首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The therapeutic problems posed by class D beta-lactamases, a family of serine enzymes that hydrolyse beta-lactam antibiotics following an acylation-deacylation mechanism, are increased by the very low level of sensitivity of these enzymes to beta-lactamase inhibitors. To gain structural and mechanistic insights to aid the design of new inhibitors, we have determined the crystal structure of OXA-13 from Pseudomonas aeruginosa in the apo form and in complex with the carbapenem meropenem. The native form consisted of a dimer displaying an overall organisation similar to that found in the closely related enzyme OXA-10. In the acyl-enzyme complex, the positioning of the antibiotic appeared to be ensured mainly by (i) the covalent acyl bond and (ii) a strong salt-bridge involving the carboxylate moiety of the drug. Comparison of the structures of OXA-13 in the apo form and in complex with meropenem revealed an unsuspected flexibility in the region of the essential serine 115 residue, with possible consequences for the catalytic properties of the enzyme. In the apo form, the Ser115 side-chain is oriented outside the active site, whereas the general base Lys70 adopts a conformation that seems to be incompatible with the activation of the catalytic water molecule required for the deacylation step. In the OXA-13:meropenem complex, a 3.5 A movement of the backbone of the 114-116 loop towards the side-chain of Lys70 was observed, which seems to be driven by a displacement of the neighbouring 91-104 loop and which results in the repositioning of the side-chain hydroxyl group of Ser115 toward the catalytic centre. Concomitantly, the side-chain of Lys70 is forced to curve in the direction of the deacylating water molecule, which is then strongly bound and activated by this residue. However, a distance of ca 5 A separates the catalytic water molecule from the acyl carbonyl group of meropenem, a structural feature that accounts for the inhibition of OXA-13 by this drug. Finally, the low level of penicillinase activity revealed by the kinetic analysis of OXA-13 could be related to the specific presence in position 73 of a serine residue located close to the general base Lys70, which results in a decrease of the number of hydrogen-bonding interactions stabilising the catalytic water molecule.  相似文献   

2.
Bacterial beta-lactamases hydrolyze beta-lactam antibiotics such as penicillins and cephalosporins. The TEM-type class A beta-lactamase SHV-2 is a natural variant that exhibits activity against third-generation cephalosporins normally resistant to hydrolysis by class A enzymes. SHV-2 contains a single Gly238Ser change relative to the wild-type enzyme SHV-1. Crystallographic refinement of a model including hydrogen atoms gave R and R(free) of 12.4% and 15.0% for data to 0.91 A resolution. The hydrogen atom on the O(gamma) atom of the reactive Ser70 is clearly seen for the first time, bridging to the water molecule activated by Glu166. Though hydrogen atoms on the nearby Lys73 are not seen, this observation of the Ser70 hydrogen atom and the hydrogen bonding pattern around Lys73 indicate that Lys73 is protonated. These findings support a role for the Glu166-water couple, rather than Lys73, as the general base in the deprotonation of Ser70 in the acylation process of class A beta-lactamases. Overlay of SHV-2 with SHV-1 shows a significant 1-3 A displacement in the 238-242 beta-strand-turn segment, making the beta-lactam binding site more open to newer cephalosporins with large C7 substituents and thereby expanding the substrate spectrum of the variant enzyme. The OH group of the buried Ser238 side-chain hydrogen bonds to the main-chain CO of Asn170 on the Omega loop, that is unaltered in position relative to SHV-1. This structural role for Ser238 in protein-protein binding makes less likely its hydrogen bonding to oximino cephalosporins such as cefotaxime or ceftazidime.  相似文献   

3.
A series of aryl and arylmethyl beta-aryl-beta-ketophosphonates have been prepared as potential beta-lactamase inhibitors. These compounds, as fast, reversible, competitive inhibitors, were most effective (micromolar K(i) values) against the class D OXA-1 beta-lactamase but had less activity against the OXA-10 enzyme. They were also quite effective against the class C beta-lactamase of Enterobacter cloacae P99 but less so against the class A TEM-2 enzyme. Reduction of the keto group to form the corresponding beta-hydroxyphosphonates led to reduced inhibitory activity. Molecular modeling, based on the OXA-1 crystal structure, suggested interaction of the aryl groups with the hydrophobic elements of the enzyme's active site and polar interaction of the keto and phosphonate groups with the active site residues Ser 115, Lys 212 and Thr 213 and with the non-conserved Ser 258. Analysis of binding free energies showed that the beta-aryl and phosphonate ester aryl groups interacted cooperatively within the OXA-1 active site. Overall, the results suggest that quite effective inhibitors of class C and some class D beta-lactamases could be designed, based on the beta-ketophosphonate platform.  相似文献   

4.
Crystallographic studies of the complex between beta-lactamase and clavulanate reveal a structure of two acyl-enzymes with covalent bonds at the active site Ser70, representing two different stages of inhibitor degradation alternately occupying the active site. Models that are consistent with biochemical data are derived from the electron density map and refined at 2.2 A resolution: cis enamine, in which the carboxylate group of the clavulanate molecule makes a salt bridge with Lys234 of beta-lactamase; decarboxylated trans enamine, which is oriented away from Lys234. For both acyl-enzymes, the carbonyl oxygen atom of the ester group occupies the oxyanion hole in a manner similar to that found in inhibitor binding to serine proteases. Whereas the oxygen atom in the trans product is optimally positioned in the oxyanion hole, that of the cis product clashes with the main-chain nitrogen atom of Ser70 and the beta-carbon atom of the adjacent Ala69. In contrast to cis to trans isomerization in solution that relieves the steric strain inherent in a cis double bond, at the enzyme-inhibitor interface two additional factors play an important role. The salt bridge enhances the stability of the cis product, while the steric strain introduced by the short contacts with the protein reduces its stability.  相似文献   

5.
Sun T  Bethel CR  Bonomo RA  Knox JR 《Biochemistry》2004,43(44):14111-14117
A bacterial response to the clinical use of class A beta-lactamase inhibitors such as tazobactam and clavulanic acid is the expression of variant beta-lactamases with weaker binding affinities for these mechanism-based inhibitors. Some of these inhibitor-resistant variants contain a glycine mutation at Ser130, a conserved active site residue known to be adventitiously involved in the inhibition mechanism. The crystallographic structure of a complex of tazobactam with the Ser130Gly variant of the class A SHV-1 beta-lactamase has been determined to 1.8 A resolution. Two reaction intermediates are observed. The primary intermediate is an acyclic species bound to the reactive Ser70. It is poorly primed for catalytic hydrolysis because its ester carbonyl group is completely displaced from the enzyme's oxyanion hole. A smaller fraction of the enzyme contains a Ser70-bound aldehyde resulting from hydrolytic loss of the triazoyl-sulfinyl amino acid moiety from the primary species. This first structure of a class A beta-lactamase lacking Ser130, the side chain of which functions in beta-lactam binding and possibly in catalysis, gives crystallographic evidence that the acylation step of beta-lactam turnover can occur without Ser130. Unexpectedly, the crystal structure of the uncomplexed Ser130Gly enzyme, also determined to 1.8 A resolution, shows that a critical Glu166-activated water molecule is missing from the catalytic site. Comparison of this uncomplexed variant with the wild-type structure reveals that Ser130 is required for orienting the side chain of Ser70 and ensuring the hydrogen bonding of Ser70 to both Lys73 and the catalytic water molecule.  相似文献   

6.
The OXA-1 beta-lactamase is one of the few class D enzymes that has an aspartate residue at position 66, a position that is proximal to the active-site residue Ser(67). In class A beta-lactamases, such as TEM-1 and SHV-1, residues adjacent to the active-site serine residue play a crucial role in inhibitor resistance and substrate selectivity. To probe the role of Asp(66) in substrate affinity and catalysis, we performed site-saturation mutagenesis at this position. Ampicillin MIC (minimum inhibitory concentration) values for the full set of Asp(66) mutants expressed in Escherichia coli DH10B ranged from < or =8 microg/ml for cysteine, proline and the basic amino acids to > or =256 microg/ml for asparagine, leucine and the wild-type aspartate. Replacement of aspartic acid by asparagine at position 66 also led to a moderate enhancement of extended-spectrum cephalosporin resistance. OXA-1 shares with other class D enzymes a carboxylated residue, Lys(70), that acts as a general base in the catalytic mechanism. The addition of 25 mM bicarbonate to Luria-Bertani-broth agar resulted in a > or =16-fold increase in MICs for most OXA-1 variants with amino acid replacements at position 66 when expressed in E. coli. Because Asp(66) forms hydrogen bonds with several other residues in the OXA-1 active site, we propose that this residue plays a role in stabilizing the CO2 bound to Lys(70) and thereby profoundly affects substrate turnover.  相似文献   

7.
Chen CC  Herzberg O 《Biochemistry》2001,40(8):2351-2358
The serine-beta-lactamases hydrolyze beta-lactam antibiotics in a reaction that proceeds via an acyl-enzyme intermediate. The double mutation, E166D:N170Q, of the class A enzyme from Staphylococcus aureus results in a protein incapable of deacylation. The crystal structure of this beta-lactamase, determined at 2.3 A resolution, shows that except for the mutation sites, the structure is very similar to that of the native protein. The crystal structures of two acyl-enzyme adducts, one with benzylpenicillin and the other with cephaloridine, have been determined at 1.76 and 1.86 A resolution, respectively. Both acyl-enzymes show similar key features, with the carbonyl carbon atom of the cleaved beta-lactam bond covalently bound to the side chain of the active site Ser70, and the carbonyl oxygen atom in an oxyanion hole. The thiadolizine ring of the cleaved penicillin is located in a slightly different position than the dihydrothiazine ring of cephaloridine. Consequently, the carboxylate moieties attached to the rings form different sets of interactions. The carboxylate group of benzylpenicillin interacts with the side chain of Gln237. The carboxylate group of cephaloridine is located between Arg244 and Lys234 side chains and also interacts with Ser235 hydroxyl group. The interactions of the cephaloridine resemble those seen in the structure of the acyl-enzyme of beta-lactamase from Escherichia coli with benzylpenicillin. The side chains attached to the cleaved beta-lactam rings of benzylpenicillin and cephaloridine are located in a similar position, which is different than the position observed in the E. coli benzylpenicillin acyl-enzyme complex. The three modes of binding do not show a trend that explains the preference for benzylpenicillin over cephaloridine in the class A beta-lactamases. Rather, the conformational variation arises because cleavage of the beta-lactam bond provides additional flexibility not available when the fused rings are intact. The structural information suggests that specificity is determined prior to the cleavage of the beta-lactam ring, when the rigid fused rings of benzylpenicillin and cephaloridine each form different interactions with the active site.  相似文献   

8.
9.
A class C beta-lactamase from a clinical isolate of Enterobacter cloacae strain GC1 with improved hydrolytic activity for oxyimino beta-lactam antibiotics has been analyzed by X-ray crystallography to 1.8 A resolution. Relative to the wild-type P99 beta-lactamase, this natural mutant contains a highly unique tandem repeat Ala211-Val212-Arg213 [Nugaka et al. (1995) J. Biol. Chem. 270, 5729-5735]. The 39.4 kDa chromosomal beta-lactamase crystallizes from poly(ethylene glycol) 8000 in potassium phosphate in space group P2(1)2(1)2 with cell dimensions a = 78.0 A, b = 69.5 A, and c = 63.1 A. The crystal structure was solved by the molecular replacement method, and the model has been refined to an R-factor of 0.20 for all nonzero data from 8 to 1.8 A. Deviations of model bonds and angles from ideal values are 0.008 A and 1.4 degrees, respectively. Overlay of alpha-carbon atoms in the GC1 and P99 beta-lactamases results in an rms deviation of 0.6 A. Largest deviations occur in a loop containing Gln120 and in the Omega loop region (200-218) where the three residues 213-215 are disordered. Possibly as a result of this disorder, the width of the opening to the substrate binding cavity, as measured from the 318-324 beta-strand to two loops containing Gln120 and Tyr150 on the other side, is 0.6-1.4 A wider than in P99. It is suggested that conformational flexibility in the expanded Omega loop, and its influence on adjacent protein structure, may facilitate hydrolysis of oxyimino beta-lactams by making the acyl intermediate more open to attack by water. Nevertheless, backbone atoms in core catalytic site residues Ser64, Lys67, Tyr150, Asn152, Lys318, and Ser321 deviate only 0.4 A (rmsd) from atoms in P99. A rotation of a potential catalytic base, Tyr150, relative to P99 at pH 8, is consistent with the requirement for a lower than normal pK(a) for this residue.  相似文献   

10.
The clinically used inhibitors tazobactam and sulbactam are effective in the inhibition of activity of class A beta-lactamases, but not for class D beta-lactamases. The two inhibitors exhibit a complex multistep profile for their chemistry of inhibition with class A beta-lactamases. To compare the inhibition profiles for class A and D enzymes, the reactions were investigated within OXA-10 beta-lactamase (a class D enzyme) crystals using a Raman microscope. The favored reaction pathway appears to be distinctly different from that for class A beta-lactamases. In contrast to the case of class A enzymes that favor the formation of a key enamine species, the OXA-10 enzyme forms an alpha,beta-unsaturated acrylate (acid or ester). Quantum mechanical calculations support the likely product as the adduct of Ser115 to the acrylate. Few enamine-like species are formed by sulbactam or tazobactam with this enzyme. Taken together, our results show that the facile conversion of the initial imine, formed upon acylation of the active site Ser67, to the cis- and/or trans-enamine is disfavored. Instead, there is a significant population of the imine that could either experience cross-linking to a second nucleophile (e.g., Ser115) or give rise to the alpha,beta-unsaturated product and permanent inhibition. Alternatively, the imine can undergo hydrolysis to regenerate the catalytically active OXA-10 enzyme. This last process is the dominant one for class D beta-lactamases since the enzyme is not effectively inhibited. In contrast to sulbactam and tazobactam, the reactions between oxacillin or 6alpha-hydroxyisopropylpenicillinate (both substrates) and OXA-10 beta-lactamase appear much less complex. These compounds lead to a single acyl-enzyme species, the presence of which was confirmed by Raman and MALDI-TOF experiments.  相似文献   

11.
β-Lactamases are bacterial enzymes that act as a bacterial defense system against β-lactam antibiotics. β-Lactamase cleaves the β-lactam ring of the antibiotic by a two step mechanism involving acylation and deacylation steps. Although class C β-lactamases have been investigated extensively, the details of their mechanism of action are not well understood at the molecular level. In this study, we investigated the mechanism of the acylation step of class C β-lactamase using pKa calculations, molecular dynamics (MD) simulations and quantum mechanical (QM) calculations. Serine64 (Ser64) is an active site residue that attacks the β-lactam ring. In this study, we considered three possible scenarios for activation of the nucleophile Ser64, where the activation base is (1) Tyrosine150 (Tyr150), (2) Lysine67 (Lys67), or (3) substrate. From the pKa calculation, we found that Tyr150 and Lys67 are likely to remain in their protonated states in the pre-covalent complex between the enzyme and substrate, although their role as activator would require them to be in the deprotonated state. It was found that the carboxylate group of the substrate remained close to Ser64 for most of the simulation. The energy barrier for hydrogen abstraction from Ser64 by the substrate was calculated quantum mechanically using a large truncated model of the enzyme active site and found to be close to the experimental energy barrier, which suggests that the substrate can initiate the acylation mechanism in class C β-lactamase.  相似文献   

12.
Díaz N  Sordo TL  Suárez D 《Biochemistry》2005,44(9):3225-3240
Herein, we present results from molecular dynamics simulations of the DD-transpeptidase/penicillin-binding protein from Streptomyces K15 and its Michaelis complex with benzylpenicillin. For the apo-enzyme, six different configurations of the active site were modeled in aqueous solution and their relative stabilities were estimated by means of quantum mechanical energy calculations. The energetically most stable configuration has a neutral Lys(213) residue. In this configuration, the nucleophilic Ser(35) hydroxyl group interchanges with a water molecule in the "oxy-anion hole" and the Lys(38)/Lys(213) ammonium/amino groups are connected through the Ser(96) hydroxyl group. Subsequently, the enzyme-penicillin complexes corresponding to the four most stable configurations of the apo-enzyme were modeled. In the presence of the beta-lactam antibiotic, the configuration with a neutral Lys(38) residue is favored energetically and shows the best orientation for nucleophilic attack. In addition, a very stable contact between the Ser(35) hydroxyl group and the neutral amino group of Lys(38) supports the assignation of Lys(38) as the base catalyst for the acylation step. Finally, some mechanistic implications of enzyme-inhibitor contacts involving the benzylpenicillin carboxylate group are also discussed.  相似文献   

13.
The 3D structures of complexes between the hydroxynitrile lyase from Hevea brasiliensis (Hb-HNL) and several substrate and/or inhibitor molecules, including trichloracetaldehyde, hexafluoracetone, acetone, and rhodanide, were determined by X-ray crystallography. The complex with trichloracetaldehyde showed a covalent linkage between the protein and the inhibitor, which had apparently resulted from nucleophilic attack of the catalytic Ser80-Ogamma. All other complexes showed the substrate or inhibitor molecule merely hydrogen bonded to the protein. In addition, the native crystal structure of Hb-HNL was redetermined at cryo-temperature and at room temperature, eliminating previous uncertainties concerning residual electron density within the active site, and leading to the observation of two conserved water molecules. One of them was found to be conserved in all complex structures and appears to have mainly structural significance. The other water molecule is conserved in all structures except for the complex with rhodanide; it is hydrogen bonded to the imidazole of the catalytic His235 and appears to affect the Hb-HNL catalyzed reaction. The observed 3D structural data suggest implications for the enzyme mechanism. It appears that the enzyme-catalyzed cyanohydrin formation is unlikely to proceed via a hemiacetal or hemiketal intermediate covalently attached to the enzyme, despite the observation of such an intermediate for the complex with trichloracetaldehyde. Instead, the data are consistent with a mechanism where the incoming substrate is activated by hydrogen bonding with its carbonyl oxygen to the Ser80 and Thr11 hydroxy groups. A hydrogen cyanide molecule subsequently replaces a water molecule and is deprotonated presumably by the His235 base. Deprotonation is facilitated by the proximity of the positive charge of the Lys236 side chain.  相似文献   

14.
The hydrolysis of beta-lactam antibiotics by the serine-beta-lactamases proceeds via an acyl-enzyme intermediate. In the class A enzymes, a key catalytic residue, Glu166, activates a water molecule for nucleophilic attack on the acyl-enzyme intermediate. The active site architecture raises the possibility that the location of the catalytic carboxylate group may be shifted while still maintaining close proximity to the hydrolytic water molecule. A double mutant of the Staphylococcus aureus PC1 beta-lactamase, E166Q:N170D, was produced, with the carboxylate group shifted to position 170 of the polypeptide chain. A mutant protein, E166Q, without a carboxylate group and with abolished deacylation, was produced as a control. The kinetics of the two mutant proteins have been analyzed and the crystal structure of the double mutant protein has been determined. The kinetic data confirmed that deacylation was restored in E166Q:N170D beta-lactamase, albeit not to the level of the wild-type enzyme. In addition, the kinetics of the double mutant enzyme follows progressive inactivation, characterized by initial fast rates and final slower rates. The addition of ammonium sulfate increases the size of the initial burst, consistent with stabilization of the active form of the enzyme by salt. The crystal structure reveals that the overall fold of the E166Q:N170D enzyme is similar to that of native beta-lactamase. However, high crystallographic temperature factors are associated with the ohm-loop region and some of the side chains, including Asp170, are partially or completely disordered. The structure provides a rationale for the progressive inactivation of the Asp170-containing mutant, suggesting that the flexible ohm-loop may be readily perturbed by the substrate such that Asp170's carboxylate group is not always poised to facilitate hydrolysis.  相似文献   

15.
The metallo-beta-lactamases require divalent cations such as zinc or cadmium for hydrolyzing the amide bond of beta-lactam antibiotics. The crystal structure of the Zn2+ -bound enzyme from Bacteroides fragilis contains a binuclear zinc center in the active site. A hydroxide, coordinated to both zinc atoms, is proposed as the moiety that mounts the nucleophilic attack on the carbonyl carbon atom of the beta-lactam bond of the substrate. It was previously reported that the replacement of the active site Cys181 by a serine residue severely impaired catalysis while atomic absorption measurements indicated that binding of the two zinc ions remained intact. Contradicting data emerge from recent mass spectrometry results, which show that only a single zinc ion binds to the C181S metallo-beta-lactamase. In the current study, the C181S mutant enzyme was examined at the atomic level by determining the crystal structure at 2.6 A resolution. The overall structure of the mutant enzyme is the same as that of the wild-type enzyme. At the mutation site, the side chain of Ser181 occupies the same position as that of the side chain of Cys181 in the wild-type protein. One zinc ion, Zn1, is present in the crystal structure; however, the site of the second zinc ion, Zn2 is unoccupied. A water molecule is associated with Zn1, reminiscent of the hydroxide seen in the structure of the wild-type enzyme but farther from the metal. The position of the water molecule is off the plane of the carboxylate group of Asp103; therefore, the water molecule may be less nucleophilic than a water molecule which is coplanar with the carboxylate group.  相似文献   

16.
Majumdar S  Adediran SA  Nukaga M  Pratt RF 《Biochemistry》2005,44(49):16121-16129
The production of beta-lactamases is an important component of bacterial resistance to beta-lactam antibiotics. These enzymes catalyze the hydrolytic destruction of beta-lactams. The class D serine beta-lactamases have, in recent years, been expanding in sequence space and substrate spectrum under the challenge of currently dispensed beta-lactams. Further, the beta-lactamase inhibitors now employed in medicine are not generally effective against class D enzymes. In this paper, we show that diaroyl phosphates are very effective inhibitory substrates of these enzymes. Reaction of the OXA-1 beta-lactamase, a typical class D enzyme, with diaroyl phosphates involves acylation of the active site with departure of an aroyl phosphate leaving group. The interaction of the latter with polar active-site residues is most likely responsible for the general reactivity of these molecules with the enzyme. The rate of acylation of the OXA-1 beta-lactamase by diaroyl phosphates is not greatly affected by the electronic effects of substituents, probably because of compensation phenomena, but is greatly enhanced by hydrophobic substituents; the second-order rate constant for acylation of the OXA-1 beta-lactamase by bis(4-phenylbenzoyl) phosphate, for example, is 1.1 x 10(7) s(-)(1) M(-)(1). This acylation reactivity correlates with the hydrophobic nature of the beta-lactam side-chain binding site of class D beta-lactamases. Deacylation of the enzyme is slow, e.g., 1.24 x 10(-)(3) s(-)(1) for the above-mentioned phosphate and directly influenced by the electronic effects of substituents. The effective steady-state inhibition constants, K(i), are nanomolar, e.g., 0.11 nM for the above-mentioned phosphate. The diaroyl phosphates, which have now been shown to be inhibitory substrates of all serine beta-lactamases, represent an intriguing new platform for the design of beta-lactamase inhibitors.  相似文献   

17.
The recent availability of the SHV-1 beta-lactamase crystal structure provides a framework for the understanding of the functional role of amino acid residues in this enzyme. To that end, we have constructed by site-directed mutagenesis 18 variants of the SHV beta-lactamase: an extended spectrum group: Gly238Ser, Gly238Ser-Glu240Lys, Asp104Lys-Gly238Ser, Asp104Lys-Thr235Ser-Gly238Ser, Asp179Asn, Arg164His, and Arg164Ser; an inhibitor resistant group: Arg244Ser, Met69Ile, Met69Leu, and Ser130Gly; mutants that are synergistic with those that confer resistance to oxyimino-cephalosporins: Asp104Glu, Asp104Lys, Glu240Lys, and Glu240Gln; and structurally conserved mutants: Thr235Ser, Thr235Ala and Glu166Ala. Among the extended spectrum group the combination of high-level ampicillin and cephalosporin resistance was demonstrated in the Escherichia coli DH10B strains possessing the Gly238Ser mutation: Gly238Ser, Gly238Ser-Glu240Lys, Asp104Lys-Gly238Ser, and Asp104Lys-Thr235Ser-Gly238Ser. Of the inhibitor resistant group, the Ser130Gly mutant was the most resistant to ampicillin/clavulanate. Using a polyclonal anti-SHV antibody, we assayed steady state protein expression levels of the SHV beta-lactamase variants. Mutants with the Gly238Ser substitution were among the most highly expressed. The Gly238Ser substitution resulted in an improved relative k(cat)/K(m) value for cephaloridine and oxyimino-cephalosporins compared to SHV-1 and Met69Ile. In our comparative survey, the Gly238Ser and extended spectrum beta-lactamase variants containing this substitution exhibited the greatest substrate versatility against penicillins and cephalosporins and greatest protein expression. This defines a unique role of Gly238Ser in broad-spectrum beta-lactam resistance in this family of class A beta-lactamases.  相似文献   

18.
Abstract

Human ghrelin is a peptide hormone of 28 aminoacid residues, in which the Ser3 is modified by an octanoyl group. Ghrelin has a major role in the energy metabolism of the human body stimulating growth hormone release as well as food intake. Here we perform molecular dynamics simulations in explicit water and in a DMPC-lipid bilayer/water system in order to structurally characterize this highly flexible peptide and its lipid binding properties. We find a loop structure with residues Glu17 to Lys 20 in the bending region and a short α-helix from residues Pro7 to Glu13. The presence of a lipid membrane does not influence these structural features, but reduces the overall flexibility of the molecule as revealed by reduced root mean square fluctuations of the atom coordinates. The octanoyl-side chain does not insert into the lipid membrane but points into the water phase. The peptide binds to the lipid membrane with its bending region involving residues Arg15, Lys16, Glu17, and Ser18. The implications of these results for the binding pocket of the ghrelin receptor are discussed.  相似文献   

19.
Human ghrelin is a peptide hormone of 28 aminoacid residues, in which the Ser3 is modified by an octanoyl group. Ghrelin has a major role in the energy metabolism of the human body stimulating growth hormone release as well as food intake. Here we perform molecular dynamics simulations in explicit water and in a DMPC-lipid bilayer/water system in order to structurally characterize this highly flexible peptide and its lipid binding properties. We find a loop structure with residues Glu17 to Lys 20 in the bending region and a short alpha-helix from residues Pro7 to Glu13. The presence of a lipid membrane does not influence these structural features, but reduces the overall flexibility of the molecule as revealed by reduced root mean square fluctuations of the atom coordinates. The octanoyl-side chain does not insert into the lipid membrane but points into the water phase. The peptide binds to the lipid membrane with its bending region involving residues Arg15, Lys16, Glu17, and Ser18. The implications of these results for the binding pocket of the ghrelin receptor are discussed.  相似文献   

20.
Beta-lactamases are responsible for resistance to penicillins and related beta-lactam compounds. Despite numerous studies, the identity of the general base involved in the acylation step is still unclear. It has been proposed, on the basis of a previous pKa calculation and analysis of structural data, that the unprotonated Lys73 in the active site could act as the general base. Using a continuum electrostatic model with an improved treatment of the multiple titration site problem, we calculated the pKa values of all titratable residues in the substrate-free TEM-1 and Bacillus licheniformis class A beta-lactamases. The pKa of Lys73 in both enzymes was computed to be above 10, in good agreement with recent experimental data on the TEM-1 beta-lactamase, but inconsistent with the proposal that Lys73 acts as the general base. Even when the closest titratable residue, Glu166, is mutated to a neutral residue, the predicted downward shift of the pKa of Lys73 shows that it is unlikely to act as a proton abstractor in either enzyme. These results support a mechanism in which the proton of the active Ser70 is transferred to the carboxylate group of Glu166.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号