共查询到20条相似文献,搜索用时 15 毫秒
1.
Calcium and magnesium binding to human centrin 3 and interaction with target peptides 总被引:4,自引:0,他引:4
Cox JA Tirone F Durussel I Firanescu C Blouquit Y Duchambon P Craescu CT 《Biochemistry》2005,44(3):840-850
There are four isoforms of centrin in mammals, with variable sequence, tissue expression, and functional properties. We have recently characterized a number of structural, ion, and target binding properties of human centrin isoform HsCen2. This paper reports a similar characterization of HsCen3, overexpressed in Escherichia coli and purified by phase-reversed chromatography. Equilibrium and dynamic binding studies revealed that HsCen3 has one mixed Ca(2+)/Mg(2+) binding site of high affinity (K(d) = 3 and 10 microM for Ca(2+) and Mg(2+), respectively) and two Ca(2+)-specific sites of low affinity (K(d) = 140 microM). The metal-free protein is fragmented by an unidentified protease into a polypeptide segment of 11 kDa, which was purified by HPLC, and identified by mass spectrometry as the segment of residues 21-112. Similarly, controlled trypsinolysis on Ca(2+)-bound HsCen3 yielded a mixture of segments of residues 1-124 and 1-125. The Ca(2+)/Mg(2+) site could be assigned to this segment and thus resides in the N-terminal half of HsCen3. Temperature denaturation experiments, circular dichroism, and utilization of fluorescence hydrophobic probes allowed us to propose that the metal-free protein has molten globule characteristics and that the dication-bound forms are compact with a polar surface for the Mg(2+) form and a hydrophobic exposed surface for the Ca(2+) form. Thus, HsCen3 could be classified as a Ca(2+) sensor protein. In addition, it is able to bind strongly to a model target peptide (melittin), as well as to peptides derived from the protein XPC and Kar1p, with a moderate Ca(2+) dependence. 相似文献
2.
Fischer T Rodríguez-Navarro S Pereira G Rácz A Schiebel E Hurt E 《Nature cell biology》2004,6(9):840-848
3.
Fine structure analysis of the yeast centrin, Cdc31p, identifies residues specific for cell morphology and spindle pole body duplication 总被引:7,自引:0,他引:7
Centrin/Cdc31p is a Ca2+-binding protein related to calmodulin found in the MTOC of diverse organisms. In yeast, Cdc31p localizes to the SPB where it interacts with Kar1p and is required for SPB duplication. Recent findings suggest that centrin also functions elsewhere in the cell. To dissect the functions of Cdc31p, we generated cdc31 mutations chosen only for temperature sensitivity, but otherwise unbiased as to phenotype. Three phenotypes of the cdc31 mutants, temperature sensitivity, G2/M arrest, and cell lysis, were not well correlated, indicating that the mutations may differentially affect Cdc31p's interactions with other proteins. Alleles near the C-terminal region exhibited high G2/M arrest and genetic interactions with kar1-Delta17, suggesting that this region modulates an SPB-related function. Alleles causing high lysis and reduced Kic1p kinase activity mapped to the middle of the gene, suggesting disruption of a KIC1-like function and defects in activating Kic1p. A third region conferred temperature sensitivity without affecting cell lysis or G2/M arrest, suggesting that it defines a third function. Mutations in the C-terminal region were also defective for interaction with Kic1p. Mapping the alleles onto a predicted structure of Cdc31p, we have identified surfaces likely to be important for interacting with both Kar1p and Kic1p. 相似文献
4.
The earlier identified gene RAD31 was mapped on the right arm of chromosome II in the region of gene MEC1 localization. Epistatic analysis demonstrated that the rad31 mutation is an allele of the MEC1 gene, which allows further designation of the rad31 mutation as mec1-212. Mutation mec1-212, similar to deletion alleles of this gene, causes sensitivity to hydroxyurea, disturbs the check-point function, and suppresses UV-induced mutagenesis. However, this mutation significantly increases the frequency of spontaneous canavanine-resistance mutations induced by disturbances in correcting errors of DNA replication and repair, which distinguishes it from all identified alleles of gene MEC1. 相似文献
5.
The protein Cdc13p binds telomeres in vivo and is essential for the maintenance of the telomeres of Saccharomyces cerevisiae. In addition, Cdc13p is known to bind single-stranded TG(1-3) DNA in vitro. Here we have shown that Cdc13p also binds DNA quadruplex, G-quartet, formed by TG(1-3) DNA. Moreover, the binding of Cdc13p causes a partial denaturing of the G-quartet DNA. Formation of DNA quadruplexes may involve the intermolecular association of TG(1-3) DNA and inhibit the extension of telomeres by telomerase. Thus, our finding suggests that Cdc13p may disrupt telomere association and facilitate telomere replication. 相似文献
6.
The N-terminus of Sfi1 and yeast centrin Cdc31 provide the assembly site for a new spindle pole body
The spindle pole body (SPB) provides microtubule-organizing functions in yeast and duplicates exactly once per cell cycle. The first step in SPB duplication is the half-bridge to bridge conversion via the antiparallel dimerization of the centrin (Cdc31)-binding protein Sfi1 in anaphase. The bridge, which is anchored to the old SPB on the proximal end, exposes free Sfi1 N-termini (N-Sfi1) at its distal end. These free N-Sfi1 promote in G1 the assembly of the daughter SPB (dSPB) in a yet unclear manner. This study shows that N-Sfi1 including the first three Cdc31 binding sites interacts with the SPB components Spc29 and Spc42, triggering the assembly of the dSPB. Cdc31 binding to N-Sfi1 promotes Spc29 recruitment and is essential for satellite formation. Furthermore, phosphorylation of N-Sfi1 has an inhibitory effect and delays dSPB biogenesis until G1. Taking these data together, we provide an understanding of the initial steps in SPB assembly and describe a new function of Cdc31 in the recruitment of dSPB components. 相似文献
7.
Mps3p is a novel component of the yeast spindle pole body that interacts with the yeast centrin homologue Cdc31p 总被引:2,自引:0,他引:2
Accurate duplication of the Saccharomyces cerevisiae spindle pole body (SPB) is required for formation of a bipolar mitotic spindle. We identified mutants in SPB assembly by screening a temperature-sensitive collection of yeast for defects in SPB incorporation of a fluorescently marked integral SPB component, Spc42p. One SPB assembly mutant contained a mutation in a previously uncharacterized open reading frame that we call MPS3 (for monopolar spindle). mps3-1 mutants arrest in mitosis with monopolar spindles at the nonpermissive temperature, suggesting a defect in SPB duplication. Execution point experiments revealed that MPS3 function is required for the first step of SPB duplication in G1. Like cells containing mutations in two other genes required for this step of SPB duplication (CDC31 and KAR1), mps3-1 mutants arrest with a single unduplicated SPB that lacks an associated half-bridge. MPS3 encodes an essential integral membrane protein that localizes to the SPB half-bridge. Genetic interactions between MPS3 and CDC31 and binding of Cdc31p to Mps3p in vitro, as well as the fact that Cdc31p localization to the SPB is partially dependent on Mps3p function, suggest that one function for Mps3p during SPB duplication is to recruit Cdc31p, the yeast centrin homologue, to the half-bridge. 相似文献
8.
Brasser HJ Krijger GC van Meerten TG Wolterbeek HT 《Biological trace element research》2006,112(2):175-189
Silicon (Si, as silicate) is involved in numerous important structure and function roles in a wide range of organisms, including
man. Silicate availability influences metal concentrations within various cell and tissue types, but, as yet, clear mechanisms
for such an influence have been discovered only within the diatoms and sponges. In this study, the influence of silicate on
the intracellular accumulation of metals was investigated in baker's yeast (Saccharomyces cerevisiae). It was found that at concentrations up to 10 mM, silicate did not influence the growth rate of S. cerevisiae within a standard complete medium. However, an 11% growth inhibition was observed when silicate was present at 100 mM. Intracellular metal concentrations were investigated in yeast cultures grown without added silicate (−Si) or with the addition
of 10 mM silicate (+Si). Decreased amounts of Co (52%), Mn (35%), and Fe (20%) were found within +Si-grown yeast cultures as compared
to −Si-grown ones, whereas increased amounts of Mo (56%) and Mg (38%) were found. The amounts of Zn and K were apparently
unaffected by the presence of silicon. +Si enhanced the yeast growth rate for low-Zn2+ medium, but it decreased the growth rate under conditions of a low Mg2+ medium and did not alter the growth rates in high Zn2+ and Co2+ media. +Si doubled the uptake rate of Co2+ but did not influence that of Zn2+. We propose that a possible explanation for these results is that polysilicate formation at the cell wall changes the cell
wall binding capacity for metal ions. The toxicity of silicate was compared to germanium (Ge, as GeO2), a member of the same group of elements as Si (group 14). Hence, Si and Ge are chemically similar, but silicate starts to
polymerize to oligomers above 5 mM, whereas Ge salts remain as monomers at such concentrations. Ge proved to be far more toxic to yeast than Si and no influence
of Si on Ge toxicity was found. We propose that these results relate to differences in cellular uptake. 相似文献
9.
Oligomerization regulates the localization of Cdc24, the Cdc42 activator in Saccharomyces cerevisiae 总被引:1,自引:0,他引:1
Guanine nucleotide exchange factor activation of Rho G-proteins is critical for cytoskeletal reorganization. In the yeast Saccharomyces cerevisiae, the sole guanine nucleotide exchange factor for the Rho G-protein Cdc42p, Cdc24p, is essential for its site-specific activation. Several mammalian exchange factors have been shown to oligomerize; however, the function of this homotypic interaction is unclear. Here we show that Cdc24p forms oligomers in yeast via its catalytic Dbl homology domain. Mutation of residues critical for Cdc24p oligomerization also perturbs the localization of this exchange factor yet does not alter its catalytic activity in vitro. Chemically induced oligomerization of one of these oligomerization-defective mutants partially restored its localization to the bud tip and nucleus. Furthermore, chemically induced oligomerization of wild-type Cdc24p does not affect in vitro exchange factor activity, yet it results in a decrease of activated Cdc42p in vivo and the presence of Cdc24p in the nucleus at all cell cycle stages. Together, our results suggest that Cdc24p oligomerization regulates Cdc42p activation via its localization. 相似文献
10.
Separate compartments of the yeast cell possess their own exopolyphosphatases differing from each other in their properties and dependence on culture conditions. The low-molecular-mass exopolyphosphatases of the cytosol, cell envelope, and mitochondrial matrix are encoded by the PPX1 gene, while the high-molecular-mass exopolyphosphatase of the cytosol and those of the vacuoles, mitochondrial membranes, and nuclei are presumably encoded by their own genes. Based on recent works, a preliminary classification of the yeast exopolyphosphatases is proposed. 相似文献
11.
Binding of yeast killer toxin to a cell wall receptor on sensitive Saccharomyces cerevisiae. 总被引:3,自引:0,他引:3 下载免费PDF全文
35S-labeled killer toxin protein bound to cells of sensitive Saccharomyces cerevisiae S14a. Strains that were resistant to toxin through mutation in the nuclear genes kre1 kre2 bound toxin only weakly. Non-radioactive toxin competed effectively with 35S-labeled toxin for binding to S14a, but did not compete significantly in the binding to mutant kre1-1. This implied that binding to kre1-1 was nonspecific. A Scatchard analysis of the specific binding to S14a gave a linear plot, with an association constant of 2.9 x 10(6) M-1 and a receptor number of 1.1 x 10(7) per cell. Killer toxin receptors were solubilized from the cell wall by zymolyase digestion. Soluble, non-dialyzable cell wall digest from S14a competed with sensitive yeast cells for 35S-labeled toxin binding and reduced toxin-dependent killing of a sensitive strain. Wall digest from kre1-1 competed only weakly for toxin binding with sensitive cells and caused little reduction of toxin-dependent killing. Although the abundant (1.1 x 10(7) per cell) receptor appeared necessary for toxin action, as few as 2.8 x 10(4) toxin molecules were necessary to kill a sensitive cell of S14a. The kinetics killing of S14a suggested that some component was saturated with toxin at a concentration 50-fold lower than that needed to saturate the wall receptor. 相似文献
12.
Macroautophagy is the process of intracellular bulk protein degradation induced by nutrient starvation and is generally considered to be a nonselective degradation of cytosolic enzymes and organelles. However, it remains a possibility that some proteins may be preferentially degraded by autophagy. In this study, we have performed a systematic analysis on the substrate selectivity of autophagy in yeast, Saccharomyces cerevisiae, using two-dimensional PAGE. We performed a differential screen on wild-type and Deltaatg7/apg7 autophagy-deficient cells and found that cytosolic acetaldehyde dehydrogenase (Ald6p) decreased under nitrogen starvation. As assessed by immunoblot, Ald6p was reduced by greater than 82% after 24 h of nitrogen starvation. This reduction was dependent on Atg/Apg proteins and vacuolar proteases but was not dependent on the proteasome or the cytoplasm to vacuole targetting (Cvt) pathway. Using pulse-chase and subcellular fractionation, we have also demonstrated that Ald6p was preferentially transported to vacuoles via autophagosomes. Deltaatg7 Deltaald6 double mutant cells were able to maintain higher rates of viability than Deltaatg7 cells under nitrogen starvation, and Ald6p-overexpressing cells were not able to maintain high rates of viability. Furthermore, the Ald6p(C306S) mutant, which lacks enzymatic activity, had viability rates similar to Deltaald6 cells. Ald6p enzymatic activity may be disadvantageous for survival under nitrogen starvation; therefore, yeast cells may preferentially eliminate Ald6p via autophagy. 相似文献
13.
The Cdc37 protein in Saccharomyces cerevisiae is thought to be a kinase-targeting subunit of the chaperone Hsp90. In a genetic screen, four protein kinases were identified as interacting with Cdc37 - Cdc5, Cdc7, Cdc15 and Cak1. This result underlines the importance of Cdc37 for the folding of protein kinases. In addition, we showed that Ydj1, a yeast DnaJ homolog belonging to the Hsp40 family of chaperones, genetically interacts with Cdc37. No physical interaction has so far been detected between Cdc37 and Cdc28, although genetic interactions (synthetic lethality and mutation suppression), and biochemical studies have suggested that these two proteins functionally interact. We found that, when separately expressed, the N-terminal lobe of Cdc28 interacted strongly with the C-terminal moiety of Cdc37 in a two-hybrid system. This was not the case for the full-length Cdc28 protein. We present models to explain these results. 相似文献
14.
Vacuolar ion channel of the yeast, Saccharomyces cerevisiae 总被引:6,自引:0,他引:6
Y Wada Y Ohsumi M Tanifuji M Kasai Y Anraku 《The Journal of biological chemistry》1987,262(36):17260-17263
Ionic flux is most likely to regulate the chemiosmotic potential differences across vacuolysosomal membranes in animal, plant, and fungal cells. We found a membrane potential-dependent cation channel in yeast vacuolar membrane and characterized its several features by an electrophysiological method using artificial planar bilayer membranes incorporated with isolated yeast vacuolar membrane vesicles. This ion channel conducts K+ (single channel conductance, 435 pS in 0.3 M KCl) and several other monovalent cations (Cs+, Na+, and Li+) with broad selectivity, but does not conduct Cl-. The opening of this channel is regulated by the membrane potential and the presence of calcium ion on the cytoplasmic face. These characteristics suggested that the vacuolar cation channel functions as one of essential components for formation and regulation of the chemical and electrical potential differences across the vacuolar membrane. 相似文献
15.
Iron-reductases in the yeast Saccharomyces cerevisiae 总被引:2,自引:0,他引:2
Several NAD(P)H-dependent ferri-reductase activities were detected in sub-cellular extracts of the yeast Saccharomyces cerevisiae. Some were induced in cells grown under iron-deficient conditions. At least two cytosolic iron-reducing enzymes having different substrate specificities could contribute to iron assimilation in vivo. One enzyme was purified to homogeneity: it is a flavoprotein (FAD) of 40 kDa that uses NADPH as electron donor and Fe(III)-EDTA as artificial electron acceptor. Isolated mitochondria reduced a variety of ferric chelates, probably via an 'external' NADH dehydrogenase, but not the siderophore ferrioxamine B. A plasma membrane-bound ferri-reductase system functioning with NADPH as electron donor and FMN as prosthetic group was purified 100-fold from isolated plasma membranes. This system may be involved in the reductive uptake of iron in vivo. 相似文献
16.
The FRQ1 gene is essential for growth of budding yeast and encodes a 190-residue, N-myristoylated (myr) calcium-binding protein. Frq1 belongs to the recoverin/frequenin branch of the EF-hand superfamily and regulates a yeast phosphatidylinositol 4-kinase isoform. Conformational changes in Frq1 due to N-myristoylation and Ca(2+) binding were assessed by nuclear magnetic resonance (NMR), fluorescence, and equilibrium Ca(2+)-binding measurements. For this purpose, Frq1 and myr-Frq1 were expressed in and purified from Escherichia coli. At saturation, Frq1 bound three Ca(2+) ions at independent sites, which correspond to the second, third, and fourth EF-hand motifs in the protein. Affinity of the second site (K(d) = 10 microM) was much weaker than that of the third and fourth sites (K(d) = 0.4 microM). Myr-Frq1 bound Ca(2+) with a K(d)app of 3 microM and a positive Hill coefficient (n = 1.25), suggesting that the N-myristoyl group confers some degree of cooperativity in Ca(2+) binding, as seen previously in recoverin. Both the NMR and fluorescence spectra of Frq1 exhibited very large Ca(2+)-dependent differences, indicating major conformational changes induced upon Ca(2+) binding. Nearly complete sequence-specific NMR assignments were obtained for the entire carboxy-terminal domain (residues K100-I190). Assignments were made for 20% of the residues in the amino-terminal domain; unassigned residues exhibited very broad NMR signals, most likely due to Frq1 dimerization. NMR chemical shifts and nuclear Overhauser effect (NOE) patterns of Ca(2+)-bound Frq1 were very similar to those of Ca(2+)-bound recoverin, suggesting that the overall structure of Frq1 resembles that of recoverin. A model of the three-dimensional structure of Ca(2+)-bound Frq1 is presented based on the NMR data and homology to recoverin. N-myristoylation of Frq1 had little or no effect on its NMR and fluorescence spectra, suggesting that the myristoyl moiety does not significantly alter Frq1 structure. Correspondingly, the NMR chemical shifts for the myristoyl group in both Ca(2+)-free and Ca(2+)-bound myr-Frq1 were nearly identical to those of free myristate in solution, indicating that the fatty acyl chain is solvent-exposed and not sequestered within the hydrophobic core of the protein, unlike the myristoyl group in Ca(2+)-free recoverin. Subcellular fractionation experiments showed that both the N-myristoyl group and Ca(2+)-binding contribute to the ability of Frq1 to associate with membranes. 相似文献
17.
Lipid related diseases, such as obesity, type 2 diabetes, and atherosclerosis are epidemics in developed civilizations. A common underlying factor among these syndromes is excessive subcellular accumulation of lipids such as cholesterol and triglyceride. The homeostatic events that govern these metabolites are understood to varying degrees of sophistication. We describe here the utilization of a genetically powerful model organism, budding yeast, to identify and characterize novel aspects of sterol and lipid homeostasis. 相似文献
18.
19.
20.
A cytogenetic study of the meiotic chromosomes of the budding yeast Saccharomyces cerevisiae was undertaken by high resolution epifluorescence microscopy. Condensation of chromatin into separate chromosomes takes place during prophase I. At metaphase I, there are 16 separate and distinct bivalents which are roughly classified into three groups by morphological differences and DNA content. 相似文献