首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Cell adhesion to extracellular matrix components such as fibronectin has a complex basis, involving multiple determinants on the molecule that react with discrete cell surface macromolecules. Our previous results have demonstrated that normal and transformed cells adhere and spread on a 33-kD heparin binding fragment that originates from the carboxy-terminal end of particular isoforms (A-chains) of human fibronectin. This fragment promotes melanoma adhesion and spreading in an arginyl-glycyl-aspartyl-serine (RGDS) independent manner, suggesting that cell adhesion to this region of fibronectin is independent of the typical RGD/integrin-mediated binding. Two synthetic peptides from this region of fibronectin were recently identified that bound [3H]heparin in a solid-phase assay and promoted the adhesion and spreading of melanoma cells (McCarthy, J. B., M. K. Chelberg, D. J. Mickelson, and L. T. Furcht. 1988. Biochemistry. 27:1380-1388). The current studies further define the cell adhesion and heparin binding properties of one of these synthetic peptides. This peptide, termed peptide I, has the sequence YEKPGSP-PREVVPRPRPGV and represents residues 1906-1924 of human plasma fibronectin. In addition to promoting RGD-independent melanoma adhesion and spreading in a concentration-dependent manner, this peptide significantly inhibited cell adhesion to the 33-kD fragment or intact fibronectin. Polyclonal antibodies generated against peptide I also significantly inhibited cell adhesion to the peptide, to the 33-kD fragment, but had minimal effect on melanoma adhesion to fibronectin. Anti-peptide I antibodies also partially inhibited [3H]heparin binding to fibronectin, suggesting that peptide I represents a major heparin binding domain on the intact molecule. The cell adhesion activity of another peptide from the 33-kD fragment, termed CS1 (Humphries, M. J., A. Komoriya, S. K. Akiyama, K. Olden, and K. M. Yamada. 1987. J. Biol. Chem., 262:6886-6892) was contrasted with peptide I. Whereas both peptides promoted RGD-independent cell adhesion, peptide CS1 failed to bind heparin, and exogenous peptide CS1 failed to inhibit peptide I-mediated cell adhesion. The results demonstrate a role for distinct heparin-dependent and -independent cell adhesion determinants on the 33-kD fragment, neither of which are related to the RGD-dependent integrin interaction with fibronectin.  相似文献   

2.
Cellular recognition and adhesion to the extracellular matrix (ECM) has a complex molecular basis, involving both integrins and cell surface proteoglycans (PG). The current studies have used specific inhibitors of chondroitin sulfate proteoglycan (CSPG) synthesis along with anti-alpha 4 integrin subunit monoclonal antibodies to demonstrate that human melanoma cell adhesion to an A-chain derived, 33-kD carboxyl-terminal heparin binding fragment of human plasma fibronectin (FN) involves both cell surface CSPG and alpha 4 beta 1 integrin. A direct role for cell surface CSPG in mediating melanoma cell adhesion to this FN fragment was demonstrated by the identification of a cationic synthetic peptide, termed FN-C/H-III, within the fragment. FN-C/H-III is located close to the amino terminal end of the fragment, representing residues #1721-1736 of intact FN. FN-C/H-III binds CSPG directly, can inhibit CSPG binding to the fragment, and promotes melanoma cell adhesion by a CSPG-dependent, alpha 4 beta 1 integrin-independent mechanism. A scrambled version of FN-C/H-III does not inhibit CSPG binding or cell adhesion to the fragment or to FN-C/H-III, indicating that the primary sequence of FN-C/H-III is important for its biological properties. Previous studies have identified three other synthetic peptides from within this 33-kD FN fragment that promote cell adhesion by an arginyl-glycyl-aspartic acid (RGD) independent mechanism. Two of these synthetic peptides (FN-C/H-I and FN-C/H-II) bind heparin and promote cell adhesion, implicating cell surface PG in mediating cellular recognition of these two peptides. Additionally, a third synthetic peptide, CS1, is located in close proximity to FN-C/H-I and FN-C/H-II and it promotes cell adhesion by an alpha 4 beta 1 integrin-dependent mechanism. In contrast to FN-C/H-III, cellular recognition of these three peptides involved contributions from both CSPG and alpha 4 integrin subunits. Of particular importance are observations demonstrating that CS1-mediated melanoma cell adhesion could be inhibited by interfering with CSPG synthesis or expression. Since CS1 does not bind CSPG, the results suggest that CSPG may modify the function and/or activity of alpha 4 beta 1 integrin on the surface of human melanoma cells. Together, these results support a model in which the PG and integrin binding sites within the 33-kD fragment may act in concert to focus these two cell adhesion receptors into close proximity on the cell surface, thereby influencing initial cellular recognition events that contribute to melanoma cell adhesion on this fragment.  相似文献   

3.
Cell surface heparan sulfate proteoglycan (HSPG) from metastatic mouse melanoma cells initiates cell adhesion to the synthetic peptide FN-C/H II, a heparin-binding peptide from the 33-kD A chain-derived fragment of fibronectin. Mouse melanoma cell adhesion to FN-C/H II was sensitive to soluble heparin and pretreatment of mouse melanoma cells with heparitinase. In contrast, cell adhesion to the fibronectin synthetic peptide CS1 is mediated through an alpha 4 beta 1 integrin and was resistant to heparin or heparitinase treatment. Mouse melanoma cell HSPG was metabolically labeled with [35S]sulfate and extracted with detergent. After HPLC-DEAE purification, 35S-HSPG eluted from a dissociative CL-4B column with a Kav approximately 0.45, while 35S-heparan sulfate (HS) chains eluted with a Kav approximately 0.62. The HSPG contained a major 63-kD core protein after heparitinase digestion. Polyclonal antibodies generated against HSPG purified from mouse melanoma cells grown in vivo also identified a 63-kD core protein. This HSPG is an integral plasma membrane component by virtue of its binding to Octyl Sepharose affinity columns and that anti-HSPG antibody staining exhibited a cell surface localization. The HSPG is anchored to the cell surface through phosphatidylinositol (PI) linkages, as evidenced in part by the ability of PI-specific phospholipase C to eliminate binding of the detergent-extracted HSPG to Octyl Sepharose. Furthermore, the mouse melanoma HSPG core protein could be metabolically labeled with 3H-ethanolamine. The involvement of mouse melanoma cell surface HSPG in cell adhesion to fibronectin was also demonstrated by the ability of anti-HSPG antibodies and anti-HSPG IgG Fab monomers to inhibit mouse melanoma cell adhesion to FN-C/H II. 35S-HSPG and 35S-HS bind to FN-C/H II affinity columns and require 0.25 M NaCl for elution. However, heparitinase-treated 125I-labeled HSPG failed to bind FN-C/H II, suggesting that HS, and not HSPG core protein, binds FN-C/H II. These data support the hypothesis that a phosphatidylinositol-anchored HSPG on mouse melanoma cells (MPIHP-63) initiates recognition to FN-C/H II, and implicate PI-associated signal transduction pathways in mediating melanoma cell adhesion to this defined ligand.  相似文献   

4.
Mechanisms of cell interaction with fibronectin have been studied with proteolytic fibronectin fragments that have well-defined ligand binding properties. Results of a previous study (Rogers, S. L., J. B. McCarthy, S. L. Palm, L. T. Furcht, and P. C. Letourneau, 1985, J. Neurosci., 5:369-378) demonstrated that (a) central (CNS) and peripheral (PNS) nervous system neurons adhere to, and extend neurites on a 33-kD carboxyl terminal fibronectin fragment that also binds heparin, and (b) neurons from the PNS, but not the CNS, have stable interactions with a 75-kD cell-binding fragment and with intact fibronectin. In the present study domain-specific reagents were used in inhibition assays to further differentiate cell surface interactions with the two fibronectin domains, and to define the significance of these domains to cell interactions with the intact fibronectin molecule. These reagents are (a) a soluble synthetic tetrapeptide Arg-Gly-Asp-Ser (RGDS; Pierschbacher, M. D., and E. Ruoslahti, 1984, Nature (Lond.), 309:30-33) representing a cell-binding determinant in the 75-kD fragment, and (b) an antibody raised against the 33-kD fragment that binds specifically to that fragment. Initial cell attachment to, and neurite extension upon, fibronectin and the two different fragments was evaluated in the presence and absence of the two reagents. Attachment of both PNS and CNS cells to intact fibronectin was reduced in the presence of RGDS, the former more so than the latter. In contrast, the antibody to the 33-kD fragment did not affect attachment of PNS cells to fibronectin, but significantly decreased attachment of CNS cells to the molecule. RGDS inhibited attachment of CNS cells to the molecule. RGDS inhibited attachment of both cell types to the 75-kD fragment to a greater degree than it did attachment to the intact molecule. Cell interaction with the 33-kD fragment was not affected by RGDS. Reduction of neurite lengths (determined after 24 h of culture) by the domain-specific reagents paralleled the reduction in initial adhesion to each substratum. Therefore, it appears that (a) both PNS and CNS cells have receptors for each cell-binding domain of fibronectin, (b) the receptor(s) for the two domains are distinct, with attachment to the 33-kD fragment being independent of RGDS, and (c) the relative importance of each domain to cell interaction with intact fibronectin is different for CNS and PNS cells.  相似文献   

5.
Tumor cell adhesion to the extracellular matrix is an important consideration in tumor metastasis. Recent results show that multiple adhesion-promoting domains for melanoma cells can be purified from proteolytic digests of fibronectin [McCarthy, J. B., Hagen, S. T., & Furcht, L. T. (1986) J. Cell Biol. 102, 179-188]. Monoclonal antibodies were generated against a tryptic/catheptic 33K heparin binding fragment of fibronectin derived from the carboxyl terminal of the A chain. This region contains a tumor cell adhesion-promoting domain(s). The amino-terminal sequence was determined for this fragment, as well as a tryptic 31K fragment which is located to the carboxyl-terminal side of the 33K heparin binding fragment in A chains of fibronectin. The partial sequence data demonstrate that arginyl-glycyl-aspartyl-serine (RGDS) or the related arginyl-glutamyl-aspartyl-valine (REDV) is not present in the 33K heparin binding fragment, confirming earlier results which demonstrated that cells adhere to this fragment by an RGDS-independent mechanism. Two monoclonal antibodies, termed AHB-1 and AHB-2, recognized epitopes common to heparin binding fragments derived from the carboxyl terminus of both the A and B chains of fibronectin. Monoclonal antibody AHB-2 inhibited melanoma adhesion to the 33K heparin binding fragment of fibronectin in a concentration-dependent manner, whereas monoclonal antibody AHB-1 had no effect on adhesion to this fragment. Neither monoclonal antibody inhibited adhesion to intact fibronectin. However, monoclonal AHB-2 potentiated the inhibitory effect of suboptimal levels of exogenous RGDS on cell adhesion to intact fibronectin. AHB-2 recognized an epitope common to both the A- and B-chain carboxyl-terminal heparin binding region of fibronectin.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

6.
The synthetic pentadecapeptide FN-C/H II (KNNQKSEPLIGRKKT-NH(2)) has the sequence of the carboxy-terminal heparin-binding domain of module III(14) of fibronectin. Interaction of FN-C/H II with bovine lung heparin has been studied by (1)H and (23)Na NMR spectroscopy and by heparin affinity chromatography. FN-C/H II binds to heparin from pD <2 up to pD approximately 10; at higher pD, the binding decreases as the lysine side-chain ammonium groups are titrated. Na(+) counterions are displaced from the counterion condensation volume that surrounds sodium heparinate by FN-C/H II, which provides direct evidence that the binding involves electrostatic interactions. The pK(A) values for each of the five ammonium groups of FN-C/H II increase upon binding to heparin which, together with chemical shift data, indicates that the binding involves both delocalized and direct electrostatic interactions between ammonium groups of FN-C/H II and carboxylate and/or sulfate groups of heparin. NMR data also provide evidence for the direct interaction of the guanidinium group of the arginine side chain with anionic sites on heparin. The affinity of heparin for FN-C/H II and for 13 analogue peptides in which lysine and arginine residues were systematically substituted with alanine increases as the number of basic residues increases. The relative contribution of each lysine and arginine to the affinity of heparin for FN-C/H II is R(12) > K(13) > K(14) > K(1) > K(5). Nuclear Overhauser enhancement (NOE) data indicate that, while FN-C/H II is largely unstructured in aqueous solution, the bound peptide interconverts among overlapping, turn-like conformations over the L(9) - T(15) segment of the peptide. NOE data for the interaction of FN-C/H II with a heparin-derived hexasaccharide, together with the number of Na(+) ions displaced from heparin by FN-C/H II as determined by (23)Na NMR, indicates that the peptide binds to a hexasaccharide segment of heparin. Identical NMR and heparin affinity chromatography results were obtained for the interaction of FN-C/H II and its D-amino acid analogue peptide with heparin, which is of interest for the potential use of peptides as therapeutic agents for diseases in which cell adhesion plays a critical role.  相似文献   

7.
Neuronal responses to extracellular matrix (ECM) constituents are likely to play an important role in nervous system development and regeneration. We have studied the interactions of a neuron-like rat pheochromocytoma cell line, PC12, with ECM protein-coated substrates. Using a quantitative cell attachment assay, PC12 cells were shown to adhere readily to laminin (LN) or collagen IV (Col IV) but poorly to fibronectin (FN). The specificity of attachment to these ECM proteins was demonstrated using ligand-specific antibodies and synthetic peptides. To identify PC12 cell surface proteins that mediate interactions with LN, Col IV, and FN, two different antisera to putative ECM receptors purified from mammalian cells were tested for their effects on PC12 cell adhesion and neuritic process outgrowth. Antibodies to a 140-kD FN receptor heterodimer purified from Chinese hamster ovarian cells (anti-FNR; Brown, P. J., and R. L. Juliano, 1986, J. Cell Biol., 103:1595-1603) inhibited attachment to LN and FN but not to Col IV. Antibodies to an ECM receptor preparation purified from baby hamster kidney fibroblastic cells (anti-ECMR; Knudsen, K. A., P. E. Rao, C. H. Damsky, and C. A. Buck, 1981, Proc. Natl. Acad. Sci. USA., 78:6071-6075) inhibited attachment to LN, FN, and Col IV, but did not prevent attachment to other adhesive substrates. In addition to its effects on adhesion, the anti-ECMR serum inhibited both PC12 cell and sympathetic neuronal process outgrowth on LN substrates. Immunoprecipitation of surface-iodinated or [3H]glucosamine-labeled PC12 cells with either the anti-FNR or anti-ECMR serum identified three prominent cell surface glycoproteins of 120, 140, and 180 kD under nonreducing conditions. The 120-kD glycoprotein, which could be labeled with 32P-orthophosphate and appeared to be noncovalently associated with the 140- and 180-kD proteins, cross reacted with antibodies to the beta-subunit (band 3) of the avian integrin complex, itself a receptor or receptors for the ECM constituents LN, FN, and some collagens.  相似文献   

8.
We investigated whether the L2/HNK-1 carbohydrate epitope, expressed by two unusual glycolipids and several neural adhesion molecules, including L1, neural cell adhesion molecule, J1, and the myelin-associated glycoprotein, is involved in adhesion. Monoclonal L2 antibodies, the L2/HNK-1-reactive, sulfate-3-glucuronyl residue carrying glycolipids (L2 glycolipid) and a tetrasaccharide derived from the L2 glycolipid (L2 tetrasaccharide) were added to microexplant cultures of early postnatal mouse cerebellum, and cell migration and process extension were monitored. On the substrate poly-D-lysine, Fab fragments of L2 antibodies, L2 glycolipid, and L2 tetrasaccharide inhibited outgrowth of astrocytic processes and migration of cell bodies, but only L2 glycolipid and L2 tetrasaccharide reduced neurite outgrowth. On laminin, L2 antibodies, L2 glycolipid, and L2 tetrasaccharide inhibited outgrowth of astrocytic processes. Additionally, L2 glycolipid and L2 tetrasaccharide inhibited cell migration and neurite outgrowth. Several negatively charged glycolipids, lipids, and saccharides were tested for control and found to have no effect on outgrowth patterns, except for sulfatide and heparin, which modified outgrowth patterns in a similar fashion as L2 glycolipid and L2 tetrasaccharide. On astrocytes none of the tested compounds interfered with explant outgrowth. In short-term adhesion assays L2 glycolipid, sulfatide, and heparin inhibited adhesion of neural cells to laminin. L2 glycolipid and sulfatide interfered with neuron to astrocyte and astrocyte to astrocyte adhesion, but not with neuron-neuron adhesion. The most straightforward interpretation of these observations is that the L2/HNK-1 carbohydrate and the sulfated carbohydrates, sulfatide and heparin, act as ligands in cell adhesion.  相似文献   

9.
The heparin-binding neurotrophic factor midkine (MK) has been proposed to mediate neuronal cell adhesion and neurite outgrowth promotion by interacting with cell-surface heparan sulfate. We have observed that over-sulfated chondroitin sulfate (CS) D and CS-E show neurite outgrowth-promoting activity in embryonic day (E) 18 rat hippocampal neurons (Nadanaka, S., Clement, A., Masayama, K., Faissner, A., and Sugahara, K. (1998) J. Biol. Chem. 273, 3296-3307). In the present study, various CS isoforms were examined for their ability to inhibit the MK-mediated cell adhesion of cortical neuronal cells in comparison with heparin from porcine intestine and heparan sulfate from bovine kidney. E17-18 rat cortical neuronal cells were cultured on plates coated with recombinant MK in a grid pattern. The cells attached to and extended their neurites along the MK substratum. Cell adhesion was inhibited by squid cartilage over-sulfated CS-E as well as by heparin, but not by heparan sulfate or other CS isoforms. Direct interactions of MK with various glycosaminoglycans were then evaluated using surface plasmon resonance, showing that CS-E bound MK as strongly as heparin, followed by other over-sulfated CS isoforms, CS-H and CS-K. Furthermore, E18 rat brain extracts showed an E disaccharide unit, GlcUAbeta1-3GalNAc(4,6-O-disulfate). These findings indicate that CS chains containing the E unit as well as heparin-like glycosaminoglycans may be involved in the expression and/or modulation of the multiple neuroregulatory functions of MK such as neuronal adhesion and migration and promotion of neurite outgrowth.  相似文献   

10.
Lymphocyte attachment to fibronectin is mainly mediated by the interaction of alpha 5 beta 1 and alpha 4 beta 1 integrins with the RGD and CS-1/Hep II sites, respectively. We have recently shown that the anti-beta 1 mAb TS2/16 can convert the partly active alpha 4 beta 1 present on certain hemopoietic cells that recognizes CS-1 but not Hep II, to a high avidity form that binds both ligands. In this report we have studied whether mAb TS2/16 also affects alpha 4 beta 1 ligand specificity. Incubation of the B cell lines Ramos and Daudi (which lack alpha 5 beta 1) with mAb TS2/16 induced specific attachment to an 80-kD fragment which lacks CS-1 and Hep II and contains the RGD sequence. mAbs anti-alpha 4 and the synthetic peptides CS-1 and IDAPS inhibited adhesion to the 80-kD fragment thus implying alpha 4 beta 1 as the receptor for this fragment. Interestingly, the synthetic peptide GRGDSPC and a 15-kD peptic fibronectin fragment containing the RGD sequence also inhibited B cell adhesion to the 80-kD fragment. Because we have previously shown that RGD peptides do not affect the constitutive function of alpha 4 beta 1, we tested whether TS2/16- activated alpha 4 beta 1 acquired the capacity to recognize RGD. Indeed RGD peptides inhibited TS2/16-treated B cell adhesion to a 38-kD fragment containing CS-1 and Hep II but did not affect binding of untreated cells to this fragment. An anti-fibronectin mAb reactive with an epitope on or near the RGD sequence also efficiently inhibited cell adhesion to the 80-kD fragment, indicating that the RGD sequence is a novel adhesive ligand for activated alpha 4 beta 1. These results emphasize the role of alpha 4 beta 1 as a receptor with different ligand specificities according to the activation state, a fact that may be important for lymphocyte migration, localization, and function.  相似文献   

11.
The carboxy-terminal globular domain (G-domain) of the laminin alpha1 chain has been shown to promote heparin binding, cell adhesion, and neurite outgrowth. In this study, we defined the potential sequences originating from the G-domain of laminin alpha1 chain which possess these functional activities. A series of peptides were synthesized from the G-domain, termed LG peptides (LG-1 to LG-6) and were tested for their various biological activities. In the direct [3H] heparin binding assays, LG-6 (residues 2,335-2,348: KDFLSIELVRGRVK) mediated high levels of [3H]heparin binding, and this peptide also directly promoted cell adhesion and spreading, including B16F10, M2, HT1080, and PC12 cells. The peptide LG-6 also promoted the neurite outgrowth of PC12 cells, mouse granule cells, and chick telencephalic cells. An anti-peptide LG-6 antibody inhibited laminin-1 and peptide LG-6-mediated cell adhesion and neurite outgrowth. Furthermore, an anti-integrin alpha2 antibody also inhibited the cell adhesion activity. These results suggest that peptide LG-6 plays a functional role as a heparin binding site in the G-domain of the laminin alpha1 chain, and this sequence was thus concluded to play a crucial role in regulating cell adhesion and spreading and neurite out-growth which is related to integrin alpha2.  相似文献   

12.
《The Journal of cell biology》1995,129(5):1391-1401
We have previously shown that the binding to cells of a monoclonal antibody directed against the chick neural retina N- acetylgalactosaminylphosphotransferase (GalNAcPTase) results in inhibition of cadherin-mediated adhesion and neurite outgrowth. We hypothesized that the antibody mimics the action of an endogenous ligand. Chondroitin sulfate proteoglycans (CSPGs) are potential ligands because they inhibit adhesion and neurite outgrowth and are present in situ at barriers to neuronal growth. We therefore assayed purified CSPGs for their ability to inhibit homophilic cadherin-mediated adhesion and neurite outgrowth, as well as their ability to bind directly to the GalNAcPTase. A proteoglycan with a 250-kD core protein following removal of chondroitin sulfate chains (250-kD PG) inhibits cadherin-mediated adhesion and neurite outgrowth whether presented as the core protein or as a proteoglycan monomer bearing chondroitin sulfate. A proteoglycan with a 400-kD core protein is not inhibitory in either core protein or monomer form. Treatment of cells with phosphatidylinositol-specific phospholipase C, which removes cell surface GalNAcPTase, abolishes this inhibitory effect. Binding of the 250-kD core protein to cells is competed by the anti-GalNAcPTase antibody 1B11, suggesting that 1B11 and the 250-kD core protein bind to the same site or in close proximity. Moreover, soluble GalNAcPTase binds to the immobilized 250-kD core protein but not to the immobilized 400-kD core protein. Concomitant with inhibition of cadherin mediated adhesion, binding of the 250-kD core protein to the GalNAcPTase on cells results in the enhanced tyrosine phosphorylation of beta-catenin and the uncoupling of N-cadherin from its association with the cytoskeleton. Moreover, the 250-kD PG is present in embryonic chick retina and brain and is associated with the GalNAcPTase in situ. We conclude that the 250-kD PG is an endogenous ligand for the GalNAcPTase. Binding of the 250-kD PG to the GalNAcPTase initiates a signal cascade, involving the tyrosine phosphorylation of beta-catenin, which alters the association of cadherin with the actin-containing cytoskeleton and thereby inhibits adhesion and neurite outgrowth. Regulation of the temporal and spatial expression patterns of each member of the GalNacPTase/250-kD PG interactive pair may create opportunities for interaction that influence the course of development through effects on cadherin-based morphogenetic processes.  相似文献   

13.
Cell-substratum adhesion in the embryonic chicken nervous system has been shown to be mediated in part by a 170,000-mol-wt polypeptide that is a component of adherons. Attachment of retinal cells to the 170,000-mol-wt protein is inhibited by the C1H3 monoclonal antibody and by heparan sulfate (Cole, G. J., D. Schubert, and L. Glaser, 1985, J. Cell Biol., 100:1192-1199). In the present study we have demonstrated that the 170,000-mol-wt C1H3 polypeptide is immunologically identical to the neural cell adhesion molecule N-CAM, and that the 170,000-mol-wt component of N-CAM is preferentially secreted by cells as a component of adherons. We have identified a monoclonal antibody, designated B1A3, that inhibits heparin binding to N-CAM and cell-to-substratum adhesion. A 25,000-mol-wt heparin (heparan sulfate)-binding domain of N-CAM has been identified by limited proteolysis, and this fragment promotes cell attachment when bound to glass surfaces. The fragment also partially inhibits cell binding to adherons when bound to retinal cells, and the B1A3 monoclonal antibody inhibits retinal cell attachment to substrata composed of intact N-CAM or the heparin-binding domain. These data are the first evidence that N-CAM is a multifunctional protein that contains both cell-and heparin (heparan sulfate)-binding domains.  相似文献   

14.
Laminin is a large basement membrane glycoprotein which influences the behavior and morphology of a variety of cells. We have found that laminin and a pepsin fragment of laminin (P-lam) contain distinct sites for HT-1080 human fibrosarcoma cell attachment and for neurite outgrowth activity of PC12 and NG108-15 cell lines. Reduction and alkylation of laminin and P-lam fragment disulfide bonds, in the absence of denaturing agents, markedly reduced the cell attachment activity without reducing the neurite outgrowth response. The P-lam fragment (approximately 375 kDa) was found to contain part of the cross region of laminin and a portion of the long arm, on the basis of recognition by antisera against laminin synthetic peptides and fusion proteins. Modification of arginine residues by cyclohexanedione also had no effect on neurite outgrowth but reduced HT-1080 cell adhesion. Modification of lysine residues by succinic and citraconic anhydride, however, abolished laminin neurite outgrowth but not cell attachment activity. Neurite outgrowth activity was recovered by reversing the lysine modification. These data support the existence on laminin of separate sites for cell attachment and for neurite outgrowth.  相似文献   

15.
The involvement of the adhesion molecules L1, N-CAM, and J1 in adhesion and neurite outgrowth in the peripheral nervous system was investigated. We prepared Schwann cells and fibroblasts (from sciatic nerves) and neurons (from dorsal root ganglia) from 1-d mice. These cells were allowed to interact with each other in a short-term adhesion assay. We also measured outgrowth of dorsal root ganglion neurons on Schwann cell and fibroblast monolayers. Schwann cells (which express L1, N-CAM, and J1) adhered most strongly to dorsal root ganglion neurons by an L1-dependent mechanism and less by N-CAM and J1. Schwann cell-Schwann cell adhesion was mediated by L1 and N-CAM, but not J1. Adhesion of fibroblasts (which express N-CAM, but not L1 or J1) to neurons or Schwann cells was mediated by L1 and N-CAM and not J1. However, inhibition by L1 and N-CAM antibodies was found to be less pronounced with fibroblasts than with Schwann cells. N-CAM was also strongly involved in fibroblast-fibroblast adhesion. Neurite outgrowth was most extensive on Schwann cells and less on fibroblasts. A difference in extent of neurite elongation was seen between small- (10-20 microns) and large- (20-35 microns) diameter neurons, with the larger neurons tending to exhibit longer neurites. Fab fragments of polyclonal L1, N-CAM, and J1 antibodies exerted slightly different inhibitory effects on neurite outgrowth, depending on whether the neurites were derived from small or large neurons. L1 antibodies interfered most strikingly with neurite outgrowth on Schwann cells (inhibition of 88% for small and 76% for large neurons), while no inhibition was detectable on fibroblasts. Similarly, although to a smaller extent than L1, N-CAM appeared to be involved in neurite outgrowth on Schwann cells and not on fibroblasts. Antibodies to J1 only showed a very small effect on neurite outgrowth of large neurons on Schwann cells. These observations show for the first time that identified adhesion molecules are potent mediators of glia-dependent neurite formation and attribute to L1 a predominant role in neurite outgrowth on Schwann cells which may be instrumental in regeneration.  相似文献   

16.
We have used monolayers of control 3T3 cells and 3T3 cells expressing transfected human L1 as a culture substrate for rat PC12 cells and rat cerebellar neurons. PC12 cells and cerebellar neurons extended longer neurites on human L1 expressing cells. Neurons isolated from the cerebellum at postnatal day 9 responded equally as well as those isolated at postnatal day 1-4, and this contrasts with the failure of these older neurons to respond to the transfected human neural cell adhesion molecule (NCAM). Human L1-dependent neurite outgrowth could be blocked by antibodies that bound to rat L1 and, additionally, the response could be fully inhibited by pertussis toxin and substantially inhibited by antagonists of L- and N-type calcium channels. Calcium influx into neurons induced by K+ depolarization fully mimics the L1 response. Furthermore, we show that L1- and K+(-)dependent neurite outgrowth can be specifically inhibited by a reduction in extracellular calcium to 0.25 microM, and by pretreatment of cerebellar neurons with the intracellular calcium chelator BAPTA/AM. In contrast, the response was not inhibited by heparin or by removal of polysialic acid from neuronal NCAM both of which substantially inhibit NCAM-dependent neurite outgrowth. These data demonstrate that whereas NCAM and L1 promote neurite outgrowth via activation of a common CAM-specific second messenger pathway in neurons, neuronal responsiveness to NCAM and L1 is not coordinately regulated via posttranslational processing of NCAM. The fact that NCAM- and L1-dependent neurite outgrowth, but not adhesion, are calcium dependent provides further evidence that adhesion per se does not directly contribute to neurite outgrowth.  相似文献   

17.
Using mAb technology (Wayner, E. A., W. G. Carter, R. Piotrowicz, and T. J. Kunicki. 1988. J. Cell Biol. 107:1881-1891), we have identified a new fibronectin receptor that is identical to the integrin receptor alpha 4 beta 1. mAbs P3E3, P4C2, and P4G9 recognized epitopes on the alpha 4 subunit and completely inhibited the adhesion of peripheral blood and cultured T lymphocytes to a 38-kD tryptic fragment of plasma fibronectin containing the carboxy-terminal Heparin II domain and part of the type III connecting segment (IIICS). The ligand in IIICS for alpha 4 beta 1 was the CS-1 region previously defined as an adhesion site for melanoma cells. The functionally defined mAbs to alpha 4 partially inhibited T lymphocyte adhesion to intact plasma fibronectin and had no effect on their attachment to an 80-kD tryptic fragment containing the RGD (arg-gly-asp) adhesion sequence. mAbs (P1D6 and P1F8) to the previously described fibronectin receptor, alpha 5 beta 1, completely inhibited T lymphocyte adhesion to the 80-kD fragment but had no effect on their attachment to the 38-kD fragment or to CS-1. Both alpha 4 beta 1 and alpha 5 beta 1 localized to focal adhesions when fibroblasts that express these receptors were grown on fibronectin-coated surfaces. These findings demonstrated a specific interaction of both receptors with fibronectin at focal contacts. In conclusion, these findings show clearly that cultured T lymphocytes use two independent receptors during attachment to fibronectin and that (a) alpha 5 beta 1 is the receptor for the RGD containing cell adhesion domain, and (b) alpha 4 beta 1 is the receptor for a carboxy-terminal cell adhesion region containing the Heparin II and IIICS domains. Furthermore, these data also show that T lymphocytes express a clear preference for a region of molecular heterogeneity in IIICS (CS-1) generated by alternative splicing of fibronectin pre-mRNA and that alpha 4 beta 1 is the receptor for this adhesion site.  相似文献   

18.
Fibroblast growth factor (FGF) is an important modulator of cell growth and differentiation of various cells including neuron. Cells need to adhere specifically to cellular and extracellular components of their environment to carry out diverse physiological functions. Here, we examined whether fibronectin (FN) and FGF can cooperate for neuronal adhesion and neurite outgrowth. Using recombinant FN peptide (FNIII9-10), we found that FNIII9-10-mediated adhesion promotes the effect of FGF1 on neurite outgrowth of PC12 cells, while FGF1 enhances the FNIII9-10-mediated neuronal adhesion of PC12 cells. This collaboration of FNIII9-10 and FGF1 was the result of the sustained activation of extracellular signal-regulated kinase (ERK)-type MAP kinase. Finally, the synergistic activity of FGF1 and FN was inhibited by PD98059, an MEK inhibitor. Taken together, these findings indicate that FN-mediated signaling can collaborate with FGFRs signaling for neurite outgrowth through selective activation of ERK-type MAP kinase in PC12 cells, and suggest that FN and FGF act in concert to regulate cell differentiation in the nervous system.  相似文献   

19.
《The Journal of cell biology》1986,103(6):2659-2672
We have compared neurite outgrowth on extracellular matrix (ECM) constituents to outgrowth on glial and muscle cell surfaces. Embryonic chick ciliary ganglion (CG) neurons regenerate neurites rapidly on surfaces coated with laminin (LN), fibronectin (FN), conditioned media (CM) from several non-neuronal cell types that secrete LN, and on intact extracellular matrices. Neurite outgrowth on all of these substrates is blocked by two monoclonal antibodies, CSAT and JG22, that prevent the adhesion of many cells, including neurons, to the ECM constituents LN, FN, and collagen. Neurite outgrowth is inhibited even on mixed LN/poly-D-lysine substrates where neuronal attachment is independent of LN. Therefore, neuronal process outgrowth on extracellular matrices requires the function of neuronal cell surface molecules recognized by these antibodies. The surfaces of cultured astrocytes, Schwann cells, and skeletal myotubes also promote rapid process outgrowth from CG neurons. Neurite outgrowth on these surfaces, though, is not prevented by CSAT or JG22 antibodies. In addition, antibodies to a LN/proteoglycan complex that block neurite outgrowth on several LN-containing CM factors and on an ECM extract failed to inhibit cell surface-stimulated neurite outgrowth. After extraction with a nonionic detergent, Schwann cells and myotubes continue to support rapid neurite outgrowth. However, the activity associated with the detergent insoluble residue is blocked by CSAT and JG22 antibodies. Detergent extraction of astrocytes, in contrast, removes all neurite- promoting activity. These results provide evidence for at least two types of neuronal interactions with cells that promote neurite outgrowth. One involves adhesive proteins present in the ECM and ECM receptors on neurons. The second is mediated through detergent- extractable macromolecules present on non-neuronal cell surfaces and different, uncharacterized receptor(s) on neurons. Schwann cells and skeletal myotubes appear to promote neurite outgrowth by both mechanisms.  相似文献   

20.
The extracellular matrix molecule fibronectin (FN) is a glycoprotein whose major functional property is to support cell adhesion. FN contains at least two distinct cell-binding domains: the central cell-binding domain and the HepII/IIICS region. The HepII region comprises type III repeats 12-14 and contains proteoglycan-binding sites, while the alternatively spliced IIICS segment possesses the major alpha4beta1 integrin-binding sites. Both cell surface proteoglycans and integrins are important for mediating the adhesion of cells to this region of FN. By comparing heparin binding to different recombinant splice variants of the HepII/IIICS region, evidence was obtained for the existence of a novel heparin-binding site in the centre of the IIICS. Site-directed mutagenesis of basic amino acid sequences in this region reduced heparin binding to recombinant HepII/IIICS proteins and, in conjunction with mutations in the HepII region, caused a synergistic loss of activity. Using the H/120 variant of FN, which contains type III repeats 12-15 and the full-length IIICS region, and the H/95 variant of FN, which contains type III repeats 12-15 but lacks the high affinity integrin-binding LDV sequence, the relative roles played by cell-surface proteoglycans and integrins in mediating cell adhesion have been investigated. This was achieved by studying the effects of anti-integrin antibodies and exogenous heparin on A375 melanoma cell attachment to the wild-type and three different mutants of H/120 and H/95 in which the potential proteoglycan-binding sites were partially or completely removed. A375 cell adhesion to H/120 and its mutants was found to involve the co-operative action of both integrin and cell-surface proteoglycan binding, although integrin made a dominant contribution. Anti-integrin antibodies and exogenous heparin were capable of inhibiting melanoma cell adhesion to H/95 and in this case adhesion was due primarily to cell-surface proteoglycan and not integrin binding.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号