首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Assimilate partitioning was studied in the common pea (Pisum sativum L.) by feeding 14CO2 to whole plants and measuring radioactivity in different organs 48 hours after labeling. Two experimental protocols were used. For the first, one reproductive node was darkened with an aluminum foil, to prevent photosynthesis during labeling. The aim was to study assimilate translocation among nodes. The second was carried out to assess any priority among sinks. Whole plants were shaded, during labeling, to reduce carbon assimilation. Various developmental stages between the onset of flowering and the final stage in seed abortion of the last pod were chosen for labeling. When all photosynthetic structures at the first reproductive node were darkened at any stage of development after the formation of the first flower, the first pod was supplied with assimilates from other nodes. In contrast, later developed pods, when photosynthetic structures at their node were darkened, received assimilates from other nodes only when they were beyond their final stage in seed abortion. Reducing illumination to 30% did not change distribution of assimilated carbon between vegetative and reproductive structures, nor among pods. It appears that the relative proportion of 14C allocated to any one pod, compared to other pods, depends on the dry weight of that pod as a proportion of the total reproductive dry weight. When the plant was growing actively, following the start of the reproductive phase until a few days before the end of flowering, the top of the plant (i.e., all the organs above the last opened flower) had a higher sink strength and a higher relative specific activity than pods, suggesting that it was a more competitive sink for assimilates. The pattern of assimilate distribution described here provides an explanation for pod and seed abortion.  相似文献   

2.
Chlorella pyrenoidosa were allowed to photosynthesize for short periods of time in the presence of 14CO2 and HTO. Analysis of tritium and 14C labeling of photosynthetic intermediate compounds showed that the T/14C ratio of glycolic acid was comparable to that of intermediate compounds of the photosynthetic carbon reduction cycle when photosynthesis was performed in nearly 100% oxygen and only slightly higher under steady-state conditions. It is concluded that formation of labeled glycolic acid as a consequence of its proposed hydrogen transport role in photosynthesis is quantitatively of limited importance compared to the net synthesis of glycolic acid from CO2.  相似文献   

3.
The objective of this study was to investigate the effect of elevated (550 ± 17 ??mol mol?1) CO2 concentration ([CO2]) on leaf ultrastructure, leaf photosynthesis and seed yield of two soybean cultivars [Glycine max (L.) Merr. cv. Zhonghuang 13 and cv. Zhonghuang 35] at the Free-Air Carbon dioxide Enrichment (FACE) experimental facility in North China. Photosynthetic acclimation occurred in soybean plants exposed to long-term elevated [CO2] and varied with cultivars and developmental stages. Photosynthetic acclimation occurred at the beginning bloom (R1) stage for both cultivars, but at the beginning seed (R5) stage only for Zhonghuang 13. No photosynthetic acclimation occurred at the beginning pod (R3) stage for either cultivar. Elevated [CO2] increased the number and size of starch grains in chloroplasts of the two cultivars. Soybean leaf senescence was accelerated under elevated [CO2], determined by unclear chloroplast membrane and blurred grana layer at the beginning bloom (R1) stage. The different photosynthesis response to elevated [CO2] between cultivars at the beginning seed (R5) contributed to the yield difference under elevated [CO2]. Elevated [CO2] significantly increased the yield of Zhonghuang 35 by 26% with the increased pod number of 31%, but not for Zhonghuang 13 without changes of pod number. We conclude that the occurrence of photosynthetic acclimation at the beginning seed (R5) stage for Zhonghuang 13 restricted the development of extra C sink under elevated [CO2], thereby limiting the response to elevated [CO2] for the seed yield of this cultivar.  相似文献   

4.
The supply of photosynthates by leaves for reproductive development in cotton (Gossypium hirsutum L.) has been extensively studied. However, the contribution of assimilates derived from the fruiting forms themselves is inconclusive. Field experiments were conducted to document the photosynthetic and respiratory activity of cotton leaves, bracts, and capsule walls from anthesis to fruit maturity. Bracts achieved peak photosynthetic rates of 2.1 micromoles per square meter per second compared with 16.5 micromoles per square meter per second for the subtending leaf. However, unlike the subtending leaf, the bracts did not show a dramatic decline in photosynthesis with increased age, nor was their photosynthesis as sensitive as leaves to low light and water-deficit stress. The capsule wall was only a minor site of 14CO2 fixation from the ambient atmosphere. Dark respiration by the developing fruit averaged −18.7 micromoles per square meter per second for 6 days after anthesis and declined to −2.7 micromoles per square meter per second after 40 days. Respiratory loss of CO2 was maximal at −158 micromoles CO2 per fruit per hour at 20 days anthesis. Diurnal patterns of dark respiration for the fruit were age dependent and closely correlated with stomatal conductance of the capsule wall. Stomata on the capsule wall of young fruit were functional, but lost this capacity with increasing age. Labeled 14CO2 injected into the fruit interior was rapidly assimilated by the capsule wall in the light but not in the dark, while fiber and seed together fixed significant amounts of 14CO2 in both the light and dark. These data suggest that cotton fruiting forms, although sites of significant respiratory CO2 loss, do serve a vital role in the recycling of internal CO2 and therein, function as important sources of assimilate for reproductive development.  相似文献   

5.
Rate of photosynthesis and activities of photosynthetic carbon reduction cycle enzymes were determined in pods (siliqua), whereas rate of dark CO2 fixation, oil content and activities of enzymes involved in dark CO2 metabolism were measured in seeds ofBrassica campestris L. cv. Toria at different stages of pod/seed development. The period between 14 and 35 days after anthesis corresponded to active phase of seed development during which period, seed dry weight and oil content increased sharply. Rate of pod photosynthesis and activities of photosynthetic carbon reduction cycle enzymes were maximum in younger pods but sufficiently high levels were retained up to 40 days after anthesis. The rate of dark14CO2 fixation in seeds increased up to 21 days after anthesis and declined thereafter but maintaining sufficiently high rates till 35 days after anthesis. Similarly various enzymes viz., phosphoenolpyruvate carboxylase, NAD+-malate dehydrogenase and NADP+-malic enzyme, involved in dark CO2 metabolism retained sufficient activities during the above period. These enzyme activities were more than adequate to maintain the desired supply of malate which mainly arises from dark CO2 fixation in seeds and further translocated to leucoplasts for onward synthesis of fatty acids. Enzyme localization experiments revealed phosphoenolpyruvate carboxylase and enzymes of sucrose metabolism to be present only in cytosol, whereas enzymes of glycolysis were present both in cytosolic and leucoplastic fractions. These results indicated that oil synthesis in developingBrassica seeds is supported by pod photosynthesis and dark CO2 fixation in seeds as the former serves as the source of sucrose and the latter as a source of malate  相似文献   

6.
A soybean suspension culture (SB-P) which can grow photoautotrophically in 5% CO2 will not grow in ambient CO2 levels. This elevated CO2 requirement seems to be due to the additive effects of a number of factors. The in vivo activity of ribulose-1,5-bisphosphate carboxylase (RuBPcase) is much lower in the SB-P cells, compared to soybean plants. This may be due to the low light intensity used to culture the cells, which has been shown to decrease both the amount and activity in whole plants, resulting in a low rate of net photosynthesis. The RuBPcase activation level is also lowered in air CO2 levels. The presence of the liquid medium raises the cells CO2 compensation concentration (the CO2 concentration reached when the rates of CO2 fixed by photosynthesis and the CO2 respired by the cells are equal). These factors, coupled with the high respiratory loss of CO2 all contribute to reduced net photosynthesis in air, resulting in a photosynthetic capacity that is inadequate for cell survival. Active cell division, low photosynthetic capacity, elevated respiration, and a low ratio of RuBPcase(initial)/phosphoenolpyruvate carboxylase are traits that SB-P cells share with young leaf cells, indicating SB-P cell physiology may be comparable to that of young expanding leaves rather than to that of mature leaves.  相似文献   

7.
Seasonal patterns of photosynthesis and carbon allocation were determined for Tipularia discolor, a summer-deciduous wintergreen orchid of the southeastern United States, to assess the effects of environmental conditions and leaf age on carbon acquisition and allocation patterns. There was no shift in the optimum temperature for photosynthesis (Topt) on a seasonal basis and Topt (≈26 C) was at least 10 C higher than daily maximum air temperature during most of the growing season. Lack of photosynthetic adjustment in Tipularia to seasonal fluctuations in temperature and light suggested that the photosynthetic characteristics of this wintergreen were more similar to those of spring ephemerals than to those of evergreens and summer-active herbs. The decline in photosynthetic capacity during the winter growing season for Tipularia, largely due to leaf age effects, gradually reduced net photosynthetic rates in the field despite more favorable light and temperature conditions. Photosynthesis in the field was primarily limited by environmental conditions in early- and mid-season and by photosynthetic capacity in late-season. A 14CO2 labelling experiment demonstrated that patterns of carbon allocation to vegetative structures were affected by the season of photosynthetic carbon fixation, whereas reproductive structures received 21% of the recovered labelled carbon regardless of the period of labelling. Carbon acquired and stored during all periods of the growing season was used to produce new vegetative and reproductive structures.  相似文献   

8.
Chollet R 《Plant physiology》1978,61(6):929-932
Preincubation of illuminated tobacco (Nicotiana tabacum L.) leaf disks in glycidate (2,3-epoxypropionate) or glyoxylate inhibited photorespiration by about 40% as determined by the ratio of 14CO2 evolved into CO2-free air in light and in darkness. However, under identical preincubation conditions used for the light/dark 14C assays, the compounds failed to reduce photorespiration or stimulate net photosynthesis in tobacco leaf disks based on other CO2 exchange parameters, including the CO2 compensation concentration in 21% O2, the inhibitory effect of 21% O2 on net photosynthesis in 360 microliters per liter of CO2 and the rate of net photosynthetic 14CO2 uptake in air.

The effects of both glycidate and glyoxylate on the 14C assay are inconsistent with other measures of photorespiratory CO2 exchange in tobacco leaf disks, and thus these data question the validity of the light to dark ratio of 14CO2 efflux as an assay for relative rates of photorespiration (Zelitch 1968, Plant Physiol 43: 1829-1837). The results of this study specifically indicate that neither glycidate nor glyoxylate reduces photorespiration or stimulates net photosynthesis by tobacco leaf disks under physiological conditions of pO2 and pCO2, contrary to previous reports.

  相似文献   

9.
Benzoxazolin-2-(3H)-one (BOA) has been tested in many plants species, but not in soybean (Glycine max). Thus, a hydroponic experiment was conducted to assess the effects of BOA on soybean photosynthesis. BOA reduced net photosynthetic rate, stomatal conductance, and effective quantum yield of PSII photochemistry without affecting intercellular CO2 concentration or maximal quantum yield of PSII photochemistry. Results revealed that the reduced stomatal conductance restricted entry of CO2 into substomatal spaces, thus limiting CO2 assimilation. No change found in intercellular CO2 concentration and reduced effective quantum yield of PSII photochemistry revealed that CO2 was not efficiently consumed by the plants. Our data indicated that the effects of BOA on soybean photosynthesis occurred due to the reduced stomatal conductance and decreased efficiency of carbon assimilation. The accumulation of BOA in soybean leaves reinforced these findings.  相似文献   

10.
The effects on photosynthesis of CO2 and desiccation in Porphyra haitanensis were investigated to establish the effects of increased atmospheric CO2 on this alga during emersion at low tides. With enhanced desiccation, net photosynthesis, dark respiration, photosynthetic efficiency, apparent carboxylating efficiency and light saturation point decreased, while the light compensation point and CO2 compensation point increased. Emersed net photosynthesis was not saturated by the present atmospheric CO2 level (about 350?ml?m?3), and doubling the CO2 concentration (700?ml?m?3) increased photosynthesis by between 31% and 89% at moderate levels of desiccation. The relative enhancement of emersed net photosynthesis at 700?ml?m?3 CO2 was greater at higher temperatures and higher levels of desiccation. The photosynthetic production of Porphyra haitanensis may benefit from increasing atmospheric CO2 concentration during emersion.  相似文献   

11.
Field experiments were conducted in 1981 and 1982 to study the effects of low-irradiance supplemental light on soybean (Glycine max [L.] Merr. cv Evans) flower and pod abscission. Cool-white and red fluorescent lights illuminated the lower part of the soybean canopy during daylight hours for 3 weeks late in flowering. At the same time, flowers and young pods on half the plants were shaded with aluminum foil. Flowers were tagged at anthesis and monitored through abscission or pod maturity.

Responses to red and white lights were similar. Supplemental light tended to reduce abscission and increase seed weight per node compared to natural light. Shading flowers and pods increased abscission and reduced seed weight per node. Number of flowers produced per node, individual seed weight, and seeds per pod were not affected by light or shade treatments.

Further studies examined the effects of shading reproductive structures on their capacity to accumulate 14C-photoassimilates. Individual leaves were pulse labeled with 14CO2 1, 2, and 4 weeks post anthesis. Flowers and pods in the axil of the labeled leaf were covered with aluminum foil 0, 24, 72, and 120 hours before pulsing.

Shading flowers and pods resulted in a 30% reduction in the relative amount of radiolabel accumulated from the source leaf. The reduction in 14C accumulation due to shading was evident regardless of the length of the shading period and was most pronounced when the shades were applied early in reproductive development. We conclude that light perceived by soybean flowers and young pods has a role in regulating both their abscission and their capacity to accumulate photoassimilates.

  相似文献   

12.
The photosynthetic and respiratory rates of 5- to 7-year-old aspen stems (Populus tremuloides Michx.) were monitored in the field for 1 year to determine the seasonal patterns. The stem was not capable of net photosynthesis, but the respiratory CO2 loss from the stem was reduced by 0 to 100% depending on the time of year and the level of illumination as a result of bark photosynthesis. The monthly dark respiratory rate ranged from 0.24 mg CO2/dm2· hr in January to a maximum 7.4 mg CO2/dm2· hr in June. Individual measurements ranged from 0.02 mg CO2/dm2· hr in February to 12.3 mg CO2/dm2· hr in June. Gross photosynthesis followed a pattern similar to the dark respiratory rate. The mean monthly rate was highest in June (1.65 mg CO2/dm2· hr) and lowest in December (0.02 mg CO2/dm2· hr). Individual measurements ranged from 0.0 mg CO2/dm2· hr in winter to 5.5 mg CO2/dm2· hr in July.  相似文献   

13.
The effects of various chemical treatments upon photosynthesis, soluble leaf protein, CO2 compensation point, and leaf light transmission in soybean, Glycine max (L.) Merr., seedlings were examined following varying response periods after application at 14 to 17 days postemergence. The compounds N6-benzyladenine (BA), 2-(4-chlorophenoxy)-2-methylpropanoic acid (CPMP), (4-chlorophenoxy)acetic acid (CPA), rhodanine-N-acetic acid (RAA), and 2,3,5-triiodobenzoic acid (TIBA) significantly increased soluble protein and decreased senescence, measured by leaf light transmission, at CO2 concentrations below the compensation point in a survival chamber. All compounds except BA significantly decreased transmission values under ambient atmospheric conditions. In statistically significant experiments, applications of 3.49 millimolar CPMP increased net photosynthesis on a leaf area basis by an average of 14.4% at all trifoliolate positions with increases generally requiring response periods of 12 days or longer. RAA at 1.31 and 2.61 millimolar increased net photosynthesis by 19 to 36% following 13-day response periods. CPMP and other compounds tested had no effect upon the CO2 compensation point after 4- to 8-day response periods. The effects of CPMP and RAA upon net photosynthesis and soluble protein appeared to involve a combined stimulation of protein synthesis and an antisenescent effect. There were no indications that any of the photosynthetic changes observed resulted from direct differential effects upon ribulose bisphosphate carboxylase-oxygenase. The assays for soluble protein and light transmission responded more consistently to the chemicals than did photosynthesis.  相似文献   

14.
It is important to quantify and understand the consequences of elevated temperature and carbon dioxide (CO2) on reproductive processes and yield to develop suitable agronomic or genetic management for future climates. The objectives of this research work were (a) to quantify the effects of elevated temperature and CO2 on photosynthesis, pollen production, pollen viability, seed‐set, seed number, seeds per pod, seed size, seed yield and dry matter production of kidney bean and (b) to determine if deleterious effects of high temperature on reproductive processes and yield could be compensated by enhanced photosynthesis at elevated CO2 levels. Red kidney bean cv. Montcalm was grown in controlled environments at day/night temperatures ranging from 28/18 to 40/30 °C under ambient (350 µmol mol?1) or elevated (700 µmol mol?1) CO2 levels. There were strong negative relations between temperature over a range of 28/18–40/30 °C and seed‐set (slope, ? 6.5% °C?1) and seed number per pod (? 0.34 °C?1) under both ambient and elevated CO2 levels. Exposure to temperature > 28/18 °C also reduced photosynthesis (? 0.3 and ? 0.9 µmol m?2 s?1 °C?1), seed number (? 2.3 and ? 3.3 °C?1) and seed yield (? 1.1 and ? 1.5 g plant?1 °C?1), at both the CO2 levels (ambient and elevated, respectively). Reduced seed‐set and seed number at high temperatures was primarily owing to decreased pollen production and pollen viability. Elevated CO2 did not affect seed size but temperature > 31/21 °C linearly reduced seed size by 0.07 g °C?1. Elevated CO2 increased photosynthesis and seed yield by approximately 50 and 24%, respectively. There was no beneficial interaction of CO2 and temperature, and CO2 enrichment did not offset the negative effects of high temperatures on reproductive processes and yield. In conclusion, even with beneficial effects of CO2 enrichment, yield losses owing to high temperature (> 34/24 °C) are likely to occur, particularly if high temperatures coincide with sensitive stages of reproductive development.  相似文献   

15.
Addition of millimolar sodium glyoxylate to spinach (Spinacia oleracea) chloroplasts was inhibitory to photosynthetic incorporation of 14CO2 under conditions of both low (0.2 millimolar or air levels) and high (9 millimolar) CO2 concentrations. Incorporation of 14C into most metabolites decreased. Labeling of 6-P-gluconate and fructose-1,6-bis-P increased. This suggested that glyoxylate inhibited photosynthetic carbon metabolism indirectly by decreasing the reducing potential of chloroplasts through reduction of glyoxylate to glycolate. This hypothesis was supported by measuring the reduction of [14C]glyoxylate by chloroplasts. Incubation of isolated mesophyll cells with glyoxylate had no effect on net photosynthetic CO2 uptake, but increased labeling was observed in 6-P-gluconate, a key indicator of decreased reducing potential. The possibility that glyoxylate was affecting photosynthetic metabolism by decreasing chloroplast pH cannot be excluded. Increased 14C-labeling of ribulose-1,5-bis-P and decreased 3-P-glyceric acid and glycolate labeling upon addition of glyoxylate to chloroplasts suggested that ribulose-bis-P carboxylase and oxygenase might be inhibited either indirectly or directly by glyoxylate. Glyoxylate addition decreased 14CO2 labeling into glycolate and glycine by isolated mesophyll cells but had no effect on net 14CO2 fixation. Glutamate had little effect on net photosynthetic metabolism in chloroplast preparations but did increase 14CO2 incorporation by 15% in isolated mesophyll cells under air levels of CO2.  相似文献   

16.
Zelitch I  Day PR 《Plant physiology》1968,43(11):1838-1844
The hypothesis that net photosynthesis is diminished in many plant species because of a high rate of CO2 evolution in the light has been tested further. High rates of CO2 output in CO2-free air in comparison with dark respiration were found in Chlamydomonas reinhardi, wheat leaves, tomato leaves, and to a lesser extent in Chlorella pyrenoidosa by means of the 14C-photorespiration assay. In tobacco leaves high photorespiration was characteristic of a standard variety, Havana Seed, and a possibly still higher rate was found in a yellow heterozygous mutant, JWB Mutant. However, the dark homozygous sibling of the latter, JWB Wild, had a low photorespiration for the tobacco species. The relative rates of photorespiration were in the same sequence when measured by the 14CO2 released in normal air from leaf disks supplied with glycolate-1-14C in the light.

As would be predicted by the hypothesis, the maximal net rate of photosynthesis at 300 ppm of CO2 in the air in JWB Wild leaves was greater (24%) than in Havana Seed, while JWB Mutant had less CO2 uptake than the standard variety (21%). At 550 ppm of CO2 the differences in net photosynthesis were not as great between the 2 siblings as at 200 ppm. The relative leaf expansion rates of seedlings of the 3 tobacco varieties in a greenhouse had the same relationship as their rates of CO2 assimilation.

Thus within the tobacco species, as in a comparison between tobacco and maize, low photorespiratory CO2 evolution was correlated with higher photosynthetic efficiency. Therefore it seems that increased CO2 uptake should be achieved by genetic interference with the process of photorespiration.

  相似文献   

17.
Photosynthetic CO2 and O2 exchange was studied in two moss species, Hypnum cupressiforme Hedw. and Dicranum scoparium Hedw. Most experiments were made during steady state of photosynthesis, using 18O2 to trace O2 uptake. In standard experimental conditions (photoperiod 12 h, 135 micromoles photons per square meter per second, 18°C, 330 microliters per liter CO2, 21% O2) the net photosynthetic rate was around 40 micromoles CO2 per gram dry weight per hour in H. cupressiforme and 50 micromoles CO2 per gram dry weight per hour in D. scoparium. The CO2 compensation point lay between 45 and 55 microliters per liter CO2 and the enhancement of net photosynthesis by 3% O2versus 21% O2 was 40 to 45%. The ratio of O2 uptake to net photosynthesis was 0.8 to 0.9 irrespective of the light intensity. The response of net photosynthesis to CO2 showed a high apparent Km (CO2) even in nonsaturating light. On the other hand, O2 uptake in standard conditions was not far from saturation. It could be enhanced by only 25% by increasing the O2 concentration (saturating level as low as 30% O2), and by 65% by decreasing the CO2 concentration to the compensation point. Although O2 is a competitive inhibitor of CO2 uptake it could not replace CO2 completely as an electron acceptor, and electron flow, expressed as gross O2 production, was inhibited by both high O2 and low CO2 levels. At high CO2, O2 uptake was 70% lower than the maximum at the CO2 compensation point. The remaining activity (30%) can be attributed to dark respiration and the Mehler reaction.  相似文献   

18.
Chemical inhibition of the glycolate pathway in soybean leaf cells   总被引:19,自引:15,他引:4       下载免费PDF全文
Isolated soybean (Glycine max [L.] Merr.) leaf cells were treated with three inhibitors of the glycolate pathway in order to evaluate the potential of such inhibitors for increasing photosynthetic efficiency. Preincubation of cells under acid conditions in α-hydroxypyridinemethanesulfonic acid increased 14CO2 incorporation into glycolate, but severely inhibited photosynthesis. Isonicotinic acid hydrazide (INH) increased the incorporation of 14CO2 into glycine and reduced label in serine, glycerate, and starch. Butyl 2-hydroxy-3-butynoate (BHB) completely and irreversibly inhibited glycolate oxidase and increased the accumulation of 14C into glycolate. Concomitant with glycolate accumulation was the reduction of label in serine, glycerate, and starch, and the elimination of label in glycine. The inhibitors INH and BHB did not eliminate serine synthesis, suggesting that some serine is synthesized by an alternate pathway. The per cent incorporation of 14CO2 into glycolate by BHB-treated cells or glycine by INH-treated cells was determined by the O2/CO2 ratio present during assay. Photosynthesis rate was not affected by INH or BHB in the absence of O2, but these compounds increased the O2 inhibition of photosynthesis. This finding suggests that the function of the photorespiratory pathway is to recycle glycolate carbon back into the Calvin cycle, so if glycolate metabolism is inhibited, Calvin cycle intermediates become depleted and photosynthesis is decreased. Thus, chemicals which inhibit glycolate metabolism do not reduce photorespiration and increase photosynthetic efficiency, but rather exacerbate the problem of photorespiration.  相似文献   

19.
Erratum     
Glycolate synthesis was inhibited 40–50% in illuminated tobacco leaf disks, which have rapid rates of photorespiration, when floated on 20 mm potassium glycidate (2,3-epoxypropionate), an epoxide similar in structure to glycolate. The inhibitor also decreased the release of photorespiratory CO2 about 40%, and the specificity of glycidate was demonstrated by the 40–50% increase in rate of photosynthetic CO2 uptake observed in its presence. The importance of glycolate synthesis and metabolism in the production of photorespiratory CO2 and the role of glycolate in diminishing net photosynthesis in species with rapid rates of photorespiration was thus further confirmed. L-(or 2S)-Glycidate was slightly more active than DL-glycidate, but glycidate was more effective as a specific inhibitor in leaf tissue than several other epoxide analogs of glycolate examined. The products of photosynthetic 14O2 fixation after 3 or 4 min of uptake were proportionately altered in the presence of glycidate, and the specific radioactivity of the [14C]glycolate produced was closer to that of the 14CO2 supplied. Glycidate inhibited glycolate synthesis in tobacco leaf disks irreversibly, since the degree of inhibition was the same for at least 2 hr after the inhibitor solution was removed. Glycidate also blocked glycolate synthesis in maize leaf disks, tissue with low rates of photorespiration, but large increases in net photosynthesis were not observed in maize with glycidate, because glycolate synthesis is normally only about 10% as rapid in maize as in tobacco. The demonstration of increases in net photosynthesis of 40–50% when glycolate synthesis (and photorespiration) is blocked with glycidate indicates in an independent manner that the biochemical or genetic control of photorespiration should permit large increases in plant productivity in plant species possessing rapid rates of photorespiration.  相似文献   

20.
Whole-plant diurnal C exchange analysis provided a noninvasive estimation of daily net C gain in transgenic tobacco (Nicotiana tabacum L.) plants deficient in leaf cytosolic pyruvate kinase (PKc−). PKc− plants cultivated under a low light intensity (100 μmol m−2 s−1) were previously shown to exhibit markedly reduced root growth, as well as delayed shoot and flower development when compared with plants having wild-type levels of PKc (PKc+). PKc− and PKc+ source leaves showed a similar net C gain, photosynthesis over a range of light intensities, and a capacity to export newly fixed 14CO2 during photosynthesis. However, during growth under low light the nighttime, export of previously fixed 14CO2 by fully expanded PKc− leaves was 40% lower, whereas concurrent respiratory 14CO2 evolution was 40% higher than that of PKc+ leaves. This provides a rationale for the reduced root growth of the PKc− plants grown at low irradiance. Leaf photosynthetic and export characteristics in PKc− and PKc+ plants raised in a greenhouse during winter months resembled those of plants grown in chambers at low irradiance. The data suggest that PKc in source leaves has a critical role in regulating nighttime respiration particularly when the available pool of photoassimilates for export and leaf respiratory processes are low.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号