首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 194 毫秒
1.
Three distinct editosomes are required for the uridine insertion/deletion editing that creates translatable mitochondrial mRNAs in Trypanosoma brucei. They contain KREPB6, KREPB7, or KREPB8 proteins and their respective endonucleases KREN3, KREN2, or KREN1. RNAi knockdowns of KREPB6, KREPB7, and KREPB8 variably affect growth and RNA editing. KREPB6 and KREPB7 knockdowns substantially reduced in vitro insertion site cleavage activity of their respective editosomes, while KREPB8 knockdown did not affect its editosome deletion site cleavage activity despite inhibition of growth and editing. KREPB6, KREPB7, and KREPB8 knockdowns disrupted tagged KREN3, KREN2, or KREN1 editosomes, respectively, to varying degrees, and in the case of KREN1 editosomes, the deletion editing site cleavage activity shifted to a smaller S value. The varying effects correlate with a combination of the relative abundances of the KREPB6-8 proteins and of the different insertion and deletion sites. Tagged KREPB6-8 were physically associated with deletion subcomplexes upon knockdown of the centrally interactive KREPA3 protein, while KREN1-3 endonucleases were associated with insertion subcomplexes. The results indicate that KREPB6-8 occupy similar positions in editosomes and are important for the activity and specificity of their respective endonucleases. This suggests that they contribute to the accurate recognition of the numerous similar but diverse editing site substrates.  相似文献   

2.
Three distinct editosomes, typified by mutually exclusive KREN1, KREN2, or KREN3 endonucleases, are essential for mitochondrial RNA editing in Trypanosoma brucei. The three editosomes differ in substrate endoribonucleolytic cleavage specificity, which may reflect the vast number of editing sites that need insertion or deletion of uridine nucleotides (Us). Each editosome requires the single RNase III domain in each endonuclease for catalysis. Studies reported here show that the editing endonucleases do not form homodimeric domains, and may therefore function as intermolecular heterodimers, perhaps with KREPB4 and/or KREPB5. Editosomes isolated via TAP tag fused to KREPB6, KREPB7, or KREPB8 have a common set of 12 proteins. In addition, KREN3 is only found in KREPB6 editosomes, KREN2 is only found in KREPB7 editosomes, and KREN1 is only found in KREPB8 editosomes. These are the same associations previously found in editosomes isolated via the TAP-tagged endonucleases KREN1, KREN2, or KREN3. Furthermore, TAP-tagged KREPB6, KREPB7, and KREPB8 complexes isolated from cells in which expression of their respective endonuclease were knocked down were disrupted and lacked the heterotrimeric insertion subcomplex (KRET2, KREPA1, and KREL2). These results and published data suggest that KREPB6, KREPB7, and KREPB8 associate with the deletion subcomplex, whereas the KREN1, KREN2, and KREN3 endonucleases associate with the insertion subcomplex.  相似文献   

3.
Uridylate insertion/deletion RNA editing in Trypanosoma brucei mitochondria is catalyzed by a multiprotein complex, the approximately 20S editosome. Editosomes purified via three related tagged RNase III proteins, KREN1 (KREPB1/TbMP90), KREPB2 (TbMP67), and KREN2 (KREPB3/TbMP61), had very similar but nonidentical protein compositions, and only the tagged member of these three RNase III proteins was identified in each respective complex. Three new editosome proteins were also identified in these complexes. Each tagged complex catalyzed both precleaved insertion and deletion editing in vitro. However, KREN1 complexes cleaved deletion but not insertion editing sites in vitro, and, conversely, KREN2 complexes cleaved insertion but not deletion editing sites. These specific nuclease activities were abolished by mutations in the putative RNase III catalytic domain of the respective proteins. Thus editosomes appear to be heterogeneous in composition with KREN1 complexes catalyzing cleavage of deletion sites and KREN2 complexes cleaving insertion sites while both can catalyze the U addition, U removal, and ligation steps of editing.  相似文献   

4.
Multiprotein complexes, called editosomes, catalyze the uridine insertion and deletion RNA editing that forms translatable mitochondrial mRNAs in kinetoplastid parasites. We have identified here two new U1-like zinc finger proteins that associate with editosomes and have shown that they are related to KREPB6, KREPB7, and KREPB8, and thus we have named them Kinetoplastid RNA Editing Proteins, KREPB9 and KREPB10. They are conserved and syntenic in trypanosomatids although KREPB10 is absent in Trypanosoma vivax and both are absent in Leishmania. Tandem affinity purification (TAP)-tagged KREPB9 and KREPB10 incorporate into ~20S editosomes and/or subcomplexes thereof and preferentially associate with deletion subcomplexes, as do KREPB6, KREPB7, and KREPB8. KREPB10 also associates with editosomes that are isolated via a chimeric endonuclease, KREN1 in KREPB8 RNA interference (RNAi) cells, or MEAT1. The purified complexes have precleaved editing activities and endonuclease cleavage activity that appears to leave a 5' OH on the 3' product. RNAi knockdowns did not affect growth but resulted in relative reductions of both edited and unedited mitochondrial mRNAs. The similarity of KREPB9 and KREPB10 to KREPB6, KREPB7, and KREPB8 suggests they may be accessory factors that affect editing endonuclease activity and as a consequence may affect mitochondrial mRNA stability. KREPB9 and KREPB10, along with KREPB6, KREPB7, and KREPB8, may enable the endonucleases to discriminate among and accurately cleave hundreds of different editing sites and may be involved in the control of differential editing during the life cycle of T. brucei.  相似文献   

5.
RNA editing in Trypanosoma brucei inserts and deletes uridines in mitochondrial mRNAs by a series of enzymatic steps that are catalyzed by a multiprotein complex, the editosome. KREPB1 and two related editosome proteins KREPB2 and KREPB3 contain motifs that suggest endonuclease and RNA/protein interaction functions. Repression of KREPB1 expression in procyclic forms by RNAi inhibited growth, in vivo editing, and in vitro endoribonucleolytic cleavage of deletion substrates. However, cleavage of insertion substrates and the exoUase, TUTase, and ligase catalytic activities of editing were retained by 20S editosomes. Repression of expression of an ectopic KREPB1 allele in bloodstream forms lacking both endogenous alleles or exclusive expression of KREPB1 with point mutations in the putative RNase III catalytic domain also blocked growth, in vivo editing, and abolished cleavage of deletion substrates, without affecting the other editing steps. These data indicate that KREPB1 is an endoribonuclease that is specific for RNA editing deletion sites.  相似文献   

6.
7.
KREPB5 is an essential component of ∼20S editosomes in Trypanosoma brucei which contains a degenerate, noncatalytic RNase III domain. To explore the function of this protein, we used a novel approach to make and screen numerous conditional null T. brucei bloodstream form cell lines that express randomly mutagenized KREPB5 alleles. We identified nine single amino acid substitutions that could not complement the conditional loss of wild-type KREPB5. Seven of these were within the RNase III domain, and two were in the C-terminal region that has no homology to known motifs. Exclusive expression of these mutated KREPB5 alleles in the absence of wild-type allele expression resulted in growth inhibition, the loss of ∼20S editosomes, and inhibition of RNA editing in BF cells. Eight of these mutations were lethal in bloodstream form parasites but not in procyclic-form parasites, showing that multiple domains function in a life cycle-dependent manner. Amino acid changes at a substantial number of positions, including up to 7 per allele, allowed complementation and thus did not block KREPB5 function. Hence, the degenerate RNase III domain and a newly identified domain are critical for KREPB5 function and have differential effects between the life cycle stages of T. brucei that differentially edit mRNAs.  相似文献   

8.
9.
Uridine insertion and deletion RNA editing generates functional mitochondrial mRNAs in Trypanosoma brucei. The mRNAs are differentially edited in bloodstream form (BF) and procyclic form (PF) life cycle stages, and this correlates with the differential utilization of glycolysis and oxidative phosphorylation between the stages. The mechanism that controls this differential editing is unknown. Editing is catalyzed by multiprotein ∼20S editosomes that contain endonuclease, 3′-terminal uridylyltransferase, exonuclease, and ligase activities. These editosomes also contain KREPB5 and KREPA3 proteins, which have no functional catalytic motifs, but they are essential for parasite viability, editing, and editosome integrity in BF cells. We show here that repression of KREPB5 or KREPA3 is also lethal in PF, but the effects on editosome structure differ from those in BF. In addition, we found that point mutations in KREPB5 or KREPA3 differentially affect cell growth, editosome integrity, and RNA editing between BF and PF stages. These results indicate that the functions of KREPB5 and KREPA3 editosome proteins are adjusted between the life cycle stages. This implies that these proteins are involved in the processes that control differential editing and that the 20S editosomes differ between the life cycle stages.  相似文献   

10.
Mitochondrial RNAs in trypanosomes are edited by the insertion and deletion of uridine (U) nucleotides to form translatable mRNAs. Editing is catalyzed by three distinct editosomes that contain two related U-specific exonucleases (exoUases), KREX1 and KREX2, with the former present exclusively in KREN1 editosomes and the latter present in all editosomes. We show here that repression of KREX1 expression leads to a concomitant reduction of KREN1 in ∼20S editosomes, whereas KREX2 repression results in reductions of KREPA2 and KREL1 in ∼20S editosomes. Knockdown of KREX1 results in reduced cell viability, reduction of some edited RNA in vivo, and a significant reduction in deletion but not insertion endonuclease activity in vitro. In contrast, KREX2 knockdown does not affect cell growth or editing in vivo but results in modest reductions of both insertion and deletion endonuclease activities and a significant reduction of U removal in vitro. Simultaneous knockdown of both proteins leads to a more severe inhibition of cell growth and editing in vivo and an additive effect on endonuclease cleavage in vitro. Taken together, these results indicate that both KREX1 and KREX2 are important for retention of other proteins in editosomes, and suggest that the reduction in cell viability upon KREX1 knockdown is likely a consequence of KREN1 loss. Furthermore, although KREX2 appears dispensable for cell growth, the increased inhibition of editing and parasite viability upon knockdown of both KREX1 and KREX2 together suggests that both proteins have roles in editing.  相似文献   

11.
Three types of editosomes, each with an identical core containing six related KREPA proteins, catalyze the U insertion and deletion RNA editing of mitochondrial mRNAs in trypanosomes. Repression of expression of one of these, KREPA3 (also known as TbMP42), shows that it is essential for growth and in vivo editing in both procyclic (PF) and bloodstream (BF) life cycle stages of Trypanosoma brucei. RNA interference knockdown results in editosome disruption and altered in vitro editing in PFs, while repression by regulatable double knockout results in almost complete loss of editosomes in BFs. Mutational analysis shows that the KREPA3 zinc fingers and OB-fold domain are each essential for growth and in vivo editing. Nevertheless, KREPA3 with mutated zinc fingers incorporates into editosomes that catalyze in vitro editing and thus is not essential for editosome integrity, although stability is affected. In contrast, the OB-fold domain is essential for editosome integrity. Overall, KREPA3, especially its OB-fold, functions in editosome integrity, and its zinc fingers are essential for editing in vivo but not for the central catalytic steps. KREPA3 may function in editosome organization and/or RNA positioning.  相似文献   

12.
13.
RNA editing in kinetoplastids, the specific insertion and deletion of U residues, requires endonuclease cleavage of the pre-mRNA at each cycle of insertion/deletion. We have resolved three endoribonuclease activities from Trypanosoma brucei mitochondrial extracts that cleave CYb pre-mRNA specifically. One of these, which sediments at approximately 20S and is not affected substantially by DTT, has all the features of the editing endonuclease. It cleaves CYb pre-edited or partially edited mRNA only when annealed to the anchor region of a cognate guide RNA (gRNA), and it cleaves accurately just 5' of the duplex region. Its specificity is for the 5' end of extended duplex RNA regions, and this prevents cleavage of the gRNA or other positions in the mRNA. This gRNA-directed nuclease is evidently the same activity that functions in A6 pre-mRNA editing. However, it is distinct and separable from a previously observed DTT-requiring endonuclease that sediments similarly under certain conditions, but does not cleave precisely at the first editing site in either the presence or absence of a gRNA. The editing nuclease is also distinct from a DTT-inhibited endonuclease that cleaves numerous free pre-mRNAs at a common structure in the region of the first editing site.  相似文献   

14.

Background

Most mitochondrial mRNAs in Trypanosoma brucei require RNA editing for maturation and translation. The edited RNAs primarily encode proteins of the oxidative phosphorylation system. These parasites undergo extensive changes in energy metabolism between the insect and bloodstream stages which are mirrored by alterations in RNA editing. Two U-specific exonucleases, KREX1 and KREX2, are both present in protein complexes (editosomes) that catalyze RNA editing but the relative roles of each protein are not known.

Methodology/Principal Findings

The requirement for KREX2 for RNA editing in vivo was assessed in both procyclic (insect) and bloodstream form parasites by methods that use homologous recombination for gene elimination. These studies resulted in null mutant cells in which both alleles were eliminated. The viability of these cells demonstrates that KREX2 is not essential in either life cycle stage, despite certain defects in RNA editing in vivo. Furthermore, editosomes isolated from KREX2 null cells require KREX1 for in vitro U-specific exonuclease activity.

Conclusions

KREX2 is a U-specific exonuclease that is dispensable for RNA editing in vivo in T. brucei BFs and PFs. This result suggests that the U deletion activity, which is required for RNA editing, is primarily mediated in vivo by KREX1 which is normally found associated with only one type of editosome. The retention of the KREX2 gene implies a non-essential role or a role that is essential in other life cycle stages or conditions.  相似文献   

15.
16.
17.
U-insertion/deletion RNA editing in the single mitochondrion of kinetoplastids, an ancient lineage of eukaryotes, is a unique mRNA maturation process needed for translation. Multisubunit editing complexes recognize many pre-edited mRNA sites and modify them via cycles of three catalytic steps: guide RNA (gRNA)-directed cleavage, insertion or deletion of uridylates at the 3′-terminus of the upstream cleaved piece, and ligation of the two mRNA pieces. While catalytic and many structural protein subunits of these complexes have been identified, the mechanisms and basic determinants of substrate recognition are still poorly understood. This study defined relatively simple single- and double-stranded determinants for association and gRNA-directed cleavage. To this end, we used an electrophoretic mobility shift assay to directly score the association of purified editing complexes with RNA ligands, in parallel with UV photocrosslinking and functional studies. The cleaved strand required a minimal 5′ overhang of 12 nt and an ∼ 15-bp duplex with gRNA to direct the cleavage site. A second protruding element in either the cleaved or the guide strand was required unless longer duplexes were used. Importantly, the single-stranded RNA requirement for association can be upstream or downstream of the duplex, and the binding and cleavage activities of purified editing complexes could be uncoupled. The current observations together with our previous reports in the context of purified native editing complexes show that the determinants for association, cleavage and full-round editing gradually increase in complexity as these stages progress. The native complexes in these studies contained most, if not all, known core subunits in addition to components of the MRP complex. Finally, we found that the endonuclease KREN1 in purified complexes photocrosslinks with a targeted editing site. A model is proposed whereby one or more RNase III-type endonucleases mediate the initial binding and scrutiny of potential ligands and subsequent catalytic selectivity triggers either insertion or deletion editing enzymes.  相似文献   

18.
Expression of the trypanosomal mitochondrial genome requires the insertion and deletion of uridylyl residues at specific sites in pre-mRNAs. RET2 terminal uridylyl transferase is an integral component of the RNA editing core complex (RECC) and is responsible for the guide-RNA-dependent U insertion reaction. By analyzing RNA-interference-based knock-in Trypanosoma brucei cell lines, purified editing complex, and individual protein, we have investigated RET2's association with the RECC. In addition, the U insertion activity exhibited by RET2 as an RECC subunit was compared with characteristics of the monomeric protein. We show that interaction of RET2 with RECC is accomplished via a protein-protein contact between its middle domain and a structural subunit, MP81. The recombinant RET2 catalyzes a faithful editing on gapped (precleaved) double-stranded RNA substrates, and this reaction requires an internal monophosphate group at the 5′ end of the mRNA 3′ cleavage fragment. However, RET2 processivity is limited to insertion of three Us. Incorporation into the RECC voids the internal phosphate requirement and allows filling of longer gaps similar to those observed in vivo. Remarkably, monomeric and RECC-embedded enzymes display a similar bimodal activity: the distributive insertion of a single uracil is followed by a processive extension limited by the number of guiding nucleotides. Based on the RNA substrate specificity of RET2 and the purine-rich nature of U insertion sites, we propose that the distributive + 1 insertion creates a substrate for the processive gap-filling reaction. Upon base-pairing of the + 1 extended 5′ cleavage fragment with a guiding nucleotide, this substrate is recognized by RET2 in a different mode compared to the product of the initial nucleolytic cleavage. Therefore, RET2 distinguishes base pairs in gapped RNA substrates which may constitute an additional checkpoint contributing to overall fidelity of the editing process.  相似文献   

19.
Kinetoplastid RNA (k-RNA) editing is a complex process in the mitochondria of kinetoplastid protozoa, including Trypanosoma brucei, that involves the guide RNA-directed insertion and deletion of uridines from precursor-mRNAs to produce mature, translatable mRNAs. k-RNA editing is performed by multiprotein complexes called editosomes. Additional non-editosome components termed k-RNA-editing accessory factors affect the extent of editing of specific RNAs or classes of RNAs. The T. brucei p22 protein was identified as one such accessory factor. Here we show that p22 contributes to cell growth in the procyclic form of T. brucei and functions as a cytochrome oxidase subunit II-specific k-RNA-editing accessory factor. To gain insight into its functions, we solved the crystal structure of the T. brucei p22 protein to 2.0-Å resolution. The p22 structure consists of a six-stranded, antiparallel β-sheet flanked by five α-helices. Three p22 subunits combine to form a tight trimer that is primarily stabilized by interactions between helical residues. One side of the trimer is strikingly acidic, while the opposite face is more neutral. Database searches show p22 is structurally similar to human p32, which has a number of functions, including regulation of RNA splicing. p32 interacts with a number of target proteins via its α1 N-terminal helix, which is among the most conserved regions between p22 and p32. Co-immunoprecipitation studies showed that p22 interacts with the editosome and the k-RNA accessory protein, TbRGG2, and α1 of p22 was shown to be important for the p22-TbRGG2 interaction. Thus, these combined studies suggest that p22 mediates its role in k-RNA editing by acting as an adaptor protein.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号