首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
2.
Anthers of two rice (Oryza sativa L.) varieties, Lunhui 422 (P1) and Jinzao 5 (P2), their F1, F2 and first backcross generation-F1 x Lunhui 422 (B1), and F1 x Jinzao 5 (B2)-were cultured in L8 medium to study the inheritance of rice anther culturability using generation mean analysis. Significant effects of generation were observed for the four traits measured: anther response (%), frequency of callus induction (%), frequency of callus differentiation (%) and culture efficiency (%). Variation among the generations was similar for all traits: significant differences were found among six generations and the means of the P2 and B2 were significantly lower than those of the other generations. The frequency of callus differentiation showed a nonsignificant difference among the P1, F1, F2 and B1 generations which had slightly high values than the P2 and B2. Additive genetic variance (VA) was higher than non-additive genetic variance (VD) for anther response and frequency of callus induction. However, AV was lower than VD for frequence of callus differentiation and culture efficiency, VA was significant for all traits except for the culture efficiency, and VD was nonsignificant for all traits except for the frequency of callus differentiation. On the other hand, environmental variation (VE) was significant for the 4 traits. Narrow-sense heritability estimates were 95.52%, 82.19% and 13.54% for anther response, frequency of callus induction and culture efficiency, respectively.Abbreviations 2,4-d 2,4-dichlorophenoxyacetic acid - IAA indole-3-acetic acid  相似文献   

3.
Traditional models of genetic drift predict a linear decrease in additive genetic variance for populations passing through a bottleneck. This perceived lack of heritable variance limits the scope of founder-effect models of speciation. We produced 55 replicate bottleneck populations maintained at two male-female pairs through four generations of inbreeding (average F = 0.39). These populations were formed from an F2 intercross of the LG/J and SM/J inbred mouse strains. Two contemporaneous control strains maintained with more than 60 mating pairs per generation were formed from this same source population. The average level of within-strain additive genetic variance for adult body weight was compared between the control and experimental lines. Additive genetic variance for adult body weight within experimental bottleneck strains was significantly higher than expected under an additive genetic model This enhancement of additive genetic variance under inbreeding is likely to be due to epistasis, which retards or reverses the loss of additive genetic variance under inbreeding for adult body weight in this population. Therefore, founder-effect speciation processes may not be constrained by a loss of heritable variance due to population bottlenecks.  相似文献   

4.
The microevolutionary process of adaptive phenotypic differentiation of quantitative traits between populations or closely‐related taxa depends on the response of populations to the action of natural selection. However, this response can be constrained by the structure of the matrix of additive genetic variance and covariance between traits in each population ( G matrix). In the present study, we obtained additive genetic variance and narrow sense heritability for 25 floral and vegetative traits of three subspecies of Aquilegia vulgaris, and one subspecies of Aquilegia pyrenaica through a common garden crossing experiment. For two vegetative and one floral trait, we also obtained the G matrix and genetic correlations between traits in each subspecies. The amount of genetic variation available in wild populations is not responsible for the larger differentiation of vegetative than floral traits found in this group of columbines. However, the low heritability of some traits constrained their evolution because phenotypic variability among taxa was larger for traits with larger heritability. We confirmed that the process of diversification of the studied taxa involved shifts in the G matrix, mainly determined by changes in the genetic covariance between floral and vegetative traits, probably caused by linkage disequilibrium in narrow endemic taxa. © 2013 The Linnean Society of London, Biological Journal of the Linnean Society, 2014, 111 , 252–261.  相似文献   

5.
Phenotypic differentiation of two tetraploid (2n = 4x = 36, 36+1B, 36+2B) populations of Santolina rosmarinifolia geographically isolated from diploid populations was investigated. The karyotype was relatively homogeneous, meiosis was regular and pollen was fertile in both cytotypes. An autopolyploid or allopolyploid origin for tetraploid cytotypes is discussed. Overall, 80.82% of all variance in achene weight, time t0, t50 and t90 of germination and accumulated germination rate was due to achene age at each ploidy level. Partition of the total phenotypic variance showed that there was extensive variation between ploidy levels. The mean of morphological characters was generally higher in polyploids. For diploid cytotypes, flower number, achene production and fruiting percentage were significantly higher than for tetraploid cytotypes. Cluster analysis indicated that the patterns of seedling morphology and development were similar in three diploid individuals and several tetraploids; the same analysis showed high similarity between diploid individuals of the natural populations, whereas tetraploid individuals showed high dissimilarity among themselves and with diploid individuals. Multiple correspondence analysis and logistic regression analysis indicated that qualitative characters contribute strongly to cytotype differentiation. The results support recognition of the tetraploid cytotypes at the subspecies level. © 2008 The Linnean Society of London, Botanical Journal of the Linnean Society, 2008, 158 , 650–668.  相似文献   

6.
Epistasis plays an important role in the genetic basis of rice yield traits. Taking interactions into account in breeding programs will help the development of high-yielding rice varieties. In this study, three sets of near isogenic lines (NILs) targeting three QTLs for spikelets per panicle (SPP), namely qSPP1, qSPP2 and qSPP7, which share the same Zhenshan 97 genetic background, were used to produce an F2 population in which the three QTLs segregated simultaneously. The genotypes of the individual F2 plants at the three QTLs were replaced with three markers that are closely linked to the corresponding QTLs. These QTLs were validated in the F2 and F3 populations at the single marker level. qSPP7 exhibited major pleiotropic effects on SPP, plant height and heading date. Multifactor analysis of variance was performed for the F2 population and its progeny. Additive (additive interaction between qSPP2 and qSPP7 had significant effects on SPP in both the F2 population and its progeny. Both additive and additive (additive interactions could explain about 73% of the total SPP phenotypic variance. The SPP performance of 27 three-locus combinations was ranked and favorable combinations were recommended for rice breeding in different ecosystems.  相似文献   

7.
Summary Six replicate lines of Drosophila melanogaster, which had been selected for increased abdominal bristle number for more than 85 generations, were assayed by hierarchical analysis of variance and offspring on parent regression immediately after selection ceased, and by single-generation realised heritability after more than 25 generations of subsequent relaxed selection.Half-sib estimates of heritability in 5 lines were as high as in the base population and much higher than observed genetic gains would suggest, excluding lack of sufficient additive genetic variance as a cause of ineffective selection in these lines. Also, there was considerable diversity among the six lines in composition of phenotypic variability: in addition to differences in the additive genetic component, one or more of the components due to dominance, epistasis, sex-linkage or genotype-environment interaction appeared to be important in different lines.Even after relaxed selection, single-generation realised heritabilities in four lines were as high as in the base population. As a large proportion of total genetic gain must have been made by fixation of favourable alleles, the compensatory increase of genetic variability has been sought in a genetic model involving genes at low initial frequencies, enhancement of gene effects during selection and/or new mutations.  相似文献   

8.
This study identified four and five quantitative trait loci (QTLs) for 1,000-grain weight (TGW) and spikelets per panicle (SPP), respectively, using rice recombinant inbred lines. QTLs for the two traits (SPP3a and TGW3a, TGW3b and SPP3b) were simultaneously identified in the two intervals between RM3400 and RM3646 and RM3436 and RM5995 on chromosome 3. To validate QTLs in the interval between RM3436 and RM5995, a BC3F2 population was obtained, in which TGW3b and SPP3b were simultaneously mapped to a 2.6-cM interval between RM15885 and W3D16. TGW3b explained 50.4% of the phenotypic variance with an additive effect of 1.81 g. SPP3b explained 29.1% of the phenotypic variance with an additive effect of 11.89 spikelets. The interval had no effect on grain yield because it increased SPP but decreased TGW and vice versa. Grain shape was strongly associated with TGW and was used for QTL analysis in the BC3F2 population. Grain length, grain width, and grain thickness were also largely controlled by TGW3b. At present, it is not clear whether one pleiotropic QTL or two linked QTLs were located in the interval. However, the conclusion could be made ultimately by isolation of TGW3b. The strategy for TGW3b isolation is discussed.  相似文献   

9.
Summary Genetical studies on grain yield and its contributing traits were made in a six parent complete diallel in the F1 and F2 generations of one of the most widely grown grain species of grain amaranths (Amaranthus hypochondriacus L.). Graphical analysis indicated that epistasis exists for 1,000-grain weight in the F1. Grain weight/panicle, yield/plant and harvest index indicated absence of non-allelic gene interaction. The harvest index in the F1 and F2 and grain weight/ panicle, 1,000-grain weight, yield/plant in the F2 appeared to be controlled by overdominance effects. Higher grain yield appeared to be associated with dominant genes. Both additive and non-additive gene effects were responsible for the genetic variation in the diallel population. However, dominance variance was more important than additive variance in grain yield/ plant and harvest index in the F1 and F2. For 1,000-grain weight additive genetic variance was more important in the F1 and non-additive in F2. There was overdominance of a consistent nature in the two analyses for harvest index in the F1 and F2, grain weight/ panicle, 1,000-grain weight and yield/plant in the F2 and partial dominance for 1,000-grain weight in the F1.  相似文献   

10.
Levels of differentiation in morphological traits (age at maturity, body length at age, egg mass and body depth) and spawning time were examined in sockeye salmon Oncorhynchus nerka from three geographically proximate but physically distinct creeks in Lake Aleknagik, Alaska. Happy Creek fish had significantly greater values for most measured morphological traits, and Eagle Creek fish spawned significantly later than fish in the other creeks. Phenotypic differentiation between creeks, measured as PST, was then compared with microsatellite marker differentiation between creeks, measured as FST. No correlations were apparent between PST and FST values, and PST values were generally significantly larger than zero (PST= 0·0018–0·31) whereas FST values were not (FST=?0·0004 to 0·0016). The insignificant pair‐wise FST values between creek samples indicated that gene flow occurs between creeks, assuming the creek populations have reached migration–drift equilibrium. However, the strong homing behaviour of sockeye salmon precludes a scenario in which fish from the three creeks constitute a single population that segregates by body size. Rather, significant phenotypic differentiation suggests that strong divergent selection occurs on the phenotypic traits despite the homogenizing effects of gene flow.  相似文献   

11.
Phaeosphaeria leaf spot (PLS) is an important disease in tropical and subtropical maize (Zea mays, L.) growing areas, but there is limited information on its inheritance. Thus, this research was conducted to study the inheritance of the PLS disease in tropical maize by using QTL mapping and to assess the feasibility of using marker-assisted selection aimed to develop genotypes resistance to this disease. Highly susceptible L14-04B and highly resistant L08-05F inbred lines were crossed to develop an F2 population. Two-hundred and fifty six F2 plants were genotyped with 143 microsatellite markers and their F2:3 progenies were evaluated at seven environments. Ten plants per plot were evaluated 30 days after silk emergence following a rating scale, and the plot means were used for analyses. The heritability coefficient on a progeny mean basis was high (91.37%), and six QTL were mapped, with one QTL on chromosomes 1, 3, 4, and 6, and two QTL on chromosome 8. The gene action of the QTL ranged from additive to partial dominance, and the average level of dominance was partial dominance; also a dominance × dominance epistatic effect was detected between the QTL mapped on chromosome 8. The phenotypic variance explained by each QTL ranged from 2.91 to 11.86%, and the joint QTL effects explained 41.62% of the phenotypic variance. The alleles conditioning resistance to PLS disease of all mapped QTL were in the resistant parental inbred L08-05F. Thus, these alleles could be transferred to other elite maize inbreds by marker-assisted backcross selection to develop hybrids resistant to PLS disease.  相似文献   

12.
Quantitative genetic divergence may be driven by drift or selection. The rainbowfish Melanotaenia australis exhibits phenotypic divergence among populations in Western Australia, although the mechanisms driving this divergence are unknown. We used microsatellites to assess neutral genetic divergence (FST), and found a hierarchical pattern of subdivision consistent with low divergence between upstream and downstream populations (within drainages), moderate divergence between drainages (within regions), and high divergence between regions. Using a common‐garden approach, we measured quantitative genetic divergence in phenotypic traits (QST). By comparing this to expectations from neutral processes (FST), we concluded that the effect of selection varies depending on the spatial scale considered. Within drainages, selection may be causing divergence between upstream and downstream phenotypes but, between regions, selection appears to homogenize phenotypes. This highlights the importance of spatial scale in studies of this kind, and suggests that, because variance in selection pressures can drive speciation, polymorphism in M. australis may represent speciation in action. © 2010 The Linnean Society of London, Biological Journal of the Linnean Society, 2011, 102 , 144–160.  相似文献   

13.
The heritability (h2) of fitness traits is often low. Although this has been attributed to directional selection having eroded genetic variation in direct proportion to the strength of selection, heritability does not necessarily reflect a trait's additive genetic variance and evolutionary potential (“evolvability”). Recent studies suggest that the low h2 of fitness traits in wild populations is caused not by a paucity of additive genetic variance (VA) but by greater environmental or nonadditive genetic variance (VR). We examined the relationship between h2 and variance‐standardized selection intensities (i or βσ), and between evolvability (IA:VA divided by squared phenotypic trait mean) and mean‐standardized selection gradients (βμ). Using 24 years of data from an island population of Savannah sparrows, we show that, across diverse traits, h2 declines with the strength of selection, whereas IA and IR (VR divided by squared trait mean) are independent of the strength of selection. Within trait types (morphological, reproductive, life‐history), h2, IA, and IR are all independent of the strength of selection. This indicates that certain traits have low heritability because of increased residual variance due to the age at which they are expressed or the multiple factors influencing their expression, rather than their association with fitness.  相似文献   

14.
The study of the genetic variation of early height growth traits in seedlings helps to predict the possible outcomes of tree populations in the face of climate change. Second‐year height growth of 10 geographically marginal populations of Patagonian cypress (Austrocedrus chilensis (D. Don) Pic. Ser. et Bizzarri) (Cupressaceae) was characterized under greenhouse conditions. Variation among and within an average of 15 open‐pollinated families (comprising 21 seedlings per family) for each population was analysed for six size and timing traits obtained from fitted Boltzmann growth curves. The among‐family and among‐population variances were 4.03% and 2.74% of the total phenotypic variation, while the residual variance was 84.57% on average. Genetic differentiation among populations was low, except for the maximum growth rate (QST = 0.35) and for growth initiation (QST = 1). For most traits, genetic variation and heritability were variable across populations, except for growth initiation, which showed in general null intra‐population levels of genetic variance. Although no direct associations were found between the additive genetic variation and latitude or altitude, the north range of the distribution was more variable for the pool of the analysed traits. Although most extreme‐marginal populations of A. chilensis would be very limited in their ability to evolve if climate in north‐west Patagonia turns drier and warmer, their long‐term persistence could largely rely on a phenotypic diversification strategy.  相似文献   

15.
Population structure of pests is an important issue when designing management strategies to optimize control measures. In this study, we investigated a spatial pattern of genetic and phenotypic variation within seven urban and within six rural populations of Culex pipiens from Vojvodina Province (Serbia) incorporating landscape genetic methods (using allozyme data) and wing size and shape (using geometric morphometric approach). Comparing rural samples, no strong genetic groupings of individuals were detected. Nevertheless, traditional approaches where individuals are pre‐assigned to populations, including F statistics and amova (analysis of molecular variance), revealed low, but significant genetic differentiation among samples. Similarly, phenotypic data (wing size and shape) indicated some level of heterogeneity among rural samples. Contrary to genetic homogeneity found within rural biotype, the individual‐based structuring characterized urban biotype. Geneland revealed the presence of two genetic clusters within urban group which is in concordance with FST and amova results. These results showed that sample from Novi Sad (NS) is a distinct genetic unit, which has been likely resulted in intensive insecticide use over several decades. Furthermore, phenotypic differentiation supported the existence of spatial structuring. Therefore, complementary use of molecular markers and phenotypic traits may be a powerful tool for revealing hidden spatial diversity within Cx. pipiens.  相似文献   

16.
The effects of a single population bottleneck of differing severity on heritability and additive genetic variance was investigated experimentally using a butterfly. An outbred laboratory stock was used to found replicate lines with one pair, three pairs and 10 pairs of adults, as well as control lines with approximately 75 effective pairs. Heritability and additive genetic variance of eight wing pattern characters and wing size were estimated using parent-offspring covariances in the base population and in all daughter lines. Individual morphological characters and principal components of the nine characters showed a consistent pattern of treatment effects in which average heritability and additive genetic variance was lower in one pair and three pair lines than in 10 pair and control lines. Observed losses in heritability and additive genetic variance were significantly greater than predicted by the neutral additive model when calculated with coefficients of inbreeding estimated from demographic parameters alone. However, use of molecular markers revealed substantially more inbreeding, generated by increased variance in family size and background selection. Conservative interpretation of a statistical analysis incorporating this previously undetected inbreeding led to the conclusion that the response to inbreeding of the morphological traits studied showed no significant departure from the neutral additive model. This result is consistent with the evidence for minimal directional dominance for these traits. In contrast, egg hatching rate in the same experimental lines showed strong inbreeding depression, increased phenotypic variance and rapid response to selection, highly indicative of an increase in additive genetic variance due to dominance variance conversion.  相似文献   

17.
Temporal changes at 17 allozyme loci in the Diplodus sargus population of Banyuls sur Mer (Mediterranean Sea, France) were monitored within a single population among ten year‐classes (cohorts) sampled over a 6‐month period. The genetic survey was combined with evaluation of the demographic structure of the population by determining variation of abundance between cohorts. The population showed variation in abundance among cohorts ranging from 16 to 214 individuals. Significant divergences in genetic structure were observed between cohorts (P < 0.0001) despite very low values of FST (multilocus FST over all cohorts = 0.0018). The heterozygosity of each cohort, as well as the FIS values, was significantly correlated with the abundance of each cohort, with abundant cohorts showing lower heterozygosity and a significant deficit of heterozygotes (positive FIS values). Finally, multilocus temporal genetic variance (Fk) computed between successive cohorts was higher in low abundance cohorts. Change of heterozygosity between cohorts, distribution of year‐class genetic structure, and change in the genetic structure within a cohort appear to be affected mostly by the abundance of the cohort and are therefore driven by genetic drift. We propose that the Diplodus sargus cohorts are built up from the mixing of families during the pelagic stage or later during recruitment, and that the decrease in heterozygosity leading to a deficit of heterozygotes is characteristic of a Wahlund effect. Such a Wahlund effect would derive from the mixing of the progeny of families made up of few individuals, but exhibiting high fecundity and high variability of reproductive success. Therefore, although cohorts derived from poor recruitment would only group a few families and would exhibit limited deficit of heterozygotes (higher heterozygosity values), they would lead to high genetic drift and appear more divergent (higher mean temporal genetic variance) than cohorts with high abundance. While not demonstrating directly the family structure of marine populations, our survey provides evidence of highly structured populations. © 2002 The Linnean Society of London, Biological Journal of the Linnean Society, 2002, 76 , 9–20.  相似文献   

18.
We have estimated levels of genetic diversity and partitioning in the Mexican endemic cycad species Dioon sonorense, Dioon tomasellii, and Dioon holmgrenii, whose populations are exclusively distributed along the Pacific seaboard. For the three species, the patterns of variation at 19 allozyme loci in a total of 11 populations were evaluated. The average number of alleles per locus was in the range 2.05–1.68, corresponding to the northernmost population of D. sonorense (Mazatán), and the southernmost population of Dioon holmgrenii (Loxicha), respectively. In turn, the percentage of polymorphic loci peaked (94.73) in the El Higueral and Altamirano populations of Dioon tomasellii, and was estimated to be lowest (57.89) in the Loxicha population of D. holmgrenii. The mean expected heterozygosis varied markedly between taxa, with relatively high indices for D. sonorense and D. tomasellii (HE = 0.314 and 0.295, respectively) and substantially lower values for D. holmgrenii (HE = 0.170). Comparison of the inferred genetic structure based on F‐statistics for the three species also indicated differences along the north‐south Pacific seaboard axis. For D. sonorense and D. tomasellii, local inbreeding (FIS) was zero but global inbreeding (FIT) values were positive and significantly different from zero (0.130 and 0.116, respectively). By contrast, values of both FIT and FIS were negative and significantly different from zero (?0.116 and ?0.201, respectively) for D. holmgrenii. The genetic differentiation between populations (FST) had positive values in all taxa and corresponded with their geographic location along the north‐south axis: according to this statistic, D. sonorense was the most differentiated species (FST = 0.151), D. tomasellii had intermediate values (FST = 0.145), and D. holmgrenii was the less differentiated taxon (FST = 0.069). Finally, a phenogram representing Nei's genetic distances among populations displayed three major groups, each one corresponding to each of the studied species. Within D. tomasellii (of intermediate geographic distribution), a further division into two clusters corresponded precisely to the pair of populations that are geographically divided by the Trans Mexican Neovolcanic Mountains. © 2008 The Linnean Society of London, Biological Journal of the Linnean Society, 2008, 94 , 765–776.  相似文献   

19.
Summary The inheritance of the restoration of fertility in material carrying the cytoplasm of Triticum timopheevi was studied in F2, F3 and F4 generations. In the material used the segregation of restoration was shown to fit the hypothesis of three major, dominant, partially dominant or additive genes each of which made a different contribution to restoration but which acted cumulatively to produce the phenotypic expression observed.From the material it was possible to extract homozygous lines carrying known combinations of these three genes which can be used as tester lines to investigate the inheritance of genes for restoration derived from other sources.  相似文献   

20.
Whitlock MC  Fowler K 《Genetics》1999,152(1):345-353
We performed a large-scale experiment on the effects of inbreeding and population bottlenecks on the additive genetic and environmental variance for morphological traits in Drosophila melanogaster. Fifty-two inbred lines were created from the progeny of single pairs, and 90 parent-offspring families on average were measured in each of these lines for six wing size and shape traits, as well as 1945 families from the outbred population from which the lines were derived. The amount of additive genetic variance has been observed to increase after such population bottlenecks in other studies; in contrast here the mean change in additive genetic variance was in very good agreement with classical additive theory, decreasing proportionally to the inbreeding coefficient of the lines. The residual, probably environmental, variance increased on average after inbreeding. Both components of variance were highly variable among inbred lines, with increases and decreases recorded for both. The variance among lines in the residual variance provides some evidence for a genetic basis of developmental stability. Changes in the phenotypic variance of these traits are largely due to changes in the genetic variance.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号