidant defense systems and damage cells. This effect may account, in part, for organ deterioration in diabetes.  相似文献   

2.
Carnosine (beta-alanyl-L-histidine), homocarnosine (gamma-amino-butyryl-L-histidine) and anserine (beta-alanyl-1-methyl-L-histidine) have been proposed to act as anti-oxidants in vivo. The protective effects of carnosine and related compounds against the oxidative damage of human Cu,Zn-superoxide dismutase (SOD) by peroxyl radicals generated from 2,2'-azobis(2-amidinopropane) dihydrochloride (AAPH) were studied. The oxidative damage to Cu,Zn-SOD by AAPH-derived radicals led to protein fragmentation, which is associated with the inactivation of enzyme. Carnosine, homocarnosine and anserine significantly inhibited the fragmentation and inactivation of Cu,Zn-SOD by AAPH. All three compounds also inhibited the release of copper ions from the enzyme and the formation of carbonyl compounds in AAPH-treated Cu,Zn-SOD. These compounds inhibited the fragmentation of other protein without copper ion. The results suggest that carnosine and related compounds act as the copper chelator and peroxyl radical scavenger to protect the protein fragmentation. Oxidation of amino acid residues in Cu,Zn-SOD induced by AAPH were significantly inhibited by carnosine and related compounds. It is proposed that carnosine and related dipeptides might be explored as potential therapeutic agents for pathologies that involve Cu,Zn-SOD modification mediated by peroxyl radicals.  相似文献   

3.
4.
The fragmentation of human Cu,Zn-superoxide dismutase (SOD) was observed during incubation with H(2)O(2). Hydroxyl radical scavengers such as sodium azide, formate and mannitol protected the fragmentation of Cu,Zn-SOD. These results suggested that *OH was implicated in the hydrogen peroxide-mediated Cu,Zn-SOD fragmentation. Carnosine, homocarnosine and anserine have been proposed to act as anti-oxidants in vivo. We investigated whether three compounds could protect the fragmentation of Cu,Zn-SOD induced by H(2)O(2). The results showed that carnosine, homocarnosine and anserine significantly protected the fragmentation of Cu,Zn-SOD. All three compounds also protected the loss of enzyme activity induced by H(2)O(2). Carnosine, homocarnosine and anserine effectively inhibited the formation of *OH by the Cu,Zn-SOD/H(2)O(2) system. These results suggest that carnosine and related compounds can protect the hydrogen peroxide-mediated Cu,Zn-SOD fragmentation through the scavenging of *OH.  相似文献   

5.
Jung Hoon Kang 《BMB reports》2013,46(11):555-560
Acrolein is the most reactive aldehydic product of lipid peroxidation and is found to be elevated in the brain when oxidative stress is high. The effects of acrolein on the structure and function of human Cu,Zn-superoxide dismutase (SOD) were examined. When Cu,Zn-SOD was incubated with acrolein, the covalent crosslinking of the protein was increased, and the loss of enzymatic activity was increased in a dose-dependent manner. Reactive oxygen species (ROS) scavengers and copper chelators inhibited the acrolein-mediated Cu,Zn-SOD modification and the formation of carbonyl compound. The present study shows that ROS may play a critical role in acrolein-induced Cu,Zn-SOD modification and inactivation. When Cu,Zn-SOD that has been exposed to acrolein was subsequently analyzed by amino acid analysis, serine, histidine, arginine, threonine and lysine residues were particularly sensitive. It is suggested that the modification and inactivation of Cu,Zn-SOD by acrolein could be produced by more oxidative cell environments. [BMB Reports 2013; 46(11): 555-560]  相似文献   

6.
Kim NH  Jeong MS  Choi SY  Hoon Kang J 《Biochimie》2004,86(8):553-559
Neurofilament-L (NF-L) is a major element of neuronal cytoskeletons and known to be important for their survival in vivo. Since oxidative stress might play a critical role in the pathogenesis of neurodegenerative diseases, we investigated the role of Cu,Zn-superoxide dismutase (SOD) in the modification of NF-L. When disassembled NF-L was incubated with Cu,Zn-SOD and H2O2, the aggregation of protein was proportional to the concentration of hydrogen peroxide. Cu,Zn-SOD/H2O2-mediated modification of NF-L was significantly inhibited by radical scavenger, spin trap agents and copper chelators. Dityrosine crosslink formation was obtained in Cu,Zn-SOD/H2O2-mediated NF-L aggregates. Antioxidant molecules, carnosine and anserine significantly inhibited the aggregation of NF-L and the formation of dityrosine. This study suggests that copper-mediated NF-L modification may be closely related to oxidative reactions which play a critical role in neurodegenerative diseases.  相似文献   

7.
Kim YS  Han S 《FEBS letters》2000,479(1-2):25-28
Reaction of Cu,Zn-superoxide dismutase (SOD1) and hydrogen peroxide generates a putative oxidant SOD-Cu2+-.OH that can inactivate the enzyme and oxidize 5,5'-dimethyl-1-pyrroline-N-oxide (DMPO) to DMPO-.OH. In the presence of nitric oxide (.NO), the SOD1/H2O2 system is known to produce peroxynitrite (ONOO-). In contrast to the proposed cytotoxicity of .NO conferred by ONOO-, we report here a protective role of .NO in the H2O2-induced inactivation of SODI. In a dose-dependent manner, .NO suppressed formation of DMPO-.OH and inactivation of the enzyme. Fragmentation of the enzyme was not affected by .NO. Bicarbonate retarded formation of ONOO-, suggesting that .NO competes with bicarbonate for the oxidant SOD-Cu2+-.OH. We propose that .NO protects SOD1 from H2O2-induced inactivation by reducing SOD-Cu2+.OH to the active SOD-Cu2+ with concomitant production of NO+ which reacts with H2O2 to give ONOO-.  相似文献   

8.
The mechanism for copper loading of the antioxidant enzyme copper, zinc superoxide dismutase (SOD1) by its partner metallochaperone protein is not well understood. Here we show the human copper chaperone for Cu,Zn-SOD1 (hCCS) activates either human or yeast enzymes in vitro by direct protein to protein transfer of the copper cofactor. Interestingly, when denatured with organic solvents, the apo-form of human SOD1 cannot be reactivated by added copper ion alone, suggesting an additional function of hCCS such as facilitation of an active folded state of the enzyme. While hCCS can bind several copper ions, metal binding studies in the presence of excess copper scavengers that mimic the intracellular chelation capacity indicate a limiting stoichiometry of one copper and one zinc per hCCS monomer. This protein is active and unlike the yeast protein, is a homodimer regardless of copper occupancy. Matrix-assisted laser desorption ionization-mass spectrometry and metal binding studies suggest that Cu(I) is bound by residues from the first and third domains and no bound copper is detected for the second domain of hCCS in either the full-length or truncated forms of the protein. Copper-induced conformational changes in the essential C-terminal peptide of hCCS are consistent with a "pivot, insert, and release" mechanism that is similar to one proposed for the well characterized metal handling enzyme, mercuric ion reductase.  相似文献   

9.
Human Cu,Zn-superoxide dismutase (hSOD1) has 4 cysteines per subunit. Cys57 and Cys148 are involved in an intrasubunit disulfide bond, while Cys6 and Cys111 are free. Cys6 is buried within the protein while Cys111 is on the surface, near the dimer interface. We examined by liquid chromatography-mass spectrometry the commercially purchased hSOD1 isolated from erythrocytes as well as hSOD1s isolated from human erythrocytes, brain, and hSOD1 expressed in Sf9, yeast, and E. coli. Our goal was to ascertain whether the Cys111 modification occurred naturally in vivo. Only the Sigma erythrocyte hSOD1 appeared to contain a trisulfide crosslink between the Cys111 residues. Thus it failed to react with N-ethylmaleimide, showed absorbtion at 325 nm that was eliminated by 2-mercaptoethanol, and had a mass 30 units more than expected for the native dimer. We examined the possibility that different purification methods might cause this modification in erythrocyte hSOD1. None of the procedures examined for hSOD1 purification produced such a trisulfide. In disagreement with Liu et al. [Biochemistry, 2000, 39, 8125-8132], complete derivitization of both Cys111s of hSOD1 from Sf9 cells with N-ethylmaleimide, 4-vinylpyridine, and by 5,5′-dithiobis(2-nitrobenzoic acid) were readily achieved; indicating that steric hindrance was not a problem.  相似文献   

10.
Human Cu,Zn-superoxide dismutase (hSOD1) has 4 cysteines per subunit. Cys57 and Cys148 are involved in an intrasubunit disulfide bond, while Cys6 and Cys111 are free. Cys6 is buried within the protein while Cys111 is on the surface, near the dimer interface. We examined by liquid chromatography-mass spectrometry the commercially purchased hSOD1 isolated from erythrocytes as well as hSOD1s isolated from human erythrocytes, brain, and hSOD1 expressed in Sf9, yeast, and E. coli. Our goal was to ascertain whether the Cys111 modification occurred naturally in vivo. Only the Sigma erythrocyte hSOD1 appeared to contain a trisulfide crosslink between the Cys111 residues. Thus it failed to react with N-ethylmaleimide, showed absorbtion at 325 nm that was eliminated by 2-mercaptoethanol, and had a mass 30 units more than expected for the native dimer. We examined the possibility that different purification methods might cause this modification in erythrocyte hSOD1. None of the procedures examined for hSOD1 purification produced such a trisulfide. In disagreement with Liu et al. [Biochemistry, 2000, 39, 8125-8132], complete derivitization of both Cys111s of hSOD1 from Sf9 cells with N-ethylmaleimide, 4-vinylpyridine, and by 5,5′-dithiobis(2-nitrobenzoic acid) were readily achieved; indicating that steric hindrance was not a problem.  相似文献   

11.
Oxidation of catecholamines may contribute to the pathogenesis of Parkinson's disease (PD). The effect of the oxidized products of catecholamines on the modification of Cu,Zn-superoxide dismutase (SOD) was investigated. When Cu,Zn-SOD was incubated with the oxidized 3,4-dihydroxyphenylalanine (DOPA) or dopamine, the protein was induced to be aggregated. The deoxyribose assay showed that hydroxyl radicals were generated during the oxidation of catecholamines in the presence of copper ion. Radical scavengers, azide, N-acetylcysteine, and catalase inhibited the oxidized catecholamine-mediated Cu,Zn-SOD aggregation. Therefore, the results indicate that free radicals may play a role in the aggregation of Cu,Zn-SOD. When Cu,Zn-SOD that had been exposed to catecholamines was subsequently analyzed by an amino acid analysis, the glycine and histidine residues were particularly sensitive. These results suggest that the modification of Cu,Zn-SOD by oxidized catecholamines might induce the perturbation of cellular antioxidant systems and led to a deleterious cell condition.  相似文献   

12.
The Cu,Zn-superoxide dismutase (SOD1) has been reported to exert an S-nitrosylated glutathione (GSNO) denitrosylase activity that was augmented by a familial amyotrophic lateral sclerosis (FALS)-associated mutation in this enzyme. This putative enzymatic activity as well as the spontaneous decomposition of GSNO has been reexamined. The spontaneous decomposition of GSNO exhibited several peculiarities, such as a lag phase followed by an accelerating rate plus a marked dependence on GSNO concentration, suggestive of autocatalysis, and a greater rate in polypropylene than in glass vessels. Dimedone caused a rapid increase in absorbance likely due to reaction with GSNO, followed by a slower increase possibly due to reaction with an intermediate such as glutathione sulfenic acid. SOD1 weakly increased the rate of decomposition of GSNO, but did so only when GSH was present; and FALS-associated mutant forms of SOD1 were not more active in this regard than was the wild type. Decomposed GSNO, when added to fresh GSNO, hastened its decomposition, in accord with autocatalysis, and when added to GSH, generated GSNO in accord with the presence of nitrite. A mechanism is proposed that is in accord with these observations.  相似文献   

13.
The reconstitution of Cu,Zn-superoxide dismutase from the copper-free protein by the Cu(I).GSH complex was monitored by: (a) EPR and optical spectroscopy upon reoxidation of the enzyme-bound copper; (b) NMR spectroscopy following the broadening of the resonances of the Cu(I).GSH complex after addition of Cu-free,Zn-superoxide dismutase; and (c) NMR spectroscopy of the Cu-free,Co(II) enzyme following the appearance of the isotropically shifted resonances of the Cu(I), Co enzyme, Cu(I).GSH was found to be a very stable complex in the presence of oxygen and a more efficient copper donor to the copper-free enzyme than other low molecular weight Cu(II) complexes. In particular, 100% reconstitution was obtained with stoichiometric copper at any GSH:copper ratio between 2 and 500. Evidence was obtained for the occurrence of a Cu(I).GSH.protein intermediate in the reconstitution process. In view of the inability of copper-thionein to reconstitute Cu,Zn-superoxide dismutase and of the detection of copper.GSH complexes in copper-over-loaded hepatoma cells (Freedman, J.H., Ciriolo, M.R., and Peisach, J. (1989) J. Biol. Chem. 264, 5598-5605), Cu(I).GSH is proposed as a likely candidate for copper donation to Cu-free,Zn-superoxide dismutase in vivo.  相似文献   

14.
Kinetic evidence is reported for the role of the peroxymonocarbonate, HOOCO(2)(-), as an oxidant for reduced Cu,Zn-superoxide dismutase-Cu(I) (SOD1) during the peroxidase activity of the enzyme. The formation of this reactive oxygen species results from the equilibrium between hydrogen peroxide and bicarbonate. Recently, peroxymonocarbonate has been proposed to be a key substrate for reduced SOD1 and has been shown to oxidize SOD1-Cu(I) to SOD1-Cu(II) much faster than H(2)O(2). We have reinvestigated the kinetics of the reaction between SOD1-Cu(I) and HOOCO(2)(-) by using conventional stopped-flow spectrophotometry and obtained a second-order rate constant of k=1600±100M(-1)s(-1) for SOD1-Cu(I) oxidation by HOOCO(2)(-). Our results demonstrate that peroxymonocarbonate oxidizes SOD1-Cu(I) to SOD1-Cu(II) and is in turn reduced to the carbonate anion radical. It is proposed that the dissociation of His61 from the active site Cu(I) in SOD-Cu(I) contributes to this chemistry by facilitating the binding of larger anions, such as peroxymonocarbonate.  相似文献   

15.
Alpha-synuclein is a major component of the abnormal protein aggregation in Lewy bodies of Parkinson's disease (PD) and senile plaques of Alzheimer's disease (AD). Previous studies have shown that the aggregation of alpha-synuclein was induced by copper (II) and H(2)O(2) system. Since copper ions could be released from oxidatively damaged Cu,Zn-superoxide dismutase (SOD), we investigated the role of Cu,Zn-SOD in the aggregation of alpha-synuclein. When alpha-synuclein was incubated with both Cu,Zn-SOD and H(2)O(2), alpha-synuclein was induced to be aggregated. This process was inhibited by radical scavengers and spin trapping agents such as 5,5'-dimethyl 1-pyrolline N-oxide and tert-butyl-alpha-phenylnitrone. Copper chelators, diethyldithiocarbamate and penicillamine, also inhibited the Cu,Zn-SOD/H(2)O(2) system-induced alpha-synuclein aggregation. These results suggest that the aggregation of alpha-synuclein is mediated by the Cu,Zn-SOD/H(2)O(2) system via the generation of hydroxyl radical by the free radical-generating function of the enzyme. The Cu,Zn-SOD/H(2)O(2)-induced alpha-synuclein aggregates displayed strong thioflavin-S reactivity, reminiscent of amyloid. These results suggest that the Cu,Zn-SOD/H(2)O(2) system might be related to abnormal aggregation of alpha-synuclein, which may be involved in the pathogenesis of PD and related disorders.  相似文献   

16.
Cu,Zn-superoxide dismutase (SOD) can catalyze hydroxyl radical generation using H2O2 as a substrate. Lipid peroxidation induced by the Cu,Zn-SOD and H2O2 system was investigated. When linoleic acids micelles or phosphatidylcholine liposomes were incubated with Cu,Zn-SOD and H2O2, lipid peroxidation was gradually increased in a time-dependent manner. The extent of lipid peroxidation was proportional to Cu,Zn-SOD and H2O2 concentrations. Hydroxyl radical scavengers and copper chelator inhibited lipid peroxidation induced by the Cu,Zn-SOD and H2O2 system. These results suggest that lipid peroxidation is mediated by the Cu,Zn-SOD and H2O2 system via the generation of hydroxyl radicals by a combination of the peroxidative reaction of Cu,Zn-SOD and the Fenton-like reaction of free copper released from oxidatively damaged SOD.  相似文献   

17.
18.
Developmental regulation of rat lung Cu,Zn-superoxide dismutase.   总被引:2,自引:0,他引:2       下载免费PDF全文
In the present investigation we found that lung Cu,Zn-superoxide dismutase (SOD) activity (units/mg of DNA) increases steadily in the rat from birth to adulthood. The specific activity (units/micrograms of enzyme) of Cu,Zn-SOD was unchanged from birth to adulthood, excluding enzyme activation as a mechanism responsible for the increase in enzyme activity. Lung synthesis of Cu,Zn-SOD peaked at 1 day before birth and decreased thereafter to adult values. Calculations, based on rates of Cu,Zn-SOD synthesis and the tissue content of the enzyme, indicated that lung Cu,Zn-SOD activity increased during development owing to the rate of enzyme synthesis exceeding its rate of degradation by 5-10%. These calculations were supported by measurements of enzyme degradation in the neonatal (half-life, t1/2, = 12 h) and adult lung (t1/2 = greater than 100 h); the difference in half-life did not reflect the rates of overall protein degradation in the lung, since these rates were not different in lungs from neonatal and adult rats. We did not detect differences in the Mr or pI of Cu,Zn-SOD during development, but the susceptibility of the enzyme to inactivation by heat or copper chelation decreased with increasing age of the rats. We conclude that the progressive increase in activity of Cu,Zn-SOD is due to a rate of synthesis that exceeds degradation of the enzyme. The data also suggest that increased stabilization of enzyme conformation accounts for the greater half-life of the enzyme in lungs of adult compared with neonatal rats.  相似文献   

19.
The alpha-synuclein is a major component of Lewy bodies that are found in the brains of patients with Parkinson's disease (PD). Also, two point mutations in this protein, A53T and A30P, are associated with rare familial forms of the disease. We investigated whether there are differences in the Cu,Zn-SOD and hydrogen peroxide system mediated-protein modification between the wild-type and mutant alpha-synucleins. When alpha-synuclein was incubated with both Cu,Zn-SOD and H2O2, then the amount of A53T mutant oligomerization increased relative to that of the wild-type protein. This process was inhibited by radical scavenger, spin-trapping agent, and copper chelator. These results suggest that the oligomerization of alpha-synuclein is mediated by the generation of the hydroxyl radical through the metal-catalyzed reaction. The dityrosine formation of the A53T mutant protein was enhanced relative to that of the wild-type protein. Antioxidant molecules, carnosine, and anserine effectively inhibited the wild-type and mutant proteins' oligomerization. Therefore, these compounds may be explored as potential therapeutic agents for PD patients. The present experiments, in part, may provide an explanation for the association between PD and the alpha-synuclein mutant.  相似文献   

20.
To improve its stability and lipophilicity, Cu,Zn-superoxide dismutase (SOD) was chemically modified with linoleic and α-linolenic acids using two different methods. Higher retained enzymatic activity has been observed compared with SOD modified by macromolecular substances. Enhanced heat stability, acid and alkali resistance, and anti-pepsin/trypsin ability of the modified SOD were observed compared with those of the natural enzyme, the apparent oil-water partition coefficient being especially increased. The results characterize SOD modified with polyunsaturated fatty acids as a promising pharmacological tool.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号