首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
The role of ubiquitous mitochondrial creatine kinase (uMtCK) reaction in regulation of mitochondrial respiration was studied in purified preparations of rat brain synaptosomes and mitochondria. In permeabilized synaptosomes, apparent Km for exogenous ADP, Km (ADP), in regulation of respiration in situ was rather high (110 +/- 11 microM) in comparison with isolated brain mitochondria (9 +/- 1 microM). This apparent Km for ADP observed in isolated mitochondria in vitro dramatically increased to 169 +/- 52 microM after their incubation with 1 muM of dimeric tubulin showing that in rat brain, particularly in synaptosomes, mitochondrial outer membrane permeability for ADP, and ATP may be restricted by tubulin binding to voltage dependent anion channel (VDAC). On the other hand, in synaptosomes apparent Km (ADP) decreased to 25 +/- 1 microM in the presence of 20 mM creatine. To fully understand this effect of creatine on kinetics of respiration regulation, complete kinetic analysis of uMtCK reaction in isolated brain mitochondria was carried out. This showed that oxidative phosphorylation specifically altered only the dissociation constants for MgATP, by decreasing that from ternary complex MtCK.Cr.MgATP (K (a)) from 0.13 +/- 0.02 to 0.018 +/- 0.007 mM and that from binary complex MtCK.MgATP (K (ia)) from 1.1 +/- 0.29 mM to 0.17 +/- 0.07 mM. Apparent decrease of dissociation constants for MgATP reflects effective cycling of ATP and ADP between uMtCK and adenine nucleotide translocase (ANT). These results emphasize important role and various pathophysiological implications of the phosphocreatine-creatine kinase system in energy transfer in brain cells, including synaptosomes.  相似文献   

2.
A Robinson  B Austen 《FEBS letters》1987,212(1):63-67
Under the conditions of ATP regeneration and molar excess of nucleotide-depleted F1-ATPase the enzyme catalyses steady-state ATP hydrolysis by the single catalytic site. Values of Km = 10(-8) M and Vm = 0.05 s-1 for the single-site catalysis have been determined. ADP release limits single-site ATP hydrolysis under steady-state conditions. The equilibrium constant for ATP hydrolysis at the F1-ATPase catalytic site is less than or equal to 0.7.  相似文献   

3.
It is shown that methanol significantly decreases the rate of ATP-dependent activation of submitochondrial particle ATPase blocked by low (approximately 1 microM) ADP concentrations, having an insignificant effect on the initial rate of ATP hydrolysis. The dissociation rate constant for the F1.ADP complex (Kd = approximately 2.10(-8) M) decreases thereby from 0.28 to 0.12 min-1. Within a narrow range of ADP concentrations (2-40 microM) used to inhibit ATPase, the activation rate constant measured in the presence of methanol changes from the minimum (0.12 min-1) to the maximum (0.48 min-1) value. The rate of dissociation of the enzyme-inhibitor complexes formed in the presence of low (approximately 1 microM) or high (greater than or equal to 40 microM) ADP concentrations depends on the concentration of ATP in a similar way. In the presence of EDTA, the enzyme-inhibitor complex (ADP.F1.ADP) is activated within 1-3 minutes, whereas the dissociation of the F1.ADP complex proceeds on an hour scale. The results obtained are interpreted as the interaction of at least three nucleotide-binding sites in the membrane-bound F1.  相似文献   

4.
The presence of ATP at non-catalytic sites of the chloroplast F1-ATPase (CF1) eliminates a considerable lag in onset of enzyme activity that otherwise occurs in the presence of bicarbonate [Milgrom, Y. M., Ehler, L. & Boyer, P. D. (1991) J. Biol. Chem. 266, 11551-11558]. Sulfite is known to be much more effective than bicarbonate in stimulating ATPase activity CF1. Results reported here show that when assayed in the presence of sulfite, CF1, with some non-catalytic sites empty or filled with GT(D)P, is able to hydrolyze both ATP and GTP. Thus, the presence of adenine nucleotides at non-catalytic sites is not necessary for catalytic turnover of CF1. However, even though CF1 with empty non-catalytic sites shows a significant initial activity, the prior binding of adenine nucleotides at non-catalytic site(s) results in further activation of MgATPase and MgGTPase activities, even at relatively high sulfite and substrate concentrations. Although extensive activation of CF1 results from the presence of sulfite, with or without nucleotide binding at non-catalytic sites, the Km remains constant, at about 50 microM for MgATP and 400 microM for MgGTP. The results obtained show that the ATPase activity of CF1 is determined by the fraction of the active enzyme. The inactive CF1.ADP.Mg2+ formed during MgATP hydrolysis can be rapidly trapped by azide to provide a measure of the fraction of inactive enzyme. Increasing the concentration of sulfite increases the fraction of active CF1 in the assay medium. Measurements with radioactively labeled nucleotides show that the presence of ATP at non-catalytic sites promotes the ATP-dependent release of inhibitory ADP from a catalytic site. The activating effect of ATP binding at non-catalytic sites results from increasing the portion of CF1 in an active state during steady-state ATP hydrolysis.  相似文献   

5.
The rate of ATP hydrolysis catalyzed by isolated TF1 and reconstituted TF0F1 was measured as a function of the ATP concentration in the presence of inhibitors [ADP, Pi and 3'-O-(1-naphthoyl)ATP]. ATP hydrolysis can be described by Michaelis-Menten kinetics with Km(TF1) = 390 microM and Km (TF0F1) = 180 microM. The inhibition constants are for ADP Ki(TF1) = 20 microM and Ki(TF0F1) = 100 microM, for 3'-O-(1-naphthoyl)ATP Ki(TF1) = 150 microM and Ki(TF0F1) = 3 microM, and for Pi Ki(TF1) = 60 mM. From these results it is concluded that upon binding of TF0 to TF1 the mechanism of ATP hydrolysis catalyzed by TF1 is not changed qualitatively; however, the kinetic constants differ quantitatively.  相似文献   

6.
M F Bruist  G G Hammes 《Biochemistry》1981,20(22):6298-6305
The solubilized coupling factor from spinach chloroplasts (CF1) contains one nondissociable ADP/CF1 which exchanges slowly with medium ADP in the presence of Ca2+, Mg2+, or EDTA; medium ATP also exchanges in the presence of Ca2+ or EDTA, but it is hydrolyzed, and only ADP is found bound to CF1. The rate of ATP exchange with heat-activated CF1 is approximately 1000 times slower than the rate of ATP hydrolysis. In the presence of Mg2+, both latent CF1 and heat-activated CF1 bind one ATP/CF1, in addition to the ADP. This MgATP is not removed by dialysis, by gel filtration, or by the substrate CaATP during catalytic turnover; however, it is released when the enzyme is stored several days as an ammonium sulfate precipitate. The photoaffinity label 3'-O-[3-[N-(4-azido-2-nitrophenyl)amino]-propionyl]-ATP binds to the MgATP site, and photolysis results in labeling of the beta subunit of CF1. Equilibrium binding measurements indicate that CF1 has two identical binding sites for ADP with a dissociation constant of 3.9 microM (in addition to the nondissociable ADP site). When MgATP is bound to CF1, one ADP binding site with a dissociation constant of 2.9 microM is found. One ATP binding site is found in addition to the MgATP site with a dissociation constant of 2.9 microM. Reaction of CF1 with the photoaffinity label 3'-O-[3-[N-(4-azido-2-nitrophenyl)amino]propionyl]-ADP indicates that the ADP binding site which is not blocked by MgATP is located near the interface of alpha and beta subunits. No additional binding sites with dissociation constants less than 200 micro M are observed for MgATP with latent CF1 and for CaADP with heat-activated CF1. Thus, three distinct nucleotide binding sites can be identified on CF1, and the tightly bound ADP and MgATP are not at the catalytic site. The active site is either the third ADP and ATP binding site or a site not yet detected.  相似文献   

7.
Specificity of the Escherichia coli proton ATPase for adenine, guanine, and inosine nucleotides in catalysis and binding was studied. MgADP, CaADP, MgGDP, and MgIDP were each good substrates for oxidative phosphorylation. The corresponding triphosphates were each substrates for hydrolysis and proton pumping. At 1 mM concentration, MgATP, MgGTP, and MgITP drove proton pumping with equal efficiency. At 0.1 mM concentration, MgATP was 4-fold more efficient than MgITP or MgGTP. Nucleotide-depleted soluble F1 could rebind to F1-depleted membranes and block proton conductivity through F0; rebound nucleotide-depleted F1 catalyzed pH gradient formation with MgATP, MgGTP, or MgITP. This showed that the nonexchangeable nucleotide sites on F1 need not be occupied by adenine nucleotide for proton pumping to occur. It was further shown that no nucleotide was tightly bound in the nonexchangeable sites of F1 during proton pumping driven by MgGTP in these reconstituted membranes, whereas adenine nucleotide was tightly bound when MgATP was the substrate. Nucleotide-depleted soluble F1 bound maximally 5.9 ATP, 3.2 GTP, and 3.6 ITP of which half the ATP and almost all of the GTP and ITP exchanged over a period of 30-240 min with medium ADP or ATP. Also, half of the bound ATP exchanged with medium GTP or ITP. These data showed that inosine and guanine nucleotides do not bind to soluble F1 in nonexchangeable fashion, in contrast to adenine nucleotides. Purified alpha-subunit from F1 bound ATP at a single site but showed no binding of GTP nor ITP, supporting previous suggestions that the non-exchangeable sites in intact F1 are on alpha-subunits.  相似文献   

8.
1. Pig heart pyruvate dehydrogenase complex is inactivated by phosphorylation (MgATP2-) of an alpha-chain of the decarboxylase component. Three serine residues may be phosphorylated, one of which (site 1) is the major inactivating site. 2. The relative rates of phosphorylation are site 1 greater than 2 greater than site 3. 3. The kinetics of the inactivating phosphorylation were investigated by measuring inactivation of the complex with MgATP2-. The apparent Km for the Mg complex of ATP was 25.5 microM; ADP was a competitive inhibitor (Ki 69.8 microM) and sodium pyruvate an uncompetitive inhibitor (Ki 2.8 microM). Inactivation was accelerated by increasing concentration ratios of NADH/NAD+ and of acetyl-CoA/CoA. 4. The kinetics of additional phosphorylations (predominantly site 2 under these conditions) were investigated by measurement of 32P incorporation into non-radioactive pyruvate dehydrogenase phosphate containing 3-6% of active complex, and assumed from parrallel experiments with 32P labelling to contain 91% of protein-bound phosphate in site 1 and 9% in site 2. 5. The apparent Km for the Mg complex of ATP was 10.1 microM; ADP was a competitive inhibitor (Ki 31.5 microM) and sodium pyruvate an uncompetitive inhibitor (Ki 1.1 mM). 6. Incorporation was accelerated by increasing concentration ratios of NADH/NAD+ and of acetyl-CoA/CoA, although it was less marked at the highest ratios.  相似文献   

9.
ATPase activities were measured in 10 mM MgCl2, 5 mM ATP, 1 mM ADP, and 1 microM FCCP with submitochondrial particles from bovine heart that had been stimulated by delta mu H+-forming substrates and with particles whose natural inhibitor protein was partially removed by heating. The activities were not linear with time. With both particles, the rate of ATP hydrolysis in the 7-fold greater than that in the steady state. Pre-steady-state and steady-state kinetic studies showed that the decrease of ATPase activity was due to the binding of ADP in a high-affinity site of the enzyme (K0.5 of 10 microM). Inhibition of ATP hydrolysis was accompanied by the binding of approximately 1 mol of ADP/mol of particulate F1; 10 microM ADP gave half-maximal binding. ADP could be replaced by IDP, but with an affinity 50-fold lower (K0.5 of 0.5 mM). Maximal inhibition by ADP and IDP was achieved in less than 5 s. Inhibition was enhanced by uncouplers. Even in the presence of pyruvate kinase and phosphoenolpyruvate, the rates of hydrolysis were about 2.5-fold higher in the first seconds of reaction than in the steady state. This decrease of ATPase activity also correlated with the binding of nearly 1 mol of ADP/mol of F1. This inhibitory ADP remained bound to the enzyme after several thousand turnovers. Apparently, it is possible to observe maximal rates of hydrolysis only in the first few catalytic cycles of the enzyme.  相似文献   

10.
The epsilon subunit of Escherichia coli F1-ATPase is a tightly bound but dissociable partial inhibitor of ATPase activity. The effects of epsilon on the enzyme were investigated by comparing the ATPase activity and aurovertin binding properties of the epsilon-depleted F1-ATPase and the epsilon-replete complex. Kinetic data of multisite ATP hydrolysis were analyzed to give the best fit for one, two, or three kinetic components. Each form of F1-ATPase contained a high-affinity component, with a Km near 20 microM and a velocity of approximately 1 unit/mg. Each also exhibited a component with a Km in the range of 0.2 mM. The velocity of this component was 25 units/mg for epsilon-depleted ATPase but only 4 units/mg for epsilon-replete enzyme. The epsilon-depleted enzyme also contained a very low affinity component not present in the epsilon-replete enzyme. In unisite hydrolysis studies, epsilon had no effect on the equilibrium between substrate ATP and product ADP.P1 at the active site but reduced the rate of product release 15-fold. These results suggest that epsilon subunit slows a conformational change that is required to reduce the affinity at the active site, allowing dissociation of product. It is suggested that inhibition of multisite hydrolysis by epsilon is also due to a reduced rate of product release. epsilon-depleted F1-ATPase showed little of no modulation of aurovertin fluorescence by added ADP and ATP. Aurovertin fluorescence titrations in buffer containing ethylenediaminetetraacetic acid (EDTA) revealed that epsilon-depleted enzyme had high affinity for aurovertin (Kd less than 0.1 microM) regardless of the presence of nucleotides.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

11.
The rate of ATP hydrolysis in solutions of F-actin at steady state in 50 mM KC1, 0.1 mM CaC12 was inhibited by AMP and ADP. The inhibition was competitive with ATP (Km of about 600 microM) with Ki values of 9 microM for AMP and 44 microM for ADP. ATP hydrolysis was inhibited greater than 95% by 1 mM AMP. AMP had no effect on the time course of actin polymerization, ATP hydrolysis during polymerization, or the critical actin concentration. Simultaneous measurements of G-actin/F-actin subunit exchange and nucleotide exchange showed that nucleotide exchange occurred much more rapidly than subunit exchange; during the experiment over 50% of the F-actin-bound nucleotide was replaced when less than 1% of the F-actin subunits had exchanged. When AMP was present it was incorporated into the polymer, preventing incorporation of ADP from ATP in solution. F-actin with bound Mg2+ was much less sensitive to AMP than F-actin with bound Ca2+. These data provide evidence for an ATP hydrolysis cycle associated with direct exchange of F-actin-bound ADP for ATP free in solution independent of monomer-polymer end interactions. This exchange and hydrolysis of nucleotide may be enhanced when Ca2+ is bound to the F-actin protomers.  相似文献   

12.
The H(+)-ATPase of the plasma membrane from Saccharomyces cerevisiae has been isolated, purified and reconstituted into asolectin liposomes. The kinetics of ATP hydrolysis have been compared for the H(+)-ATPase in the plasma membrane, in a protein/lipid/detergent micelle (isolated enzyme) and in asolectin proteoliposomes (reconstituted enzyme). In all three cases the kinetics of ATP hydrolysis can be described by Michaelis-Menten kinetics with Km = 0.2 mM MgATP (plasma membranes), Km = 2.4 mM MgATP (isolated enzyme) and Km = 0.2 mM MgATP (reconstituted enzyme). However, the maximal turnover decreases only by a factor of two during isolation of the enzyme and does not change during reconstitution; the activation of the H(+)-ATPase by free Mg2+ is also only slightly influenced by the detergent. The dissociation constant of the enzyme-Mg2+ complex Ka, does not alter during isolation and the dissociation constant of the enzyme-substrate complex, Ks, increases from Ks = 30 microM (plasma membranes) to Ks = 90 microM (isolated enzyme). ATP binding to the H(+)-ATPase ('single turnover' conditions) for the isolated and the reconstituted enzyme resulted in both cases in a second-order rate constant k1 = 2.6 x 10(4) M-1.s-1. From these observations it is concluded that the detergent used (Zwittergent TM 3-14) interacts reversibly with the H(+)-ATPase and that practically all H(+)-ATPase molecules are reconstituted into the liposomes with the ATP-binding site being directed to the outside of the vesicle.  相似文献   

13.
(1) Mitochondrial ATPase (F1) is influenced by specific nucleotides in its kinetic behavior towards its substrates. In this work, initial hydrolysis rates, as well as continuous reaction progress, were measured by recording proton production (equivalent to triphosphate hydrolysis). (2) After preincubation with ATP, F1 hydrolyzes MgITP partly as if it were MgATP, with respect to temperature dependence and 2,4-dinitrophenol inhibition/stimulation. (3) Acetyl ATP is a competitive inhibitor versus ATP on the F1-ATPase. With F1 which has been freed of ambient ATP by repeated precipitations with ammonium sulfate the Ki of acetyl ATP is 400 nM. (4) F1-ATPase which was depleted of bound nucleotides in the presence of glycerol (Garret, N.E. and Penefsky, H.S. (1975) J. Biol. Chem. 250, 6640-6647) was preincubated with ADP and acetyl ATP. These preparations were assayed for hydrolytic activity with MgITP as substrate. Compared to a nonpreincubated control enzyme, the hydrolysis with these preparations was first stimulated, then inhibited. This stimulation/inhibition effect is most pronounced at 10 degrees C, but is also observed at 20 degrees C. (5) When nucleotide-depleted enzyme is preincubated with acetyl AMP, its ability to hydrolyze MgITP slowly decreases to approx. 50% after 60 min. This effect is reversed by further preincubation with acetyl ATP. It is speculated that under appropriate conditions AMP may exist or arise in a buried position on F1-ATPase, and act there as an inhibitor of MgITP hydrolysis.  相似文献   

14.
The Escherichia coli uncA gene codes for the alpha-subunit of the F1 sector of the membrane proton ATPase. In this work purified soluble F1 enzymes from three mutant strains ( uncA401 , uncA447 , and uncA453 ) have been compared to F1 from a normal strain in respect to (a) binding of 5'-adenylyl imidodiphosphate (AMPPNP) to native enzyme in both the presence and absence of Mg, (b) high-affinity binding of MgATP to native enzyme, (c) total reloading of MgAMPPNP to nucleotide-depleted F1 preparations, (d, e) ability to hydrolyze MgATP at both high MgATP concentrations (d) (steady-state conditions) and low MgATP concentrations (e) where substrate hydrolysis occurs under nonsteady-state (" unisite ") conditions, and (f) sensitivity of steady-state ATPase activities to inhibitors of normal F1-ATPase activity. uncA mutant F1 showed normal stoichiometry of MgAMPPNP binding to both native (three sites per F1) and nucleotide-depleted preparations (six sites per F1). Native uncA F1 preparations showed lower-than-normal affinity for MgAMPPNP and MgATP at the first site filled. Binding of AMPPNP in the absence of Mg was similar to normal, except that no increase in affinity for AMPPNP was induced by aurovertin. The uncA F1-ATPases had low but real steady-state rates of ATP hydrolysis, which were inhibited by aurovertin but relatively insensitive to inhibition by AMPPNP, efrapeptin, and sodium azide. Non-steady-state ( unisite ) ATP hydrolysis rates catalyzed at low substrate concentrations by uncA F1-ATPases were similar to normal.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

15.
The transfer of recA protein from a fluorescently modified single-stranded DNA, containing 1,N6-ethenoadenosine and 3,N4-ethenocytosine, to polydeoxythymidylic acid (poly(dT)) was shown to occur by a complex mechanism in both the absence and presence of ADP (Menetski, J. P., and Kowalczykowski, S. C. (1987) J. Biol. Chem. 262, 2085-2092). A part of the mechanism involves the formation of a kinetic ternary intermediate. Since the binding and hydrolysis of ATP by recA protein is involved in many of the recA protein in vitro activities, we have analyzed the effect of ATP on the transfer reaction. In the presence of ATP, the transfer reaction is dependent on the concentration of the competitor single-stranded DNA, poly(dT). This result suggests that transfer does not occur by a simple dissociation mechanism. The reaction occurs via two kinetically distinct species of protein X DNA complexes with properties that are similar to those characterized for the transfer reaction in the absence of ATP. There is a complicated effect of nucleotide concentration on the rate of transfer. At low concentrations of ATP (less than 50 microM), increasing nucleotide concentration increases the rate of transfer; this is similar to the effect of ADP. However, at high concentrations of ATP (greater than 50 microM), increasing ATP concentration decreases the rate of transfer. Finally, the processivity of ATP hydrolysis during transfer was found to increase with increases in ATP concentration. Less than one ATP molecule was hydrolyzed per transfer event at low ATP concentrations (less than 20 microM) while greater than 50 molecules were hydrolyzed at high ATP concentration (greater than 250 microM). These data suggest that the rate of transfer is not directly coupled to the rate of hydrolysis.  相似文献   

16.
The effect of guanidinium chloride (GdnHCl) on the ATPase activity and structure of soluble mitochondrial F1 was studied. At high ATP concentrations, hydrolysis is carried by the three catalytic sites of F1; this reaction was strongly inhibited by GdnHCl concentrations of <50 mM. With substoichiometric ATP concentrations, hydrolysis is catalyzed exclusively by the site with the highest affinity. Under these conditions, ATP binding and hydrolysis took place with GdnHCl concentrations of >100 mM; albeit at the latter concentration, the rate of hydrolysis of bound ATP was lower. Similar results were obtained with urea, although nearly 10-fold higher concentrations were required to inhibit multisite hydrolysis. GdnHCl inhibited multisite ATPase activity by diminishing the V(max) of the reaction without significant alterations of the Km for MgATP. GdnHCl prevented the effect of excess ATP on hydrolysis of ATP that was already bound to the high-affinity catalytic site. With and without 100 mM GdnHCl and 100 microM [3H]ATP in the medium, F1 bound 1.6 and 2 adenine nucleotides per F1, respectively. The effect of GdnHCl on some structural features of F1 was also examined. GdnHCl at concentrations that inhibit multisite ATP hydrolysis did not affect the exposure of the cysteines of F1, nor its intrinsic fluorescence. With 100 mM GdnHCl, a concentration at which unisite ATP hydrolysis was still observed, 0.7 cysteine per F1 became solvent-exposed and small changes in its intrinsic fluorescence of F1 were detected. GdnHCl concentrations on the order of 500 mM were required to induce important decreases in intrinsic fluorescence. These changes accompanied inhibition of unisite ATP hydrolysis. The overall data indicate that increasing concentrations of GdnHCl bring about distinct and sequential alterations in the function and structure of F1. With respect to the function of F1, the results show that at low GdnHCl concentrations, only the high-affinity site expresses catalytic activity, and that inhibition of multisite catalysis is due to alterations in the transmission of events between catalytic sites.  相似文献   

17.
The F1 moiety of the rat liver mitochondrial ATP synthase/ATPase complex contains as isolated 2 mol Mg2+/mol F1, 1 mol of which is nonexchangeable and the other which is exchangeable (N. Williams, J. Hullihen, and P.L. Pedersen, (1987) Biochemistry 26, 162-169). In addition, the enzyme binds 1 mol ADP/mol F1 and 3 mol AMP.PNP, the latter of which can bind in complex formation with divalent cation and displace the Mg2+ at the exchangeable site. Thus, in terms of ligand binding sites the fully loaded rat liver F1 complex contains 3 mol MgAMP.PNP, 1 mol ADP, and 1 mol Mg2+. In this study we have used several metal ATP complexes or analogs thereof to gain further insight into the ligand binding domains of rat liver F1 and the mechanism by which it catalyzes ATP hydrolysis in soluble and membrane bound form. Studies with LaATP confirmed that MgATP is the most likely substrate for rat liver F1, and provided evidence that the enzyme may contain additional Mg2+ binding sites, undetected in previous studies of F1-ATPases, that are required for catalytic activity. Thus, F1 containing the thermodynamically stable LaATP complex in place of MgATP requires added Mg2+ to induce ATP hydrolysis. As Mg2+ cannot readily displace La2+ under these conditions there appears to be a catalytically important class of Mg2+ binding sites on rat liver F1, distinct from the nonexchangeable Mg2+ site and the sites involved in binding MgATP. Additional studies carried out with exchange inert metal-nucleotide complexes involving rhodium and the Mg2+ and Cd2+ complexes of ATP beta S and ATP alpha S imply that the rate-limiting step in the ATPase reaction pathway occurs subsequent to the P gamma-O-P beta bond cleavage steps, perhaps at the level of Mg(ADP)(Pi) hydrolysis or MgADP release. Evidence is presented that Mg2+ remains coordinated to the leaving group of the reaction, i.e., the beta phosphoryl group. Finally, in contrast to soluble F1, F1 bound to F0 in the inner mitochondrial membrane failed to discriminate between the Mg2+ complexes of the ATP beta S isomers. This indicates that a fundamental difference may exist between the catalytic or kinetic mechanism of F1 and the more physiologically intact F0F1 complex.  相似文献   

18.
A steady-state kinetic analysis with evaluation of product inhibition was accomplished with purified rat liver flavokinase and FAD synthetase. For flavokinase, Km values were calculated as approximately 11 microM for riboflavin and 3.7 microM for ATP. Ki values were calculated for FMN as 6 microM against riboflavin and for ZnADP as 120 microM against riboflavin and 23 microM against ZnATP. From the inhibition pattern, the flavokinase reaction followed an ordered bi bi mechanism in which riboflavin binds first followed by ATP; ADP is released first followed by FMN. For FAD synthetase, Km values were calculated as 9.1 microM for FMN and 71 microM for MgATP. Ki values were calculated for FAD as 0.75 microM against FMN and 1.3 microM against MgATP and for pyrophosphate as 66 microM against FMN. The product inhibition pattern suggests the FAD synthetase reaction also followed an ordered bi bi mechanism in which ATP binds to enzyme prior to FMN, and pyrophosphate is released from enzyme before FAD. Comparison of Ki values with physiological concentrations of FMN and FAD suggests that the biosynthesis of FAD is most likely regulated by this coenzyme as product at the stage of the FAD synthetase reaction.  相似文献   

19.
Incubation of smooth muscle phosphorylated heavy meromyosin in the presence of myosin light chain kinase, calmodulin, ADP, and Ca2+ results in a decrease of the protein-bound phosphate. The dephosphorylation is not due to phosphatase activity and is dependent on the presence of ADP and the active ternary myosin light chain kinase complex. Using 32P-labeled phosphorylated 20,000-dalton light chains as the phosphate donor, the formation of ATP from ADP can be demonstrated. This reaction requires the presence of Ca2+, calmodulin, and myosin light chain kinase. These results indicate that myosin light chain kinase can catalyze a reverse reaction and form ATP from ADP and phosphorylated substrate. The rate of the reverse reaction, kcat/KLC approximately 0.21 min-1 microM-1, is considerably slower than the forward reaction under similar conditions and is therefore detectable only at relatively high concentrations of myosin light chain kinase. For the reverse reaction, KmADP is approximately 30 microM and ATP is a competitive inhibitor, KIATP approximately 88 microM. For the forward reaction, measured with both isolated light chains and intact myosin, KmATP is approximately 100 microM and ADP is a competitive inhibitor, KiADP approximately 140 microM (myosin) and 120 microM (light chains). Thus, the affinity of ATP for the forward and reverse reactions is similar, but the affinity of ADP is higher for the reverse reaction. From the light chain dependence of the two reactions, the following was calculated: forward, Km = 5 microM, kcat = 1720 min-1, and reverse, Km = 130 microM, kcat = 27 min-1. In contrast to the data obtained with isolated light chains, it is suggested that, with intact myosin as substrate, the Km term is primarily responsible for determining the rate of the reverse reaction. With light chains phosphorylated at serine 19 and threonine 18, it was shown that both sites act as a phosphate donor, although the reverse reaction for threonine 18 is slower than that for serine 19.  相似文献   

20.
The effects of vanadate on the kinetics of ATP binding and hydrolysis by Tetrahymena 30 S dynein were examined by presteady state kinetic analysis. Up to a concentration of 400 microM, vanadate did not inhibit the rate or amplitude of the ATP binding-induced dissociation of the microtubule-dynein complex measured by stopped flow light-scattering methods. Chemical quench flow experiments showed that vanadate (80 microM) did not alter the rate or amplitude of the presteady state ATP binding or ATP hydrolysis transients, but the steady state hydrolysis of ATP was blocked immediately after a single turnover of ATP. Preincubation of the enzyme with ADP and vanadate inhibited both presteady state and steady state hydrolysis. These data suggest that vanadate acts as a phosphate analog to form an enzyme-ADP-vanadate complex, analogous to the transition state during catalysis, by the following pathway: (formula; see text) where V represents vanadate and D represents a dynein active site. ADP and vanadate, added together, induced dissociation of the microtubule-dynein complex at a maximum rate of 0.6 S-1. These observations imply that a microtubule-dynein-ADP-vanadate complex was formed which subsequently dissociated as shown below: (formula; see text) where M denotes a microtubule. The ADP plus vanadate-induced dissociation may represent the reverse of the normal forward pathway involving the binding of a dynein-ADP-phosphate complex to a microtubule.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号