首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The pCloDF13-encoded bacteriocin release protein (BRP) is a lipoprotein which is synthesized as a precursor with an amino-terminal signal peptide that appears to be stable after cleavage. The role of the stable signal peptide in the functioning of the BRP was studied with respect to the release of cloacin DF13, 'lysis' and leakage of periplasmic proteins. The BRP gene fragment encoding the stable signal peptide was replaced by a fragment encoding the unstable peptide of the murein lipoprotein (Lpp). The resulting hybrid protein was normally acylated and processed by signal peptidase II, leaving no stable signal peptide in the cells. Expression of the hybrid protein did not result in the specific release of cloacin DF13, whereas 'lysis' and the release of periplasmic enzymes were unaffected. These results indicated a role for the stable BRP signal peptide in the translocation of cloacin DF13 across the cytoplasmic membrane.  相似文献   

2.
The bacteriocin release protein (BRP) mediates the secretion of cloacin DF13. The BRP precursor is slowly processed to yield the mature BRP and its stable signal peptide which is also involved in cloacin DF13 secretion. The function of the stable BRP signal peptide was analysed by constructing two plasmids. First, the stable BRP signal peptide was fused to the murein lipoprotein and, second, a stop codon was introduced after the BRP signal sequence. Exchange of the unstable murein lipoprotein signal peptide for the stable BRP signal peptide resulted in an accumulation of precursors of the hybrid murein lipoprotein. This indicated that the BRP signal peptide, as part of this hybrid precursor, is responsible for the slow processing. The stable BRP signal peptide itself was not able to direct the transfer of cloacin DF13 into the periplasmic space or into the culture medium. Over-expression of the BRP signal peptide was lethal and caused 'lysis'. Subcellular fractionation experiments revealed that the BRP signal peptide is located exclusively in the cytoplasmic membrane whereas the mature BRP, targeted by either the stable BRP signal peptide or the unstable Lpp signal peptide, is located in both the cytoplasmic and outer membrane. These results are in agreement with the hypothesis that the stable signal peptide and the mature BRP together are required for the passage of cloacin DF13 across the cell envelope.  相似文献   

3.
By oligonucleotide-directed mutagenesis, stop codon mutations were introduced at various sites in the pCloDF13-derived bacteriocin release protein (BRP) structural gene. The expression, lipid modification (incorporation of [3H]palmitate), and processing (in the presence and absence of globomycin) of the various carboxyl-terminal shortened BRPs were analyzed by a special electrophoresis system and immunoblotting with an antiserum raised against a synthetic BRP peptide, and their functioning with respect to release of cloacin DF13, lethality, and apparent host cell lysis were studied in Sup-, supF, and supP strains of Escherichia coli. All mutant BRPs were stably expressed, lipid modified, and processed by signal peptidase II, albeit with different efficiencies. The BRP signal peptide appeared to be extremely stable and accumulated in induced cells. Full induction of the mutant BRPs, including the shortest containing only 4 amino acid residues of the mature polypeptide, resulted in phospholipase A-dependent and Mg2+-suppressible apparent cell lysis. The extent of this lysis varied with the mutant BRP used. Induction of all mutant BRPs also prevented colony formation, which appeared to be phospholipase A independent. One shortened BRP, containing 20 amino acid residues of the mature polypeptide, was still able to bring about the release of cloacin DF13. The results indicated that the 8-amino-acid carboxyl-terminal segment of the BRP contains a strong antigenic determinant and that a small segment between amino acid residues 17 and 21, located in the carboxyl-terminal half of the BRP, is important for release of cloacin DF13. Either the stable signal peptide or the acylated amino-terminal BRP fragments (or both) are involved in host cell lysis and lethality.  相似文献   

4.
The effect of the pCloDF13 encoded bacteriocin release protein (BRP) onEscherichia coli cell lethality was studied. Induction of the BRP resulted in a strong inhibition of the incorporation of radioactive labeled amino acids and affected the transport of Mg2+ ions. Similar effects were obtained when the BRP stable signal peptide was expressed as a separate entity. Kinetic studies revealed that these effects occurred prior to quasi-lysis and release of cloacin DF13. The results indicated that the BRP induced cell lethality is caused by early effects on protein synthesis and Mg2+ transport, due to the accumulation of stable BRP signal peptides in the cytoplasmic membrane.  相似文献   

5.
Summary The synthesis of the bacteriocin cloacin DF13 and its release into the culture medium were genetically uncoupled by subcloning the gene encoding the bacteriocin release protein (BRP) from pCloDF13. The gene was cloned under the control of the IPTG-inducible lpp-lac promoter-operator system on the expression vector pINIIIA1, giving pJL1. A 4 kb DNA fragment of pJL1, containing the tandem lpp-lac promoter, the BRP gene and lacI (BRP cassette), was cloned into the pCloDF13 derivative plasmid pJN67, which encodes cloacin DF13 but not the release protein. Furthermore, the pCloDF13 immunity protein gene was subcloned downstream of the temperature-inducible P L promoter of the expression vector pPLc236, together with the BRP cassette. Growth, induction and excretion experiments with Escherichia coli cells harbouring the constructed plasmids revealed that: i) the BRP is the only pCloDF13-derived gene product responsible for the observed growth inhibition and apparent lysis of strongly induced cells. This growth inhibition and lysis can be prevented by Mg2+ ions added to the culture medium, and involves induction of phospholipase A activity. (ii) The expression of the BRP gene can be regulated by varying the IPTG concentration. (iii) A separately controlled and moderate induced BRP synthesis can be used to bring about the release of large amounts of cloacin DF13 under conditions that allow a strong induction of the bacteriocin and which do not result in lysis of cells. (iiii) Preliminary results indicated that the BRP can stimulate the release of immunity protein in the absence of cloacin or cloacin fragments.  相似文献   

6.
The pCloDF13-encoded bacteriocin release protein (BRP; Mr 2,871) is essential for the translocation of cloacin DF13 across the cell envelope of producing Escherichia coli cells. Overproduction of this BRP provokes lysis (quasilysis) of cells. Construction and analysis of a hybrid BRP-beta-lactamase protein (BRP-Bla) demonstrated that the BRP contains a lipid modified cysteine residue at its amino terminus and is mainly located in the outer membrane. The significance of lipid modification for the localization and functioning of the BRP was investigated. Site-directed mutagenesis was used to substitute the cysteine residue for a glycine residue in the lipobox of the BRP and the BRP-Bla protein. The mutated BRP was unable to bring about the release of cloacin DF13 and could not provide the lysis (quasilysis) of host cells. However, the mutated BRP strongly inhibited the colony-forming ability of the cells, indicating that induction of the mutated protein still affected cell viability. In contrast to the wild-type BRP-Bla protein, the mutated BRP-Bla protein was mainly located in the cytoplasmic membrane, indicating that the mutation prevented the proper localization of the protein. The results indicated that lipid modification of the BRP is required for its localization and release of cloacin DF13, but not for its lethality to host cells.  相似文献   

7.
The gene encoding a hybrid BRP-Bla protein consisting of the pCloDF13 encoded BRP signal sequence, 25 of the 28 amino acid residues of the mature bacteriocin release protein (BRP) and the mature portion of beta-lactamase (Bla) was subcloned in the expression vector pEB112. A similar construct was made using a mutant gene encoding a BRP-Bla protein in which the cysteine residue at the +1 position was changed into a glycine residue. The expression, processing, functioning and subcellular localization of the 'wild-type' and mutant hybrid protein at high-level expression conditions were studied. The 'wild-type' BRP-Bla protein was mainly found in the outer membranes and possessed all the activities of the BRP itself; the protein was able to bring about the release of cloacin DF13 and caused apparent cell-lysis after high-level synthesis. The mutant hybrid protein was predominantly located in the inner membranes, was inactive in the release of cloacin DF13, but caused apparent cell-lysis only after strong induction.  相似文献   

8.
Induction of cloacin DF13 synthesis in Escherichia coli harbouring plasmid CloDF13 results in the release of cloacin DF13, inhibition of growth and ultimately in lysis of the host cells. Expression of the pCloDF13-encoded protein H is essential for both the release of cloacin DF13 and the lysis of the cells. The divalent cations Mg2+ and Ca2+ interfered with the mitomycin C-induced protein H-dependent lysis, but hardly affected the release of cloacin DF13. Essentially all of the bacteriocin was released from the cells before a detectable degradation of the peptidoglycan occurred, independent of the presence of mitomycin C. Experiments with phospholipase A mutants revealed that activation of detergent-resistant phospholipase A was essential for the export of cloacin DF13 across the outer membrane and the lysis of induced cells. Transport of cloacin DF13 across the cytoplasmic membrane was mainly dependent on protein H. A revised model for the excretion of cloacin DF13 is presented.  相似文献   

9.
Bacteriocin release proteins (BRPs) can be used for the release of heterologous proteins from the Escherichia coli periplasm into the culture medium. However, high-level expression of BRP causes apparent lysis of the host cells in liquid cultures (quasi-lysis) and inhibition of growth on broth agar plates (lethality). To optimize BRP-mediated protein release, the pCloDF13 BRP gene was subjected to random mutagenesis by using PCR techniques. Mutated BRPs with a strongly reduced capacity to cause growth inhibition on broth agar plates were selected, analyzed by nucleotide sequencing, and further characterized by performing growth and release experiments in liquid cultures. A subset of these BRP derivatives did not cause quasi-lysis and had only a small effect on growth but still functioned in the release of the periplasmic protein β-lactamase and the periplasmic K88 molecular chaperone FaeE and in the release of the bacteriocin cloacin DF13 into the culture medium. These BRP derivatives can be more efficiently used for extracellular production of proteins by E. coli than can the original BRP.  相似文献   

10.
We investigated the role of the tolQ gene in the import of cloacin DF13 across the outer membrane of Escherichia coli strains expressing the IutA receptor. The IutA outer-membrane protein is the receptor for the siderophore ferric aerobactin and also binds cloacin DF13, a bacteriocin produced by strains of Enterobacter aerogenes. In this report we present evidence that tolQ is required for the internalization of cloacin DF13 upon binding to IutA but it is not involved in the transport of ferric aerobactin.  相似文献   

11.
In this paper we present the complete nucleotide sequence of the bacteriocin gene of plasmid Clo DF13. According to the predicted aminoacid sequence the bacteriocin, cloacin DF13, consists of 561 aminoacids and has a molecular weight of 59,293 D. To obtain insight into the structure and function of specific parts of the cloacin molecule, we constructed a hydration profile and we predicted the secondary structure of the protein. According to our predictions, the N-terminus of cloacin DF13 (corresponding to the first 150-180 aminoacids) is relatively hydrophobic and is rich in glycine residues. The data obtained support previous findings that the N-terminal part of cloacin DF13 is involved in translocation of this protein across the cell membrane. The C-terminal part of the cloacin protein is rich in positively charged aminoacids; this might reflect the RNase activity located within this domain. A comparison of the bacteriocin genes and corresponding proteins of Clo DF13 and Col E1 did not reveal any homology at the level of either the nucleotide or the aminoacid sequence. The codon usage of both genes, however, exhibits striking similarities. The sequence data obtained during this study enabled us to present the nucleotide sequence of the entire cloacin operon. The structure of this operon and the regulation of expression of the genes, located within this operon, is discussed.  相似文献   

12.
The SecB, SecA, and SecY dependency of a small outer membrane lipoprotein in Escherichia coli, the bacteriocin release protein (BRP), was studied. The detrimental effect of BRP expression on the culture turbidity (quasi-lysis) was strongly reduced in the sec mutants. Immunoblotting and radioactive labeling experiments showed that the expression, membrane insertion, and processing of the BRP precursor are dependent on SecB, SecA, and SecY. Labeling experiments with hybrid BRP gene constructs revealed that the mature part of the BRP precursor and not its stable signal sequence is important for its SecB dependency.  相似文献   

13.
The in vitro neutralization of the killing activity of cloacin DF13 by incubation with its purified receptor protein was shown to be the result of the formation of a direct and specific equimolar complex of both proteins. The binding of cloacin DF13 to its receptor protein did not result in a fragmentation of the cloacin molecules nor in the expulsion of immunity protein from the bacteriocin. The rate of the cloacin DF13-receptor interaction in vitro was found to be enhanced significantly in the presence of peptidoglycan, but lysozyme-treated peptidoglycan did not affect this interaction. Incubation of the cloacin DF13 as well as its receptor protein with peptidoglycan showed that the receptor protein but not the cloacin DF13 was able to bind to the peptidoglycan.  相似文献   

14.
A bacteriocin from cells with a mutant Clo DF13 plasmid (cloacin clp03 . immunity protein complex) and a bacteriocin from cells containing the recombinant plasmic Clo DF13 :: Tn901 (cloacin pJN82) have been isolated. Both bacteriocins like wild-type cloacin DF13, are still able to inhibit in vitro protein synthesis, but their in vivo killing activity is absent. Comparison of some physicochemical characteristics of the cloacin clp03 . immunity protein complex and wild-type cloacin complex showed no significant differences. From a comparison of the binding capacity to specific receptors on sensitive cells, the translocation through the cell wall, and the interaction with cytoplasmic membranes, it could be concluded that the cloacin clp03 complex is hampered in its translocation from the outer membrane receptor site to the cytoplasmic membrane, resulting in the observed lack in killing activity. Cloacin pJN82 is shortened at the C-terminal of the molecule by approximately ten amino acid residues. Together with its loss of in vivo killing activity it has lost its capacity to bind immunity protein. Since the immunity protein probably not only provides cloacin-producing cells with "immunity" but is also involved in the translocation of the bacteriocin to the interior of sensitive cells, the absence of this protein is probably the reason for the lack of killing activity of cloacin pJN82. The implications of these findings for the topography of the cloacin molecule as suggested by de Graaf et al. (de Graaf, F.K., Stukart, M.J., Boogerd, F.C. and Metselaar, K. (1978) Biochemistry, in press) are discussed.  相似文献   

15.
A bacteriocin from cells with a mutant Clo DF13 plasmid (cloacin clp03· immunity protein complex) and a bacteriocin from cells containing the recombinant plasmic Clo DF13 :: Tn901 (cloacin pJN82) have been isolated. Both bacteriocins like wild-type cloacin DF13, are still able to inhibit in vitro protein synthesis, but their in vivo killing activity is absent. Comparison of some physicochemical characteristics of the cloacin clp03 · immunity protein complex and wild-type cloacin complex showed no significant differences.From a comparison of the binding capacity to specific receptors on sensitive cells, the translocation through the cell wall, and the interaction with cytoplasmic membranes, it could be concluded that the cloacin clp03 complex is hampered in its translocation from the outer membrane receptor site to the cytoplasmic membrane, resulting in the observed lack in killing activity.Cloacin pJN82 is shortened at the C-terminal of the molecule by approximately ten amino acid residues. Together with its loss of in vivo killing activity it has lost its capacity to bind immunity protein. Since the immunity protein probably not only provides cloacin-producing cells with “immunity” but is also involved in the translocation of the bacteriocin to the interior of sensitive cells, the absence of this protein is probably the reason for the lack of killing activity of cloacin pJN82.The implications of these findings for the topography of the cloacin molecule as suggested by de Graaf et al. (de Graaf, F.K., Stukart, M.J., Boogerd, F.C. and Metselaar, K. (1978) Biochemistry, in press) are discussed.  相似文献   

16.
Monoclonal antibodies (MAb) directed against different epitopes on the equimolar complex of cloacin and immunity protein (cloacin DF13) were isolated, characterized, and used to study the uptake of cloacin DF13 by susceptible cells. Four MAbs recognized the amino-terminal part, one MAb recognized the central part, and three MAbs recognized the carboxyl-terminal part of the cloacin molecule. Three MAbs reacted with the immunity protein. Five MAbs inhibited the lethal action of cloacin DF13, but none of the MAbs inhibited the binding of cloacin DF13 to its purified outer membrane receptor protein or the in vitro inactivation of ribosomes. Binding of cloacin DF13 to susceptible cells cultured in broth resulted in a specific, time-dependent dissociation of the complex and a fragmentation of the cloacin molecules. Increasing amounts of immunity protein were detected in the culture medium from about 20 min after the addition of cloacin DF13. Cloacin was fragmented into two carboxyl-terminal fragments with relative molecular masses of 50,000 and 10,000. The larger fragment was detected 5 min after the binding of the bacteriocin complex to the cells. The smaller fragment was detected after 10 min. Both fragments were associated with the cells and could not be detected in the culture supernatant fraction. Cells grown in brain heart infusion were much less susceptible to cloacin DF13 than cells grown in broth, although they possessed a similar number of outer membrane receptor molecules. This decreased susceptibility correlated with a decreased translocation, dissociation, and fragmentation of cloacin DF13.  相似文献   

17.
IutA is the outer membrane protein receptor for ferric aerobactin and the bacteriocin cloacin DF13. Although the same receptor is shared, ferric aerobactin transport across the outer membrane in Escherichia coli is TonB dependent, whereas cloacin DF13 transport is not. We have recently observed that tolQ is required for cloacin DF13 susceptibility (J.A. Thomas and M.A. Valvano, FEMS Microbiol. Lett. 91:107-112, 1992). In this study, we demonstrate that the genes tolQ, tolR, and tolA, but not tolB, tolC, and ompF, are required for the internalization of cloacin DF13 and they are not involved in the transport of ferric aerobactin.  相似文献   

18.
The production and the mechanism of excretion of cloacin DF13 were investigated in noninduced and mitomycin C-induced cell cultures. A mitomycin C concentration was selected which did not cause lysis of cloacinogenic cells, but at the same time induced a maximal production of cloacin DF13. Native cloacin DF13, possessing killing activity, was first released into the cytoplasm. Shortly thereafter, the bacteriocin was transported through the cytoplasmic membrane and accumulated in the periplasm. Finally, cloacin DF13 was excreted into the culture medium. A small amount of cloacin DF13 remained associated with the cell surface. Producing cells did not become permeable for the cytoplasmic enzyme beta-galactosidase. Apparently the cloacin DF13 leaves the producing cells by an excretion process which is not similar to the mechanism proposed for bacterial secretory proteins. The processes of excretion by producing cells and of uptake by susceptible cells were also not identical because mutant cloacin DF13, which was not transported through the outer membrane into susceptible cells, was excreted like the wild-type cloacin DF13. The composition of the culture medium greatly affected production of cloacin DF13. The presence of sugars known to cause catabolite repression not only inhibited the production but also strongly reduced the excretion of cloacin DF13 into the culture medium.  相似文献   

19.
20.
Extraction of the crude cell envelope fraction of cloacin DF13-susceptible Enterobacter cloacae strain 02 with Triton X-100 and ethylenediaminetetraacetate solubilized an outer membrane fraction which neutralized the lethal activity of cloacin DF13. A similar fraction could not be isolated from strains known to be lacking functional cloacin DF13 receptors. On this basis the isolated outer membrane fraction was assumed to contain the specific cloacin DF13 receptor. The receptor was purified to homogeneity by acetone precipitation and affinity chromatography, using cloacin DF13 as a ligand. The purified receptor was identified as a protein which consisted of a single polypeptide chain with an apparent molecular weight of 90,000 and a preponderance of acidic amino acids (pI = 5.0). The interaction of equimolar amounts of purified receptor and cloacin DF13 in vitro resulted in a complete, irreversible neutralization of the lethal activity of the bacteriocin. This interaction showed a temperature optimum at 43 degrees C but was only slightly affected by variation of the pH between 5.0 and 8.5 or by increasing the ionic strength of the incubation buffer. The receptor had no neutralizing activity towards other bacteriocins, such as colicin E1 or colicin E3.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号