首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
1. A single oral dose of [(14)C]Ionox 100 to rats is almost entirely eliminated in 11 days: 89.1-107.2% of the (14)C is excreted and 0.29+/-0.02% of the dose is present in the carcass plus viscera after removal of the gut. Rats exhibit an individual variation in the elimination pattern, 15.6-70.8% of (14)C being excreted in the urine and 75.2-27.0% in the faeces during 11 days. 2. After the oral administration of [(14)C]Ionox 100 to dogs, 87.1-90.3% of the (14)C is excreted in the faeces and urine during 4 days. 3. Dogs and rats do not show a species difference in this pattern of elimination. 4. The rate of elimination from dogs and rats given a single dose of Ionox 100 is not affected by the size of the dose and the presence of triglyceride fat in the diet. 5. Ionox 100 is completely metabolized in dogs and rats: unchanged Ionox 100 is absent from the urine and faeces, and from the carcass when elimination is complete. In rats, 3,5-di-tert.-butyl-4-hydroxybenzoic acid accounts for 50-85% of a dose of Ionox 100 and (3,5-di-tert.-butyl-4-hydroxybenzoyl beta-d-glucopyranosid)uronic acid for 47-10%; in dogs, the unconjugated acid accounts for 85% and the ester glucuronide for 10-12%. 3,5-Di-tert.-butyl-4-hydroxyhippuric acid is not formed. Other metabolites, which have been detected in small quantity in the faeces and urine of animals dosed with Ionox 100, have not been identified. 6. 3,5-Di-tert.-butyl-4-hydroxybenzoic acid and (3,5-di-tert.-butyl-4-hydroxybenzoyl beta-d-glucopyranosid)uronic acid are also the major metabolites of Ionol (2,6-di-tert.-butyl-p-cresol) in rats. 7. The elimination of Ionox 100 metabolites from rats is faster than that of Ionol and its metabolites. Unlike Ionol, unchanged Ionox 100 could not be detected in the bodies of these animals.  相似文献   

2.
3.
1. The metabolism of 2,6-dichlorobenzonitrile was studied in rabbits and rats. Oral administration caused an increased urinary excretion of glucuronides and ethereal sulphates. There was also an indication of mercapturic acid formation. 2,6-Dichloro-3-hydroxybenzonitrile and its 4-hydroxy analogue were identified as metabolites in the urine. A small amount of the unchanged substance was recovered from the faeces. 2. By using 2,6-dichlorobenzo[14C]nitrile the phenolic metabolites were determined quantitatively and some other possible metabolic routes were excluded. 3. Incubation of 2,6-dichlorobenzonitrile with enzyme preparations (papain and high-speed supernatant of rat-liver homogenate plus glutathione) gave no indications for a reaction with thiol compounds.  相似文献   

4.
1. Rats were given N-triphenyl[(14)C]methylmorpholine, triphenyl[(14)C]carbinol, N-triphenylmethyl[G-(3)H]morpholine or [G-(3)H]morpholine as single oral doses; the routes of excretion were examined. 2. Dogs were given single oral doses of N-triphenyl[(14)C]methylmorpholine. 3. (14)C-labelled metabolites were excreted mainly in the faeces in both rats and dogs; no (14)CO(2) was expired and less than 3% remained in the carcass and skin after 96hr. 4. (3)H-labelled metabolites were excreted rapidly in urine; part of the label was found in the expired gases and over 10% remained in the carcass and skin after 96hr. 5. Differences in excretion pattern between the sexes were noticed in rats but not in dogs. 6. N-Triphenylmethylmorpholine was rapidly hydrolysed to form triphenylcarbinol and morpholine in the stomach; morpholine was absorbed rapidly and excreted largely unchanged, though some was degraded, since some of the (3)H was found in water. 7. Triphenylcarbinol was absorbed only slowly and was oxidized to p-hydroxyphenyldiphenylcarbinol. 8. Both triphenylcarbinol and its p-hydroxy derivative were found in urine, bile and faeces in the free form and conjugated with glucuronic acid. The proportion of conjugates was higher in rat bile than in faeces. 9. Traces of o-hydroxyphenyldiphenylcarbinol and m-hydroxyphenyldiphenylcarbinol were detected as metabolites both free and conjugated.  相似文献   

5.
1. Both monophenolic metabolites of 2,6-dichlorobenzonitrile (2,6-dichloro-3-hydroxybenzonitrile and its 4-hydroxy analogue) added to starved yeast cells incubated with a limited quantity of glucose cause a significant rise in oxygen consumption of the cells. 2. The same compounds induce adenosine-triphosphatase activity in isolated intact rat-liver mitochondria. 3. The possible role of the hydroxylation of 2,6-dichlorobenzonitrile in mammals in relation to hepatic injury is discussed.  相似文献   

6.
In soil the herbicide 2,6-dichlorobenzonitrile (dichlobenil) is degraded to the persistent metabolite 2,6-dichlorobenzamide (BAM) which has been detected in 19% of samples taken from Danish groundwater. We tested if common soil bacteria harbouring nitrile-degrading enzymes, nitrile hydratases or nitrilases, were able to degrade dichlobenil in vitro. We showed that several strains degraded dichlobenil stoichiometrically to BAM in 1.5–6.0 days; formation of the amide intermediate thus showed nitrile hydratase rather than nitrilase activity, which would result in formation of 2,6-dichlorobenzoic acid. The non-halogenated␣analogue benzonitrile was also degraded, but here the benzamide intermediate accumulated only transiently showing nitrile hydratase followed by amidase activity. We conclude that a potential for dichlobenil degradation to BAM is found commonly in soil bacteria, whereas further degradation of the BAM intermediate could not be demonstrated.  相似文献   

7.
The herbicide 2,6-dichlorobenzonitrile (DCB) is an effective and apparently specific inhibitor of cellulose synthesis in higher plants. We have synthesized a photoreactive analog of DCB (2,6-dichlorophenylazide [DCPA]) for use as an affinity-labeling probe to identify the DCB receptor in plants. This analog retains herbicide activity and inhibits cellulose synthesis in cotton fibers and tobacco cells in a manner similar to DCB. When cotton fiber extracts are incubated with [3H]DCPA and exposed to ultraviolet light, an 18 kilodalton polypeptide is specifically labeled. About 90% of this polypeptide is found in the 100,000g supernatant, the remainder being membrane-associated. Gel filtration and nondenaturing polyacrylamide gel electrophoresis of this polypeptide indicate that it is an acidic protein which has a similar size in its native or denatured state. The amount of 18 kilodalton polypeptide detectable by [3H]DCPA-labeling increases substantially at the onset of secondary wall cellulose synthesis in the fibers. A similar polypeptide, but of lower molecular weight (12,000), has been detected upon labeling of extracts from tomato or from the cellulosic alga Chara corallina. The specificity of labeling of the 18 kilodalton cotton fiber polypeptide, coupled with its pattern of developmental regulation, implicate a role for this protein in cellulose biosynthesis. Being, at most, only loosely associated with membranes, it is unlikely to be the catalytic polypeptide of the cellulose synthase, and we suggest instead that the DCB receptor may function as a regulatory protein for β-glucan synthesis in plants.  相似文献   

8.
9.
Methylglucamine is a commonly used cation in radiocontrast media. The present study sheds light on its fate in the rat. When administered intraperitoneally, 93% of the compound was excreted unchanged in the urine in 24 hr. When administered orally, about 15% of the dose was found in the urine, about 40% in the faeces and 20% in expired air in 24 hr. When administered orally to rats whose gut flora had been depleted by treatment with neomycin sulphate, 19% was excreted in the urine, 69% in the faeces and 3% in expired air in 72 hr. This indicated that the gut flora played a role in the degradation of the compound and its eventual loss as expired carbon dioxide.  相似文献   

10.
Summary 2,6-dichlorobenzonitrile inhibits cytokinesisin vivo in meristem cells of onion root tips being this inhibition non-permanent in nature. Results from dual inhibition treatments of dichlobenil and caffeine suggest that dichlobenil non-permanently inhibits a metabolic cytokinesis pathway which differs from that inhibited permanently by caffeine. We propose a model for cytokinesis in which at least two cytophysiological pathways occur.  相似文献   

11.
The metabolic fate of [1-14-C]hexadecylsulphate and hexadecyl[35-S]sulphate, administered intravenously as the sodium and trimethylammonium salt to dogs and orally as the erythromycin salt to dogs, rats and humans, was studied. Studies with rats indicated that the compounds were well absorbed and rapidly excreted in the urine. However, after oral administration of the 14-C-and 35-S-labelled hexadecyl sulphate erythromycin salt to dogs, considerable amounts of radioactivity were excreted in the faeces as unmetabolized hexadecyl sulphate. Studies with two humans showed that orally administered erythromycin salt of [1-14C]hexadecyl sulphate was well absorbed in one person but poorly absorbed in the other. Radioactive metabolites in urine were separated by t.l.c. in two solvent systems. The main metabolite of hexadecyl sulphate in the dog, rat and human was identified as the sulphate ester of 4-hydroxybutyric acid. In addition, psi-[14-C]butyrolactone as a minor metabolic product of [1-14-C]hexadecyl sulphate was also isolated from the urine of rat, dog and man. However, there was still another metabolite in dog urine, which comprised about 20% of the total urinary radioactivity and carried both 14-C and 35-S labels. This metabolite was absent from rat urine. The metabolite in dog urine was isolated and subsequently identified by t.l.c. and g.l.c. and by isotope-dilution experiments as the sulphate ester of glycollic acid. Small amounts (about 5% of the total recovered radioactivity in excreta) of labelled glycollic acid sulphate were also found in human urine after ingestion of erythromycin [1-14-C]hexadecyl sulphate.  相似文献   

12.
S. Mizuta  R. M. Brown Jr. 《Protoplasma》1992,166(3-4):200-207
Summary The effects of 2,6-dichlorobenzonitrile (DCB, a known inhibitor of cellulose synthesis) and Tinopal LPW (TPL, an agent which disrupts glucan crystallization) on the structure of cellulose synthesizing complexes (terminal complexes, TCs) in the xanthophycean algaVaucheria hamata were investigated. DCB (10 M) inhibits nascent fibril formation from the TC subunit (based on the absence of impressions) although it does not alter the overall shape of the rectangular TC during the short treatment of 20 min. With a prolonged treatment (60 min), the arrangement of TC subunits becomes disordered, and particles generally exhibited as doublets of subunits are released from each other. DCB also interferes with the formation of the overall shape of the TC although it does not disturb the conversion into TC rows of the subunits (the zymogenic precursor of the TC) packed in the globules. A 15 min treatment with TPL (1 mM) destroys the TC integrity by reducing the subunits into small fragments or particulate aggregates. The particulate rows of the TC are interrupted at many points, and fragments and particulate aggregates are dispersed by prolonged treatment (45 min) with TPL. Unlike DCB, TPL inhibits the conversion of globule subunits into TC rows. New insights on the structural characteristics necessary for cellulose microfibril assembly and possible mechanisms for the biogenesis of theVaucheria TC come from these data.Abbreviations DCB 2,6-dichlorobenzonitrile - TPL Tinopal LPW - TC terminal complex  相似文献   

13.
14.
Summary The effect of 2,6-dichlorobenzonitrile on cytokinesis of meristematic cells of onion root during both treatment and recovery has been studied by electron microscopic techniques. 2,6-dichlorobenzonitrile interferes with cell plate formation in such a way that Golgi apparatus vesicles of treated cells appear to be different than controls and seem to coalesce as anomalous partial cell plates. During recovery, an apparently normal progression of cytokinesis is observed and abnormal portions of the cell plate are retained. Nuclear constrictions are observed frequently during recovery as a result of temporal alterations in cytokinesis. Our results show that 2,6-dichlorobenzo-nitrile induces anomalous and/or incomplete cell plates, which might be caused by an altered function of Golgi apparatus.  相似文献   

15.
To determine whether 2,6-dichlorophenol is solely a sex pheromone, the response to it by the various stages of the American dog tick, Dermacentor variabilis, were compared. In contrast to adults, 2,6-dichlorophenol was attractive to unfed nymphs and to unfed larvae. Use of this chemical also prompted the expression of a novel type of feeding posture behavior in adults. The overlap in attraction to other substituted phenols plus the lack of functional value of this response for larvae and nymphs rules out the possibility that 2,6-dichlorophenol is a general attractant. However, 2,6-dichlorophenol likely plays a dual role as an attachment stimulant in the adult tick.Undergraduate Research Program in Biology  相似文献   

16.
17.
18.
Here, we determined the staining properties of Balamuthia mandrillaris cysts, and assessed the effect of 2, 6-dichlorobenzonitrile (DCB), a cellulose synthesis inhibitor, and calcofluor white, a brightening agent, on its encystment. Periodic acid-Schiff reagent stained the inner wall intensely and middle and outer walls weakly suggesting that the cyst wall of B. mandrillaris may contain glycans. Furthermore, cysts, but not trophozoites, fluoresced when stained with calcofluor white. Calcofluor white and DCB, a cellulose synthesis inhibitor, inhibited B. mandrillaris encystment. This is the first report suggesting possible glycan biosynthesis in B. mandrillaris encystment, and this pathwaymay provide a potentially useful drug target and help improve treatment.  相似文献   

19.
20.
Cystine metabolism in the dog   总被引:2,自引:0,他引:2  
  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号