首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
We investigated aquatic macrophytes, water quality, and phytoplankton biomass and species composition in three shallow lakes with different levels of vegetation cover and nutrient concentration in Kushiro Moor, during August 2000. Trapa japonica can live in a wide range of nutrient levels. This species forms an environment with a steeper extinction of light, higher concentrations of dissolved organic carbon (DOC), lower concentrations of dissolved oxygen (DO) near the bottom, and lower concentrations of nitrate+nitrite and soluble reactive phosphorus (SRP) than other vegetation types. The pH was much higher in a Polygonum amphibium community, and the DO near the bottom did not decrease compared to a T.japonica community in the summer. The relationship between chlorophyll a and the limiting nutrient (total phosphorus (TP) when total nitrogen (TN):TPis 10 and TN/10 when TN:TP is <10) significantly differed between lakes with and without submerged vegetation. The chlorophyll a concentrations at a given nutrient level were significantly lower in water with submerged macrophytes than in water without them. Correspondence analysis showed that the difference in phytoplankton community structure across sites was largely due to the presence or absence of submerged macrophytes, and the ordination of phytoplankton species in the lakes with submerged macrophytes is best explained by environmental gradients of TN, chlorophyll, pH and SRP.  相似文献   

2.
1. Using data from 71, mainly shallow (an average mean depth of 3 m), Danish lakes with contrasting total phosphorus concentrations (summer mean 0.02–1.0 mg P L?l), we describe how species richness, biodiversity and trophic structure change along a total phosphorus (TP) gradient divided into five TP classes (class 1–5: <0.05, 0.05–0.1, 0.1–0.2, 0.2–0.4,> 0.4 mg P L?1).
2. With increasing TP, a significant decline was observed in the species richness of zooplankton and submerged macrophytes, while for fish, phytoplankton and floating‐leaved macrophytes, species richness was unimodally related to TP, all peaking at 0.1–0.4 mg P L?1. The Shannon–Wiener and the Hurlbert probability of inter‐specific encounter (PIE) diversity indices showed significant unimodal relationships to TP for zooplankton, phytoplankton and fish. Mean depth also contributed positively to the relationship for rotifers, phytoplankton and fish.
3. At low nutrient concentrations, piscivorous fish (particularly perch, Perca fluviatilis) were abundant and the biomass ratio of piscivores to plankti‐benthivorous cyprinids was high and the density of cyprinids low. Concurrently, the zooplankton was dominated by large‐bodied forms and the biomass ratio of zooplankton to phytoplankton and the calculated grazing pressure on phytoplankton were high. Phytoplankton biomass was low and submerged macrophyte abundance high.
4. With increasing TP, a major shift occurred in trophic structure. Catches of cyprinids in multiple mesh size gill nets increased 10‐fold from class 1 to class 5 and the weight ratio of piscivores to planktivores decreased from 0.6 in class 1 to 0.10–0.15 in classes 3–5. In addition, the mean body weight of dominant cyprinids (roach, Rutilus rutilus, and bream, Abramis brama) decreased two–threefold. Simultaneously, small cladocerans gradually became more important, and among copepods, a shift occurred from calanoid to cyclopoids. Mean body weight of cladocerans decreased from 5.1 μg in class 1 to 1.5 μg in class 5, and the biomass ratio of zooplankton to phytoplankton from 0.46 in class 1 to 0.08–0.15 in classes 3–5. Conversely, phytoplankton biomass and chlorophyll a increased 15‐fold from class 1 to 5 and submerged macrophytes disappeared from most lakes.
5. The suggestion that fish have a significant structuring role in eutrophic lakes is supported by data from three lakes in which major changes in the abundance of planktivorous fish occurred following fish kill or fish manipulation. In these lakes, studied for 8 years, a reduction in planktivores resulted in a major increase in cladoceran mean size and in the biomass ratio of zooplankton to phytoplankton, while chlorophyll a declined substantially. In comparison, no significant changes were observed in 33 ‘control’ lakes studied during the same period.  相似文献   

3.
Song Biyu 《Hydrobiologia》2000,427(1):143-153
The species richness and seasonal development of planktonic ciliates were studied and compared in two shallow mesotrophic lakes, one covered with dense submerged macrophytes, the other macrophyte poor. Considerable differences in ciliate species composition, dominant taxa, abundance and biomass were observed. Ciliates were much more species rich in the macrophyte-rich lake, while they were more abundant numerically in the macrophyte-poor lake. Altogether, 96 species, included in 53 genera, 14 orders were identified. Among them, 80 species (included in 45 genera, 14 orders) observed from the macrophyte-rich lake, against 49 species (36 genera, 12 orders) were from the macrophyte-poor lake. In the macrophyte-rich lake, the mean abundance and biomass were 13.5 cells ml-1 and 547.10 g l-1 f.w.; abundance and biomass were higher in spring and winter; naked oligotrichs dominated total ciliate abundance and Peritrichida dominated the biomass. In the macrophyte-poor lake, ciliate mean abundance and biomass were 35.5 cells ml-1 and 953.39 g l-1 f.w.; abundances peaked in autumn; Scuticociliates dominated the abundance and Tintinnids dominated the biomass. Possible causes for the observed differences are discussed.  相似文献   

4.
1. Fish play a key role in the functioning of temperate shallow lakes by affecting nutrient exchange among habitats as well as lake trophic structure and dynamics. These processes are, in turn, strongly influenced by the abundance of submerged macrophytes, because piscivorous fish are often abundant at high macrophyte density. Whether this applies to warmer climates as well is virtually unknown. 2. To compare fish community structure and dynamics in plant beds between subtropical and temperate shallow lakes we conducted experiments with artificial submerged and free‐floating plant beds in a set of 10 shallow lakes in Uruguay (30°–35°S) and Denmark (55°–57°N), paired along a gradient of limnological characteristics. 3. The differences between regions were more pronounced than differences attributable to trophic state. The subtropical littoral fish communities were characterised by higher species richness, higher densities, higher biomass, higher trophic diversity (with predominance of omnivores and lack of true piscivores) and smaller body size than in the comparable temperate lakes. On average, fish densities were 93 ind. m−2 (±10 SE) in the subtropical and 10 ind. m−2 (±2 SE) in the temperate lakes. We found a twofold higher total fish biomass per unit of total phosphorus in the subtropical than in the temperate lakes, and as fish size is smaller in the former, the implication is that more energy reaches the littoral zone fish community of the warmer lakes. 4. Plant architecture affected the spatial distribution of fish within each climate zone. Thus, in the temperate zone fish exhibited higher densities among the artificial free‐floating plants while subtropical fish were denser in the artificial submerged plant beds. These patterns appeared in most lakes, regardless of water turbidity or trophic state. 5. The subtropical littoral fish communities resembled the fish communities typically occurring in temperate eutrophic and hypertrophic lakes. Our results add to the growing evidence that climate warming may lead to more complex and omnivory‐dominated food webs and higher density and dominance of smaller‐sized fish. This type of community structure may lead to a weakening of the trophic cascading effects commonly observed in temperate shallow lakes and a higher risk of eutrophication.  相似文献   

5.
Hugo Coops  Roel W. Doef 《Hydrobiologia》1996,340(1-3):115-120
Submerged macrophyte vegetation in two shallow lakes in the Netherlands, Lake Veluwemeer and Lake Wolderwijd, has been affected by eutrophication in the late 1960's and 1970's. Recent changes in the vegetation occurred in the period following lake restoration measures. Between 1987 and 1993, the dominance of Potamogeton pectinatus decreased, while Charophyte meadows expanded over the same time interval. The pattern of change of the dominant macrophyte species might result from changes in the underwater light climate. Seasonally persistent clear water patches associated with the Chara meadows have been observed in the last few years. The interaction between submerged macrophyte vegetation succession and water transparency in the lakes is discussed.  相似文献   

6.
7.
J. Clayton  T. Edwards 《Hydrobiologia》2006,570(1):147-151
Submerged aquatic plants can act as measurable indicators of ecological conditions occurring within a lake, and they need only be monitored once a year or even less. Historically in New Zealand there has been a reliance on water quality sampling for monitoring the health of lakes and these methods can be complex and costly involving multiple site visits and chemical analysis of water samples. As a result, lake monitoring has been irregular, or not done at all. LakeSPI or ‘Lake Submerged Plant Indicators’ is a new management tool that uses aquatic plants to monitor and assess ecological condition in a wide range of lake types. The method generates three indices: a Native Condition Index (extent and diversity of native plants) and an Invasive Condition Index (extent and impact of alien weeds), which are generated from scores allocated to carefully selected vegetation features; and an integrated LakeSPI Index which is largely derived from components of the other two indices and provides an overall indication of lake ecological condition. The LakeSPI method can be used to assess the status of lakes and monitor trends occurring within them, and it is expected that the use of LakeSPI will facilitate regular monitoring and reporting on a much wider range of lakes than has been possible using traditional water quality methods. By utilizing submerged aquatic plants the method focuses on lake littoral margins where there is greatest public interaction and interest.  相似文献   

8.
Sabine Hilt 《Hydrobiologia》2006,564(1):95-99
In shallow lakes, submerged macrophytes contribute to the stabilization of the clear water state. If lost, a number of mechanisms prevent re-colonization. Lake Müggelsee (730 ha) lost its submerged vegetation due to increasing eutrophication and switched to phytoplankton dominance in 1970. After the reduction of nutrient loading in 1990, Potamogeton pectinatus L. started re-colonizing the lake. During the following years, it spread at a mean rate of 2.5 ha per year to all available areas <80 cm depth. Between 1993 and 1999, decreasing maximum biomass indicated hampered growth. Exclosure experiments revealed that herbivory reduced the aboveground biomass by more than 90%. Both waterfowl and fish were found to contribute to the grazing pressure despite a low abundance of the known herbivorous fish species and waterfowl in spring and summer. Protection of stands against grazing resulted in higher biomass of shoots, whereas shoot and tuber density did not change. Both shading by phytoplankton and periphyton, as well as grazing pressure, prevented the submerged vegetation of Lake Müggelsee from developing back to a dense zone that contributed to the reduction of turbidity.  相似文献   

9.
In Mexico, as in many other subtropical and tropical countries, there has been a recent trend towards stocking non-native carp (Cyprinus carpio) in lakes and ponds as a source of food in rural areas. However, the results of a study in a series of small(1–8 ha.), shallow (<2 m), semi-natural ponds in Acambay, a high altitude valley in the basin of the Lerma river in the volcanic belt in central west Mexico, illustrate that the stocking of carp over a threshold value may have a detrimental ecological impact at several trophic levels. Ponds with carp tended to be turbid with high levels of suspended solids, and with few rooted macrophytes and epibenthic invertebrates. In contrast, ponds without carp had clear water and abundant rooted macrophytes and associated invertebrates, particularly gastropod molluscs. The direct uprooting of macrophytes by benthic foraging carp appeared to be the most important mechanism in switching the ponds from a clear macrophyte-dominated to a turbid state. The subtropical study ponds thus appear to confirm the alternative stable-state hypothesis developed intemperate lakes, although the importance of benthic rather than pelagic interactions was emphasised. The implications of stocking carp for native fauna of high intrinsic conservation value and as a food supply for local people are outlined. This revised version was published online in July 2006 with corrections to the Cover Date.  相似文献   

10.
Jeppesen  E.  Jensen  J. P.  Kristensen  P.  Søndergaard  M.  Mortensen  E.  Sortkjær  O.  Olrik  K. 《Hydrobiologia》1990,(1):219-227
In order to evaluate short-term and long-term effects of fish manipulation in shallow, eutrophic lakes, empirical studies on relationships between lake water concentration of total phosphorus (P) and the occurrence of phytoplankton, submerged macrophytes and fish in Danish lakes are combined with results from three whole-lake fish manipulation experiments. After removal of less than 80 per cent of the planktivorous fish stock a short-term trophic cascade was obtained in the nutrient regimes, where large cyanobacteria were not strongly dominant and persistent. In shallow Danish lakes cyanobacteria were the most often dominating phytoplankton class in the P-range between 200 and 1 000μg P l−1. Long-term effects are suggested to be closely related to the ability of the lake to establish a permanent and wide distribution of submerged macrophytes and to create self-perpetuating increases in the ratio of piscivorous to planktivorous fish. The maximum depth at which submerged macrophytes occurred, decreased exponentially with increasing P concentration. Submerged macrophytes were absent in lakes>10 ha and with P levels above 250–300μg P l−1, but still abundant in some lakes<3 ha at 650μg P l−1. Lakes with high cover of submerged macrophytes showed higher transparencies than lakes with low cover aboveca. 50μg P l−1. These results support the alternative stable state hypothesis (clear or turbid water stages). Planktivorous fish>10 cm numerically contributed more than 80 per cent of the total planktivorous and piscivorous fish (>10 cm) in the pelagical of lakes with concentrations above 100μg P l−1. Below this threshold level the proportion of planktivores decreased markedly toca. 50 per cent at 22μg P l−1. The extent of the shift in depth colonization of submerged macrophytes and fish stock composition in the three whole-lake fish manipulations follows closely the predictions from the relationships derived from the empirical study. We conclude that a long-term effect of a reduction in the density of planktivorous fish can be expected only when the external phosphorus loading is reduced to below 0.5–2.0 g m−2 y−1. This loading is equivalent to an in-lake summer concentration below 80–150μg P l−1. Furthermore, fish manipulation as a restoration tool seems most efficient in shallow lakes.  相似文献   

11.
1. Using 5‐m2 field enclosures, we examined the effects of Elodea canadensis on zooplankton communities and on the trophic cascade caused by 4–5 year old (approximately 16 cm) roach. We also tested the hypothesis that roach in Elodea beds use variable food resources as their diet, mainly benthic and epiphytic macroinvertebrates, and feed less efficiently on zooplankton. Switching of the prey preference stabilises the zooplankton community and, in turn, also the fluctuation of algal biomass. The factorial design of the experiment included three levels of Elodea (no‐, sparse‐ and dense‐Elodea) and two levels of fish (present and absent). 2. During the 4‐week experiment, the total biomass of euplanktonic zooplankton, especially that of the dominant cladoceran Daphnia longispina, decreased with increase in Elodea density. The Daphnia biomass was also reduced by roach in all the Elodea treatments. Thus, Elodea provided neither a favourable habitat nor a good refuge for Daphnia against predation by roach. 3. The electivity of roach for cladocerans was high in all the Elodea treatments. Roach were able to prey on cladocerans in Elodea beds, even when the abundance and size of these prey animals were low. In addition to cladocerans, the diet of roach consisted of macroinvertebrates and detrital/plant material. Although the biomass of macroinvertebrates increased during the experiment in all Elodea treatments, they were relatively unimportant in roach diets regardless of the density of Elodea beds. 4. Euplanktonic zooplankton species other than Daphnia were not affected by Elodea or fish and the treatments had no effects on the total clearance rate of euplanktonic zooplankton. However, the chlorophyll a concentration increased with fish in all the Elodea treatments, suggesting that fish enhanced algal growth through regeneration of nutrients. Thus, our results did not unequivocally show that Elodea hampered the trophic cascade of fish via lowered predation on grazing zooplankton. 5. In treatments with dense Elodea beds (750 g FW m?2), chlorophyll a concentration was always low suggesting that phytoplankton production was controlled by Elodea. Apparently, the top‐down control of phytoplankton biomass by zooplankton was facilitated by the macrophytes and operated simultaneously with control of phytoplankton production by Elodea.  相似文献   

12.
SUMMARY 1. The shallow ponds of the nature reserve 'De Maten' form a metacommunity, in which individual ponds are highly interconnected via a system of overflows and rivulets. This study reports on the relations between cladoceran species richness and (a) connectivity patterns and (b) local environmental variables.
2. No relation was found between local species richness and three connectivity variables or dispersal pathways.
3. Spatial configuration was related to richness, but was confounded by environmental variables for 2 of 3 years. In those 2 years, there was a significant linear relation between Secchi disc depth and species richness, suggesting an important impact of the clearwater/turbid state alternative equilibria in shallow lakes in determining cladoceran richness. Only in the year in which environmental variables were unimportant did connectivity between the ponds influence species richness.
4. These results suggest that local environmental variables related to the clearwater/turbid state alternative equilibria in shallow lakes are important in determining cladoceran species richness. Connectivity and dispersal of individuals between the different ponds only act secondarily by increasing the general species richness within a pond through dispersal from ponds with different environmental conditions.  相似文献   

13.
It has been suggested that shallow lakes in warm climates have a higher probability of being turbid, rather than macrophyte dominated, compared with lakes in cooler climates, but little field evidence exists to evaluate this hypothesis. We analyzed data from 782 lake years in different climate zones in North America, South America, and Europe. We tested if systematic differences exist in the relationship between the abundance of submerged macrophytes and environmental factors such as lake depth and nutrient levels. In the pooled dataset the proportion of lakes with substantial submerged macrophyte coverage (> 30% of the lake area) decreased in a sigmoidal way with increasing total phosphorus (TP) concentration, falling most steeply between 0.05 and 0.2 mg L−1. Substantial submerged macrophyte coverage was also rare in lakes with total nitrogen (TN) concentrations above 1–2 mg L−1, except for lakes with very low TP concentrations where macrophytes remain abundant until higher TN concentrations. The deviance reduction of logistic regression models predicting macrophyte coverage from nutrients and water depth was generally low, and notably lowest in tropical and subtropical regions (Brazil, Uruguay, and Florida), suggesting that macrophyte coverage was strongly influenced by other factors. The maximum TP concentration allowing substantial submerged macrophyte coverage was clearly higher in cold regions with more frost days. This is in agreement with other studies which found a large influence of ice cover duration on shallow lakes' ecology through partial fish kills that may improve light conditions for submerged macrophytes by cascading effects on periphyton and phytoplankton. Our findings suggest that, in regions where climatic warming is projected to lead to fewer frost days, macrophyte cover will decrease unless the nutrient levels are lowered.  相似文献   

14.
Alpha, beta and gamma are three components of species diversity. Knowing these attributes in floodplain lake phytoplankton communities is vital when selecting conservation areas. Species diversity is commonly used with other taxonomic groups, but rarely with phytoplankton. We compared the number of phytoplankton species (alpha diversity) from 21 Middle Araguaia River floodplain lakes in the 2000 and 2001 rainy and dry seasons. From these samples we estimated complete survey species richness (gamma diversity), quantified differences in species composition between lakes (beta diversity) and assessed the influence of abiotic variables on beta diversity. We recorded a total of 577 taxa. The Sjack1 estimator indicated that 62.31% of taxa were sampled in the 2000 rainy and 67.65% dry seasons, and 68.36% in the 2001 rainy and 73.5% dry seasons. In almost all seasons, alpha diversity negatively correlated with latitude. Beta diversity (β-1) was higher in high water periods, especially in 2000. This may have been caused by isolated heavy rainfall, which would have increased environmental heterogeneity and raised beta diversity. DCA showed differences in phytoplankton composition between rainy and dry seasons in 2000 and 2001, reflecting the influence of flood pulses on phytoplankton composition. The Mantel test indicated spatial distribution patterns where geographically more distant lakes had less-similar phytoplankton communities. Handling editor: J. Padisak  相似文献   

15.
1. To correctly interpret chironomid faunas for palaeoenvironmental reconstruction, it is essential that we improve our understanding of the relative influence of ecosystem variables, biotic as well as physicochemical, on chironomid larvae. To address this, we analysed the surface sediments from 39 shallow lakes (29 Norfolk, U.K., 10 Denmark) for chironomid head capsules, and 70 chironomid taxa (including Chaoborus) were identified. 2. The shallow lakes were selected over large environmental gradients of aquatic macrophytes, total phosphorus (TP) and fish communities. Redundancy analysis (RDA) identified two significant variables that explained chironomid distribution: macrophyte species richness (P < 0.001) and TP (P < 0.005). Generalised linear models (GLM) identified specific taxa that had significant relationships with both these variables. Macrophyte percentage volume infested (PVI) and species richness were significant in classifying the lake types based on chironomid communities under twinspan analysis, although other factors, notably nutrient concentrations and fish communities, were also important, illustrating the complexities of classifying shallow lake ecosystems. Lakes with plant species richness >10 all had relatively diverse (Hill’s N2) chironomid assemblages, and lakes with Hill’s N2 >10 all had TP <250 μg L−1 and total fish densities <2 fish per m2. 3. Plant density (PVI), and perhaps more importantly species richness, were primary controls on the distribution of chironomid communities within these lakes. This clearly has implications for palaeoenvironmental reconstructions using zoobenthos remains (i.e. chironomids) and suggests that they could be used to track changes in benthic/pelagic production and could be used as indicators of changing macrophyte habitat. 4. Measuring key biological gradients, in addition to physicochemical gradients, allowed the major controls on chironomid distribution to be assessed more directly, in terms of plant substrate, food availability, competition and predation pressure, rather than implying indirect mechanisms through relationships with nutrients. Many of these variables, notably macrophyte abundance and species richness, are not routinely measured in such studies, despite their importance in determining zoobenthos in temperate shallow lakes. 5. When physical, chemical and ecological gradients are considered, as is often the case with palaeo‐reconstructions rather than training sets chosen to maximise one gradient, complex relationships exist, and attempting to reconstruct a single trophic variable quantitatively may not be appropriate or reliable.  相似文献   

16.
17.
Rodrigo  María A.  Rojo  Carmen  Armengol  Xavier 《Hydrobiologia》2003,506(1-3):317-326
Hydrobiologia - A large spatial heterogeneity was detected in La Safor, a coastal area with different kinds of small and shallow water bodies. The area exhibits a sharp gradient in eutrophication...  相似文献   

18.
Habitat loss and fragmentation have highlighted the importance of monitoring remaining habitats. For megadiverse groups such as arthropods, of which many species are still being discovered, the use of higher taxonomic levels as substitutes for diversity may be a useful tool. The aim of this study was to evaluate the use of substitute taxonomic resolutions to assess the richness and composition of Laniatores harvestmen (Arachnida: Opiliones). The five resolutions selected were as follows: genus, family, subfamily, indicator taxa and intermediate resolution (combination of genus and species identification levels). In addition, we evaluated whether the diversity substitutes provide good estimates of latitudinal gradients. Nineteen Atlantic Forest sites located along a latitudinal gradient in northeastern Brazil were sampled. We recorded a total of 88 harvestmen species/morpho-species, distributed in 7 families, 15 subfamilies and 36 genera. Genus and intermediate resolution were excellent substitutes for harvestmen species richness. The efficiency differed according to the substitute resolution used. Four resolutions were adequate to replace the harvestmen composition: genus, intermediate resolution, indicator taxa, and subfamily. The number of harvestmen species recorded was significantly different between Seasonal Semideciduous Forest and Costal Atlantic Rainforest. The same relationship was also observed the same relationship was observed when we consider genus and intermediate resolution. Our results suggest the use of genus as a substitute for richness and composition of harvestmen for reducing monitoring costs and providing evaluation in a shorter time and a more practical way.  相似文献   

19.
Aim To analyse the importance of local and regional influences on the patterns of species richness in natural and man‐made lakes and to infer the impacts of human‐mediated introductions on these patterns. Location France. Methods Species occurrence data were gathered for 25 natural and 51 man‐made lakes. Analysis is based on regression models of local richness against their related regional richness and lake environmental variables. Results Local native richness was mostly controlled by the regional richness. Conversely, local total richness was mainly explained by local variables. These statements apply to both natural and man‐made lakes. Lacustrine systems displayed weak resistance to invaders. Main conclusions Species introductions have apparently contributed to saturate fish communities in these systems even if no clear negative effect on the survival of native species (i.e. species extinction) is detectable so far.  相似文献   

20.
1. Nutrient and fish manipulations in mesocosms were carried out on food‐web interactions in a Mediterranean shallow lake in south‐east Spain. Nutrients controlled biomass of phytoplankton and periphyton, while zooplankton, regulated by planktivorous fish, influenced the relative percentages of the dominant phytoplankton species. 2. Phytoplankton species diversity decreased with increasing nutrient concentration and planktivorous fish density. Cyanobacteria grew well in both turbid and clear‐water states. 3. Planktivorous fish increased concentrations of soluble reactive phosphorus (SRP). Larger zooplankters (mostly Ceriodaphnia and copepods) were significantly reduced when fish were present, whereas rotifers increased, after fish removal of cyclopoid predators and other filter feeders (cladocerans, nauplii). The greatest biomass and diversity of zooplankton was found at intermediate nutrient levels, in mesocosms without fish and in the presence of macrophytes. 4. Water level decrease improved underwater light conditions and favoured macrophyte persistence. Submerged macrophytes (Chara spp.) outcompeted algae up to an experimental nutrient loading equivalent to added concentrations of 0.06 mg L?1 PO4‐P and 0.6 mg L?1 NO3‐N, above which an exponential increase in periphyton biomass and algal turbidity caused characean biomass to decline. 5. Declining water levels during summer favoured plant‐associated rotifer species and chroococcal cyanobacteria. High densities of chroococcal cyanobacteria were related to intermediate nutrient enrichment and the presence of small zooplankton taxa, while filamentous cyanobacteria were relatively more abundant in fishless mesocosms, in which Crustacea were more abundant, and favoured by dim underwater light. 6. Benthic macroinvertebrates increased significantly at intermediate nutrient levels but there was no relationship with planktivorous fish density. 7. The thresholds of nutrient loading and in‐lake P required to avoid a turbid state and maintain submerged macrophytes were lower than those reported from temperate shallow lakes. Mediterranean shallow lakes may remain turbid with little control of zooplankton on algal biomass, as observed in tropical and subtropical lakes. Nutrient loading control and macrophyte conservation appear to be especially important in these systems to maintain high water quality.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号