首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 593 毫秒
1.
Nitrate reduction was studied in the dinoflagellatePeridinium cinctum collected from extensive algal blooms in Lake Kinneret (Israel).Among several methods tested for the preparation of cell free extracts, only the use of a ground-glass tissue culture homogenizer was found to be efficient. The assimilatory nitrate reductase ofP. cinctum was located in a particulate fraction. In this respect,P. cinctum did not behave like other eukaryotes, such as green algae, but as a prokaryote. Nitrite reductase activity was found in the soluble fraction.Nitrate reductase used NADH as a preferable electron donor; it reacted also with NADPH but only to give 16.5% of the NADH dependent rate. Methyl viologen and benzyl viologen could also serve as electron donors, with rates higher than the NADH dependent activity (3–6 times and 1.5–3 times, respectively). The Km of nitrate reductase for NADH was 2.8×10–4 M and for NO3-1.9×10–4 M. Flavins did not stimulate the activity, nor was ferricyanide able to activate it. Carboxylic anions stimulated nitrate reductase activity 3–4 fold, an effect which was not mimicked by other anions.Chlorate, azide and cyanide were competitive inhibitors ofP. cinctum, nitrate reductase withK i values of 1.79×10–3 M, 2.1×10–5 M and 8.9×10–6 M respectively.  相似文献   

2.
Activity of ferredoxin-NADP+ reductase in leaf extracts of eastern hemlock [Tsuga canadensis (L.) Carr.] was relatively low, but could be markedly increased by use of protective agents. The best method employed polyvinylpolypyrrolidone (PVP) in the extraction medium plus removal of phenolic compounds by filtering the extracts through an insoluble PVP (Polyclar AT) column. Further purification of the enzyme was achieved by means of DEAE cellulose chromatography and DEAE Sephadex chromatography. A 94-fold purification of the enzyme with a total recovery of 43% was obtained. The eastern hemlock ferredoxin-NADP+ reductase was characterized by its diaphorase activity, i.e. the transfer of electrons from NADPH to an electron acceptor. 2,6-dichlorophenol indophenol. The pH optimum for the oxidation of NADPH is between 8.5 and 9.0. The enzyme is highly specific for its electron donor. NADPH, but shows low specificity for electron acceptors. The apparent Michaelis constant values of the enzyme for NADPH. NADH, and 2,6-dichlorophenol indophenol are 2.4 × 10?5, 5.4 × 10?3, and 4.7 × 10?5M respectively. The molecular weight of the enzyme, as estimated by gel filtration, is about 45,000. The enzyme is inhibited by both organic and inorganic mercurials and certain cations. Comparison of properties of eastern hemlock ferredoxin-NADP+ reductase and spinach ferredoxin-NADP+ reductase shows that both enzymes are similar.  相似文献   

3.
The development and regional distribution of ribonucleotide reductase (EC 1.17.4.1) were determined in rat brain. Ribonucleotide reductase was partially purified by ammonium sulfate fractionation (20-40% saturation). Enzyme activity was measured by a specific radiochemical assay. This method involved the reduction of [14C]cytidine diphosphate (CDP) to [14C]deoxy-cytidine diphosphate with subsequent hydrolysis and separation of the product ([14C]deoxycytidine) from substrate ([14C]cytidine) by Dowex-1-borate ion-exchange chro-matography. The specific activity of ribonucleotide reductase in whole brain of newborn rats was 3.78 ± 0.55 units (pmol/h)/mg protein (SEM; n = 6) and declined to 0.17 ± 0.01 units/mg protein (n = 7) at 10-12 weeks of age, with a further decline to 0.11 ± 0.01 units/mg protein (n = 3) at 1 year. Ribonucleotide reductase activity in rat liver decreased from 4.58 ± 0.62 units/mg protein (n = 3) in newborn animals to 0.06 ± 0.01 units/mg protein (n = 7) at 10-12 weeks and was present at trace levels at 6 months of age. The decline in specific activity with age was not due to a change in the Km for CDP. The Km for CDP in brain of newborn and adult rats was 80-90 μM. In 10- to 12-week-old rats, the specific activity of ribonucleotide reductase was similar in the various regions of the brain tested except for the brainstem, which had 50% lower specific activity than the whole brain. These results indicate that ribonucleotide reductase activity is present and widely distributed in adult rat brain.  相似文献   

4.
Hexavalent chromium contamination is a serious problem due to its high toxicity and carcinogenic effects on the biological systems. The enzymatic reduction of toxic Cr(VI) to the less toxic Cr(III) is an efficient technology for detoxification of Cr(VI)-contaminated industrial effluents. In this regard, a chromate reductase enzyme from a novel Ochrobactrum sp. strain Cr-B4, having the ability to detoxify Cr(VI) contaminated sites, has been partially purified and characterized. The molecular mass of this chromate reductase was found to be 31.53 kD, with a specific activity 14.26 U/mg without any addition of electron donors. The temperature and pH optima for chromate reductase activity were 40°C and 8.0, respectively. The activation energy (Ea) for the chromate reductase was found to be 34.7 kJ/mol up to 40°C and the activation energy for its deactivation (Ed) was found to be 79.6 kJ/mol over a temperature range of 50–80°C. The frequency factor for activation of chromate reductase was found to be 566.79 s?1, and for deactivation of chromate reductase it was found to be 265.66 × 103 s?1. The reductase activity of this enzyme was affected by the presence of various heavy metals and complexing agents, some of which (ethylenediamine tetraacetic acid [EDTA], mercaptoethanol, NaN3, Pb2+, Ni2+, Zn2+, and Cd2+) inhibited the enzyme activity, while metals like Cu2+ and Fe3+ significantly enhanced the reductase activity. The enzyme followed Michaelis–Menten kinetics with Km of 104.29 µM and a Vmax of 4.64 µM/min/mg.  相似文献   

5.
Sulfite reductase activity by algal extracts was investigated using reduced methylviologen as a hydrogen donor. Sulfite reductase appears to be widely distributed in various algae, but the enzymatic activity was not detected in the brown algae examined. The addition of phosphate buffer to the reaction mixture caused a marked decrease in activity. Sulfite reductase was partially purified from the autolysate of Porphyra tenera and some properties were studied. The optimal pH was 7.5 to 8.5 in Tris-HGl buffer system. The Km for sulfite was 6.65 × 10?4m. The enzymatic activity was completely inhibited by potassium cyanide at 5 × 10?4m. The enzyme catalyzed the reduction of sulfite to sulfide. Neither NADPH nor NADH acts as a hydrogen donor. However, it was revealed that ferredoxin can act as an electron carrier in sulfite reduction to sulfide in Porphyra extract.  相似文献   

6.
Protein disulphide isomerase (PDI) in the endoplasmic reticulum catalyzes the rearrangement of disulphide bridges during folding of secreted proteins. It binds various molecules that inhibit its activity. But here, we looked for molecules that would potentiate its activity. PDI reductase activity was measured in vitro using di-eosin-oxidized glutathione as substrate. Its classical inhibitor bacitracin was found to exert a biphasic effect: stimulatory at low concentrations (~10?6 M) and inhibitory only at higher concentrations (~10?4–10?3 M). The weak oestrogenic molecule bisphenol A was found to exert a weak inhibitory effect on PDI reductase activity relative to the strong oestrogens, ethynylestradiol, and diethylstilbestrol. Like 19-nortestosterone, fluoxetine was found to exert a potentiating effect on PDI reductase activity and their potentiating effects could be reversed by increasing concentrations of oestrogens. In conclusion, this paper provides the first identification of potentiators of PDI activity that are potential pharmaceuticals against pathologies affecting protein folding such as Alzheimer’s disease.  相似文献   

7.
Summary Several yeast strains were assayed for occurence of nitrate reductase after growth in a defined medium with nitrate as the sole nitrogen source, Candida boidinii DSM 70026, showing the highest specific activity, was further investigated. The procedures for yeast fermentation and nitrate reductase purfication are described in detail. Nitrate reductase from this yeast was characterized as NAD(P)H: nitrate oxidoreductase (E.C.1.6.6.2). The enzyme activity with NADH (NADPH) was highest at pH 7.0 (7.1) and 30° C (25° C). The values of K m determinations with NADH/NADPH were both 4 × 10–4 mol/l; values for the substrate inhibition constant (K i) were 6 × 10–4 mol/l. The molecular mass of the native enzyme was estimated by gel permeation chromatography to be approximately 350 kDa. Offprint requests to: R. Gromes  相似文献   

8.
Cells of the phototrophic bacterium Chromatium vinosum strain D were shown to contain a siroheme sulfite reductase after autotrophic growth in a sulfide/bicarbonate medium. The enzyme could not be detected in cells grown heterotrophically in a malate/sulfate medium. Siroheme sulfite reductase was isolated from autotrophic cells and obtained in an about 80% pure preparation which was used to investigate some molecular and catalytic properties of the enzyme. It was shown to consist of two different types of subunits with molecular weights of 37,000 and 42,000, most probably arranged in an 44-structure. The molecular weight of the native enzyme was determined to 280,000, 51 atoms of iron and 47 atoms of acid-labile sulfur were found per enzyme molecule. The absorption spectrum indicated siroheme as prosthetic group; it had maxima at 280 nm, 392 nm, 595 nm, and 724 nm. The molar extinction coefficients were determined as 302×103 cm2xmmol-1 at 392 nm, 98×103 cm2 xmmol-1 at 595 nm and 22×103 cm2x-mmol-1 at 724 nm. With reduced viologen dyes as electron donor the enzyme reduced sulfite to sulfide, thiosulfate, and trithionate. The turnover number with 59 (2 e-/enzyme moleculexmin) was low. The pH-optimum was at 6.0. C. vinosum sulfite reductase closely resembled the corresponding enzyme from Thiobacillus denitrificans and also desulfoviridin, the dismilatory sulfite reductase from Desulfovibrio species. It is proposed that C. vinosum catalyses anaerobic oxidation of sulfide and/or elemental sulfur to sulfite in the course of dissimilatory oxidation of reduced sulfur compounds to sulfate.Non-common abbreviations APS adenylyl sulfate - SDS sodium dodecyl sulfate  相似文献   

9.
Studies on the subcellular distribution of NADPH-linked aldehyde reductase from rat brain showed that 10% of the total reductase activity is located in the mitochondrial-synaptosomal fraction. There are differences in the percentages of reductase activity found in the synaptosomes compared to cytosol in various regions of the brain. The NADPH-linked aldehyde reductase from the synaptosomal fraction exhibited a nonlinear Lineweaver-Burk plot. This nonlinearity is due to the presence of two distinct aldehyde reductases, which can be distinguished by Michealis constants forp-nitrobenzaldehyde of 4.1×10–5 M and 2.6×10–6 M. The two NADPH-linked aldehyde reductases isolated from synaptosomes were further characterized according to pH optima, andK i values for inhibition by barbiturates. In addition regional distributions for the two enzymes were determined. TheK i values for pentobarbital for the highK m enzyme and the lowK m enzyme were estimated to be 2×10–5 M and 6×10–5 M, respectively. It was concluded from the above studies that the lowK m reductase is probably responsible for 3,4-dihydroxyphenylglycoaldehyde (derived from norepinephrine) reduction in brain and a role of the highK m enzyme for protection of neurons from high concentrations of chemically reactive aldehydes was proposed.This work was supported in part by Grants from the National Institute of Mental Health, MH 18948 from the University of Colorado Council on Research and Creative Work and by an MBS Program Grant #081-39.This work was performed in partial fulfillment of the requirements for the Ph. D. thesis.  相似文献   

10.
Extracts of Aspergillus nidulans wild type (bi-1) and the nitrate reductase mutant niaD-17 were active in the in vitro restoration of NADPH-dependent nitrate reductase when mixed with extracts of Neurospora crassa, nit-1. Among the A. nidulans cnx nitrate reductase mutants tested, only the molybdenum repair mutant, cnxE-14 grown in the presence of 10−3 M Na2MoO4 was active in the restoration assay.Aspergillus extracts contained an inhibitor(s) which was measured by the decrease in NADPH-dependent nitrate reductase formed when extracts of Rhodospirillum rubrum and N. crassa, nit-1 were incubated at room temperature. The inhibition by extracts of A. nidulans, bi-1, cnxG-4 and cnxH-3 was a linear function of time and a logarithmic function of the protein concentration in the extract.The molybdenum content of N. crassa wild type and nit-1 mycelia were found to be similar, containing approx. 10 μg molybdenum/mg dry mycelium. The NADPH-dependent cytochrome c reductase associated with nitrate reductase was purified from both strains. The enzyme purified from wild-type N. crassa contained more than 1 mol of molybdenum per mol of enzyme, whereas the enzyme purified from nit-1 contained negligible amounts of molybdenum.  相似文献   

11.
A unique group of mutations (amer) in the dihydrofolate reductase (5,6,7,8-tetrahydrofolate:NADP+ oxidoreductase, EC 1.5.1.3.) structural gene of Diplococcus pneumoniae determine a marked overproduction of the corresponding enzyme protein. Since findings with these mutations relate to a key metabolic function and may be important to the regulation of folate coenzyme synthesis in general, the same group of multations were also examined for their effects on a number of related enzymic activities. Mutant and wild-type cell-free extracts, in addition to dihydrofolate reductase activity, exhibited both dihydropteroate and dihydrofolate synthetic activities under the conditions employed. Four folate coenzyme-related enzyme activities could also be demonstrated with the same preparations. These are mediated by the following enzymes, serine hydroxymethyl transferase (l-serine: tetrahydrofolate 10-hydroxymethyl tranferase, EC 2.1.2.1), 5, 10-methylenetetrahydrofolate dehydrogenase (5,10-methylenetetrahydrofolate: NADP+ oxidoreductase, EC 1.5.1.5), 10-formyltetrahydrofolate synthetase (formate: tetrahydrofolate ligase (ADP-forming), EC 6.3.4.3) and glutamate formiminotransferase (N-formimino-l-glutamate: tetrahydrofolate 5-formiminotransferase, EC 2.1.2.5). The amer mutations examined in the current study determined 3–80-fold increases in dihydrofolate reductase in comparison to the wild type. However, none of the other folate-related enzyme activities were altered. The possible significance of these findings in light of previous results is discussed.  相似文献   

12.
Dihydrofolate reductase and aminopterin resistance in Pneumococcus   总被引:1,自引:0,他引:1  
Summary Wild-type pneumococci derived from Avery's strain R36A are sensitive to extracellular concentrations of the folate antimetabolite aminopterin exceeding 1.0x10-6 M. Three classes of resistant strains are phenotypically distinguishable: amiB-r, amiA-r and amiD-r strains are resistant to low (1.5x10-6 M), intermediate (0.5–4.0×10-5 M) and high (4.5x10-4 M) aminopterin levels respectively. The amiA and amiB regions are weakly linked, but linkage has not been established between either of these loci and the amiD region.Consistent with the maximum resistance conferred by mutations in the amiA locus, dihydrofolate (FH2) reductase in cell-free extracts (CFE) of amiA-r strains has a two- to six-fold greater affinity for the substrate than dose the enzyme in wild-type CFE (Table 1); FH2 reductase from amiA-r strains may also have reduced affinity for aminopterin. Specific activity of the enzyme is not affected by mutation in the amiA locus (Table 1) and its affinity for the cofactor (NADPH) is probably unaffected by mutation in this locus (Table 4). Dihydrofolate reductase activity in amiA5 CFE is considerably more thermolabile than that in wild-type CFE (Table 2).The enzyme in CFE of the high resistance strain amiD1 has the same affinity for the substrate, cofactor and antimetabolite as FH2 reductase in wild-type CFE (Figs. 1–4, 8 and 9; Table 4). However, specific activity of the enzyme in amiD1 CFE is 11-fold higher than that in wild-type CFE (Table 1) and it is much more heat stable (Table 2).Some properties of FH2 reductase in CFE of the high resistance recombinant strain amiA5amiD1 are intermediate between those in CFE of wild-type and amiD1.Preliminary results suggest that CFE of wild-type and amiA5 contain a factor, which is neither dialyzable nor heat sensitive, that has an inhibitory effect upon activity and stability of FH2 reductase in amiD1 CFE (Tables 2 and 3).  相似文献   

13.
The methemoglobin reductase system plays a vital role in maintaining the equilibrium between hemoglobin and methemoglobin in blood. Exposure of red blood cells to oxidative stress (pathological/physiological) may cause impairment to this equilibrium. We studied the status of erythrocytic methemoglobin and the related reductase system during Plasmodium yoelii nigeriensis infection in mice and P. berghei infection in mastomys. Malaria infection was induced by intraperitoneal inoculation with 106 infected erythrocytes. The present investigation revealed a significant decrease in the activity of methemoglobin reductase, with a concomitant rise in methemoglobin content during P. yoelii nigeriensis infection in mice erythrocytes. This was accompanied with a significant increase in reduced glutathione and ascorbate levels. The activity of lactate dehydrogenase, glucose 6-phosphate dehydrogenase and glutathione reductase increased with a progressive rise in parasitemia. However, no methemoglobin or associated reductase activity was detected in normal and P. berghei-infected mastomys. P. berghei infection in mastomys resulted in an increase in the level of reduced glutathione and ascorbate in erythrocytes, and also in the activity of lactate dehydrogenase, glucose 6-phosphate dehydrogenase and glutathione reductase. These results suggest that antioxidants/antioxidant enzymes may prevent or reduce the formation of methemoglobin in the host and thereby protect the host from methemoglobinemia.  相似文献   

14.
The enzyme activities of Clostridium La 1 and Clostridium kluyveri involved in the stereospecific hydrogenation of ,-unsaturated carbonyl compounds with hydrogen gas were measured. In C. La 1 the specific activities of hydrogenase and enoate reductase depended heavily on the growth phase and the composition of the medium. During growth in batch cultures on 70 mM crotonate the specific activity of hydrogenase increased and then dropped to about 10% of its maximum value, whereas the activity of enoate reductase reached its maximum in cells of the stationary phase. Under certain conditions during growth the activity ratio hydrogenase: enoate reductase changed from 120 to 1. Thus, the rate limiting enzyme for the hydrogenation can be either the hydrogenase or the enoate reductase, depending on the growth conditions of the cells.The specific activities of ferredoxin-NAD reductase and butyryl-CoA dehydrogenase increased 3-4-fold during growth on crotonate. By turbidostatic experiments it was shown that at constant input of high crotonate concentrations (200 mM) the enoate reductase activity was almost completely suppressed; it increased steadily with decreasing crotonate down to an input concentration of 35 mM.Glucose as carbon source led to high hydrogenase and negligible enoate reductase activities. The latter could be induced by changing the carbon source of the medium from glucose to crotonate. Tetracycline inhibited the formation of enoate reductase.A series of other carbon sources was tested. They can be divided into ones which result in high hydrogenase and rather low enoate reductase activities and others which cause the reverse effect.When the Fe2+ concentration in crotonate medium was growth limiting, cells with relatively high hydrogenase activity and very low enoate reductase activity in the stationary phase were obtained. At Fe2+ concentrations above 3·10-7 M enoate reductase increased and hydrogenase activity reached its minimum. The ratio of activities changes by a factor of about 200. In a similar way the dependence of enzyme activities on the concentration of sulfate was studied.In batch cultures of Clostridium kluyveri a similar opposite time course of enoate reductase and hydrogenase was found.The possible physiological significance of this behavior is discussed.Non Standard Abbreviations O.D.578 Optical density at 578 nm Dedicated to Professor Dr. O. Kandler on the occasion of his 60th birthday  相似文献   

15.
Since ferredoxin-dependent sulfite reductase (EC 1.8.7.1) and nitrite reductase (EC 1.7.7.1) can both catalyze the reduction of SO2-3 and NO?2, physiological and biochemical evidence is needed for properly classifying the two enzyme activities. They were therefore compared during ontogeny of pea leaves and in the effect of their products, sulfide and ammonium, on their catalytic activity. In the crude extract of the young second leaf of pea plants, Pisum sativum L. cv. Vatters Frühbusch, no ferredoxin-nitrite reductase activity could be detected, but ferredoxin-sulfite reductase and ATP-sulfurylase (EC 2.7.7.4), measured for comparison, were at 24 and 14%, respectively, of their maximal activity per leaf. After 11 and 12 days, respectively, ATP-sulfurylase and ferredoxin-sulfite reductase were no longer detectable, whereas ferredoxin-nitrite reductase was still at more than 30% of its maximal activity per leaf. Ferredoxin-sulfite reductase was inhibited by 50% with 18 μM and 100% with 30 μM sulfide produced by this enzyme during its assay. Sulfide at 100 μM added to the assay mixture completely inhibited ferredoxin-sulfite reductase activity in the crude extract, the 30000 g pellet and its supernatant. The same addition reduced ferredoxinnitrite reductase activity by 20% in the crude extract and by 100% in the 30000 g pellet. NH+4 at 100 μM did not affect ferredoxin-sulfite reductase or ferredoxin-nitrite reductase activity. The inhibition by sulfide and the changes in activity during ontogeny similar to ATP-sulfurylase (which catalyzes the first step of assimilatory sulfate reduction) represent biochemical and physiological evidence for the correct classification of ferredoxin-sulfite reductase. The complete inhibition of ferredoxin-nitrite reductase activity in the 30000 g pellet by S2- indicates that this activity was due to a ferredoxin-sulfite reductase.  相似文献   

16.
Methanopyrus kandleri belongs to a novel group of abyssal methanogenic archaebacteria that can grow at 110°C on H2 and CO2 and that shows no close phylogenetic relationship to any methanogens known so far. N 5 N 10 -Methylenetetrahydromethanopterin reductase, an enzyme involved in methanogenesis from CO2, was purified from this hyperthermophile. The apparent molecular mass of the native enzyme was found to be 300 kDa. Sodium dodecylsulfate/polyacrylamide gel electrophoresis revealed the presence of only one polypeptide of apparent molecular mass 38 kDa. The ultraviolet/visible spectrum of the enzyme was almost identical to that of albumin indicating the absence of a chromophoric prosthetic group. The reductase was specific for reduced coenzyme F420 as electron donor; NADH, NADPH or reduced dyes could not substitute for the 5-deazaflavin. The catalytic mechanism was found to be of the ternary complex type as deduced from initial velocity plots. V max at 65°C and pH 6.8 was 435 U/mg (kcat=275 s-1) and the K m for methylenetetrahydro-methanopterin and for reduced F420 were 6 M and 4 M, respectively. From Arrhenius plots an activation energy of 34 kJ/mol was determined. The Q 10 between 40°C and 90°C was 1.5.The reductase activity was found to be stimulated over 100-fold by sulfate and by phosphate. Maximal stimulation (100-fold) was observed at a sulfate concentration of 2.2 M and at a phosphate concentration of 2.5 M. Sodium-, potassium-, and ammonium salts of these anions were equally effective. Chloride, however, could not substitute for sulfate or phosphate in stimulating the enzyme activity.The thermostability of the reductase was found to be very low in the absence of salts. In their presence, however, the reductase was highly thermostable. Salt concentrations between 0.1 M and 1.5 M were required for maximal stability. Potassium salts proved more effective than ammonium salts, and the latter more effective than sodium salts in stabilizing the enzyme activity. The anion was of less importance.The N-terminal amino acid sequence of the reductase from M. kandleri was determined and compared with that of the enzyme from Methanobacterium thermoautotrophicum and Methanosarcina barkeri. Significant similarity was found.Abbreviations H4MPT tetrahydromethanopterin - CH2=H4MPT N 5 ,N 10 -methylene-H4MPT - CH3-H4MPT N 5-methyl-H4MPT - CHH4MPT+ N 5 ,N 10 -methenyl-H4MPT - F420 coenzyme F420; 1 U=1 mol/min  相似文献   

17.
The mechanism of adaptation to Fe-deficiency stress was investigated in the unicellular green alga, Chlamydomonas reinhardtii. Upon removal of nutritional Fe, the activity of a cell surface Fe(III)-chelate reductase was increased by at least 15-fold within 24 h. This increase was negatively corelated with the Fe concentration in the growth media. Incubation of cells in the presence of the Fe2+-specific chelator, bathophenanthrolinedisulphonic acid, led to an increased Fe3+ reductase activity, even when sufficient Fe was present. Growth of cells in Cu-free media for 48 h led to no statistically significant increase in Fe3+ reductase activity. The Fe(III)-chelate reductase activity in Fe-starved cells was saturable with an apparent Km of 31 M and was inhibited by uncouplers of the transmembrane proton gradient but not by SH-specific reagents.Fe uptake was only observed in Fe-deficient cells. Uptake was specific for Fe in that at 100-fold excess of a number of metal ions in the transport assay did not inhibit uptake activity. However, a 100-fold excess of Cu resulted in a 87% inhibition of Fe uptake. The Vmax for Fe3+ reduction activity was 250-fold greater than for Fe uptake; although the Km values for both processes differed by only 10-fold. Thus, the rate limiting step in Fe assimilation was transport and not reduction. These results indicate that Fe assimilation in C. reinhardtii involves a reductive step and thus resembles the mechanism of Fe uptake in Strategy I higher plants.Keywords: Ferric chelate reduction, iron assimilation, iron uptake, unicellular green algae, Chlamydomonas.   相似文献   

18.
The thermostable class I HMG-CoA reductase of Sulfolobus solfataricus offers potential for industrial applications and for the initiation of crystallization trials of a biosynthetic HMG-CoA reductase. However, of the 15 arginine codons of the hmgA gene that encodes S. solfataricus HMG-CoA reductase, 14 (93%) are AGA or AGG, the arginine codons used least frequently by Escherichia coli. The presence of these rare codons in tandem or in the first 20 codons of a gene can complicate expression of that gene in E. coli. Problems include premature chain termination and misincorporation of lysine for arginine. We therefore sought to improve the expression and subsequent yield of S. solfataricus HMG-CoA reductase by expanding the pool size of tRNAAGA,AGG, the tRNA that recognizes these two rare codons. Coexpression of the S. solfataricus hmgA gene with the argU gene that encodes tRNAAGA,AGG resulted in an over 10-fold increase in enzyme yield. This has provided significantly greater quantities of purified enzyme for potential industrial applications and for crystallographic characterization of a stable class I HMG-CoA reductase. It has, in addition, facilitated determination of kinetic parameters and of pH optima for all four catalyzed reactions, for determination of the Ki for inhibition by the statin drug mevinolin, and for comparison of the properties of the HMG-CoA reductase of this thermophilic archaeon to those of other class I HMG-CoA reductases.  相似文献   

19.
A simple modification of a spectrophometric method was proposed for the rapid detection of microorganisms based on their ability either to excrete or to absorb volatile compounds. The method provides the possibility of contactless control for bacterial growth at a concentration above 107 cells/ml. In addition, the method allows discriminating mutants of the fungus Neurospora crassa defective in the nitrogen metabolism from the wild type strains. It is likely that nitrite reductase and nitrate reductase enzymes regulated by the nit-2 and nit-6 genes are involved in formation of the water soluble volatile compounds of this organism.  相似文献   

20.
Anodic oxidation of coumaric acid led to the inhibition of the process at the electrode due to a film which was formed after one-electron oxidation of the acid to phenoxy radical.By contrast, caffeic acid is oxidized in two steps-the phenoxy radical is formed in the first step, quinone in the second step. The inhibition of nitrate uptake by coumaric and caffeic acids is dependent on their concentration. 10-4 M eaffeic acid totally inhibited nitrate uptake and the growth ofNicotiana tabacum cell suspension. 10-6 M caffeic acid markedly inhibited nitrate uptake especially in the first three days after inoculation. 10-6 M coumaric acid did not affect nitrate uptake and nitrate reductase activity, 10-4 M coumaric acid inhibited nitrate uptake by day two after inoculation. Nitrate reductase synthesis correlated with the inhibition of nitrate uptake. Differential effects of coumaric and caffeic acids are explained on the basis of different products of their electrochemical oxidation.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号