首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The manganese-containing superoxide dismutase in Escherichia coli is an inducible enzyme that protects cells against oxygen toxicity. The manganese-enzyme is induced by oxygen, nitrate, redox active compounds that react with oxygen to generate superoxide radicals, as well as iron chelators. In order to test the hypothesis that the redox state of the cell is involved in regulating manganese-superoxide dismutase biosynthesis, we studied the effects of several oxidants on growth and superoxide dismutase biosynthesis. The data showed, that under anaerobic conditions, the active manganese-enzyme is induced in the presence of potassium ferricyanide, copper-cyanide complex, ammonium persulfate, and hydrogen peroxide. Western blot analysis revealed that the induction of manganese-superoxide dismutase by the oxidants is associated with de novo protein biosynthesis. Potassium ferricyanide and hydrogen peroxide induced the enzyme under aerobic conditions as well. It is concluded that the redox state of the cell possibly influences the biosynthesis and/or activity of an iron-containing repressor protein that serves to negatively regulate manganese-superoxide dismutase biosynthesis.  相似文献   

2.
The synthesis of manganese-superoxide dismutase in response to hydrogen peroxide and to paraquat was examined in strains of Escherichia coli with different mutations in the oxyR gene. Hydrogen peroxide treatment did not induce manganese-superoxide dismutase, but did induce the oxyR regulon. Paraquat induced this enzyme in a strain compromised in its ability to induce the defense response against oxidative stress (oxyR deletion) as well as in a strain that is constitutive and overexpresses the oxyR regulon. Catalase (HPI), but not manganese-superoxide dismutase, was over-expressed under anaerobic conditions in a strain harboring a constitutive oxyR mutation. The data clearly demonstrate that the induction of manganese-superoxide dismutase is independent of the oxyR-controlled regulon.  相似文献   

3.
Friedreich ataxia is a human neurodegenerative and myocardial disease caused by decreased expression of the mitochondrial protein frataxin. Proteomic analysis of the mutant yeast model of Friedreich ataxia presented in this paper reveals that these cells display increased amounts of proteins involved in antioxidant defenses, including manganese-superoxide dismutase. This enzyme shows, however, lower activity than that found in wild type cells. Our results indicate that this lack of activity is a consequence of cellular manganese deficiency, because in manganese-supplemented cultures, cell manganese content, and manganese-superoxide dismutase activity were restored. One of the hallmarks of Friedreich ataxia is the decreased activity of iron/sulfur-containing enzymes. The activities of four enzymes of this group (aconitase, glutamate synthase, succinate dehydrogenase, and isopropylmalate dehydratase) have been analyzed for the effects of manganese supplementation. Enzyme activities were recovered by manganese treatment, except for aconitase, for which, a specific interaction with frataxin has been demonstrated previously. Similar results were obtained when cells were grown in iron-limited media suggesting that manganese-superoxide dismutase deficiency is a consequence of iron overload. In conclusion, these data indicate that generalized deficiency of iron-sulfur protein activity could be a consequence of manganese-superoxide dismutase deficiency, and consequently, it opens new strategies for Friedreich ataxia treatment.  相似文献   

4.
Treatment of exponentially growing cells of Escherichia coli with membrane-binding drugs such as chlorpromazine (CPZ) and procaine resulted in an induction of manganese-superoxide dismutase (Mn-SOD). A slight decrease was observed in the amount of Fe-SOD. The induction of Mn-SOD required de novo synthesis of this enzyme, since it was suppressed by rifampin. The treatment did not cause the induction of Mn-SOD when performed under anaerobic conditions. In E. coli cells with a sodA-lacZ operon fusion, CPZ and procaine induced beta-galactosidase in the presence of oxygen, whereas it was not expressed and was not induced by CPZ and procaine under anaerobic conditions. Although CPZ reduced the ability of cell suspensions to take up oxygen, it increased the cyanide-resistant fraction of the total respiration. Therefore, it appeared likely that the induction of the sodA gene was a response to an increase in superoxide radical production mediated by these membrane-binding drugs in E. coli cells, possibly by disruption of the electron transport systems in the cell membranes.  相似文献   

5.
6.
7.
Anaerobically grown Escherichia coli K-12 contain only one superoxide dismutase and that is the iron-containing isozyme found in the periplasmic space. Exposure to oxygen caused the induction of a manganese-containing superoxide dismutase and of another, previously undescribed, superoxide dismutase, as well as of catalase and peroxidase. These inductions differed in their responsiveness towards oxygen. Thus the very low levels of oxygen present in deep, static, aerobic cultures were enough for nearly maximal induction of the manganese-superoxide dismutase. In contrast, induction of the new superoxide dismutase, catalase, and peroxidase required the much higher levels of oxygen achieved in vigorously agitated aerobic cultures. Anaerobically grown cells showed a much greater oxygen enhancement of the lethality of streptonigrin than did aerobically grown cells, in accord with the proposal that streptonigrin can serve as an intracellular source of superoxide. Anaerobically grown cells in which enzyme inductions were prevented by puromycin were damaged by exposure to air. This damage was evidenced both as a decline in viable cell count and as structural abnormalities evident under an electron microscope.  相似文献   

8.
Superoxide dismutase activity in free-living Rhizobium phaseoli is due to the presence of two different enzymes containing manganese or iron. Under usual culture conditions, the manganese-enzyme appears largely predominant but the induction of the iron-superoxide dismutase can be obtained by addition of methyl viologen to the culture media. The corresponding bacteroid, extracted from French-bean nodules, contains only a manganese-superoxide dismutase whose characteristics are similar to those of the bacterial enzyme. However, the activity of the microsymbiont is slightly lower than that of free-living cells. The presence of an active superoxide dismutase in the bacteroids suggests a significant formation of superoxide anion by their metabolism; this can be correlated with the existence of a large oxygen demand by the microsymbionts within the nodule, as suggested by their important oxygen uptake in vitro.  相似文献   

9.
10.
G Sawers  A Bck 《Journal of bacteriology》1988,170(11):5330-5336
The anaerobic regulation of the gene encoding pyruvate formate-lyase from Escherichia coli was investigated. Expression of a pfl'-'lacZ protein fusion demonstrated that the gene is subject to a 12-fold anaerobic induction which can be stimulated a further 2-fold by the addition of pyruvate to the growth medium. Construction of a strain deleted for pfl verified that either pyruvate or a metabolite of glycolysis functions as an inducer of pfl gene expression. Complete anaerobic induction required the presence of a functional fnr gene product. However, the dependence was not absolute since a two- to threefold anaerobic induction could still be observed in an fnr mutant. These results could be confirmed immunologically by analyzing the levels of pyruvate formate-lyase protein present in cells grown under various conditions. It was also shown that pfl'-'lacZ expression was partially repressed by nitrate and that this repression was mediated by the narL gene product.  相似文献   

11.
Regulation of Saccharomyces cerevisiae FET4 by oxygen and iron   总被引:2,自引:0,他引:2  
  相似文献   

12.
13.
Studies on the induction of the manganese-containing superoxide dismutase in several strains of Escherichia coli with different mutations in recA and lexA revealed that the inductions of the Mn-isozyme and of the SOS system by oxygen free radicals are not coregulated. We also studied the synthesis of the manganese-superoxide dismutase in the temperature-dependent, protease-constitutive strain recA441(tif-1) that also contained a lac fusion in an SOS gene. A shift to the temperature at which recA441 has constitutive protease activity did not induce Mn-superoxide dismutase but did induce beta-galactosidase. The data clearly demonstrate that induction of the Mn-superoxide dismutase is independent of the SOS system.  相似文献   

14.
15.
16.
17.
Pseudomonas aeruginosa forms most of its heme under anaerobic denitrifying conditions. To study the regulation of the hemA gene, which codes for the first enzyme of heme biosynthesis in P. aeruginosa, a lacZ reporter gene fusion was constructed. Expression of lacZ under the control of the hemA promoter was found to be increased by 2.8-fold under anaerobic conditions in the presence of the alternative electron acceptor nitrate, relative to the level observed under aerobic growth conditions. Anaerobic fermentative growth or the presence of nitrite did not affect the lacZ expression. The genes encoding the oxygen sensor protein Anr, the redox regulator Dnr, the nitrate regulator NarL and the DNA-bending Integration Host Factor (IHF) are all required for the cooperative anaerobic induction of the hemA promoter hemAp (1). Potential binding sites for these regulatory proteins were identified by site-directed mutagenesis of the promoter fused to the reporter gene. The mode of regulation of P. aeruginosa hemA differs significantly from that described for the hemA gene of Escherichia coli K-12.  相似文献   

18.
19.
The copper transport protein Atox1 promotes neuronal survival   总被引:5,自引:0,他引:5  
Atox1, a copper transport protein, was recently identified as a copper-dependent suppressor of oxidative damage in yeast lacking superoxide dismutase. We have previously reported that Atox1 in the rat brain is primarily expressed in neurons, with the highest levels in distinct neuronal subtypes that are characterized by their high levels of metal, like copper, iron, and zinc. In this report, we have transfected the Atox1 gene into several neuronal cell lines to increase the endogenous level of Atox1 expression and have demonstrated that, under conditions of serum starvation and oxidative injury, the transfected neurons are significantly protected against this stress. This level of protection is comparable with the level of protection seen with copper/zinc superoxide dismutase and the anti-apoptotic gene bcl-2 that had been similarly transfected. Furthermore, neuronal cell lines transfected with a mutant Atox1 gene, where the copper binding domain has been modified to prevent metal binding, do not afford protection against serum starvation resulting in apoptosis. Therefore, Atox1 is a component of the cellular pathways used for protection against oxidative stress.  相似文献   

20.
The AppA protein plays an essential regulatory role in development of the photosynthetic apparatus in the anoxygenic phototrophic bacterium Rhodobacter sphaeroides 2.4.1 (M. Gomelsky and S. Kaplan, J. Bacteriol. 177:4609-4618, 1995). To gain additional insight into both the role and site of action of AppA in the regulatory network governing photosynthesis gene expression, we investigated the relationships between AppA and other known regulators of photosynthesis gene expression. We determined that AppA is dispensable for development of the photosynthetic apparatus in a ppsR null background, where PpsR is an aerobic repressor of genes involved in photopigment biosynthesis and puc operon expression. Moreover, all suppressors of an appA null mutation thus far isolated, showing improved photosynthetic growth, were found to contain mutations in the ppsR gene. Because ppsR gene expression in R. sphaeroides 2.4.1 appears to be largely independent of growth conditions, we suggest that regulation of repressor activity occurs predominately at the protein level. We have also found that PpsR functions as a repressor not only under aerobic but under anaerobic photosynthetic conditions and thereby is involved in regulating the abundance of the light harvesting complex II, depending on light intensity. It seems likely therefore, that PpsR responds to an integral signal (e.g., changes in redox potential) produced either by changes in oxygen tension or light intensity. The profile of the isolated suppressor mutations in PpsR is in accord with this proposition. We propose that AppA may be involved in a redox-dependent modulation of PpsR repressor activity.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号