首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
S R Zukin 《Life sciences》1982,31(12-13):1307-1310
Paired stereoisomers of compounds active at the proposed mu, kappa and sigma classes of opiate receptors display differing stereoselectivity patterns at the receptor subtypes. The (-) isomers of cyclazocine and SKF-10047 are far more potent than the (+) isomers as displacers of [3H]dihydromorphine from receptors. However, the (-) isomers are only moderately more potent than the (+) isomers at displacing [3H]ethylketocyclazocine from kappa receptors in an assay controlled for radioligand binding to mu receptors, and the (+) and (-) isomers are similar in potency for displacement of [3H]phencyclidine (PCP) from sigma receptors. At the sigma/PCP receptor, (+) ketamine proved four times as potent as (-) ketamine, while the dioxalan derivative dexoxadrol is far more potent than its nearly inactive enantiomer levoxadrol. The results for the sigma/PCP receptor are in agreement with those of behavioral studies. Stereospecificity patterns may provide support for the concept of the opiate receptor subclasses as biochemically distinct entities.  相似文献   

2.
J A Purifoy  R W Holz 《Life sciences》1984,35(18):1851-1857
The ability of ketamine, phencyclidine and analogues to alter catecholamine secretion from cultured bovine adrenal chromaffin cells was investigated. Both ketamine and phencyclidine specifically inhibited nicotinic agonist-induced secretion at concentrations which did not alter secretion induced by elevated K+ depolarization. The inhibition of nicotinic agonist-induced secretion was not overcome by increasing concentrations of nicotinic agonist. The effects of stereoisomer pairs of phencyclidine-like drugs - dexoxadrol, levoxadrol and (+)PCMP, (-)PCMP - did not reveal stereospecificity for the inhibition, in contrast to the stereospecific behavioral effects of the drugs. The local anesthetic lidocaine (0.3 mM) also noncompetitively inhibited nicotinic agonist-induced secretion without inhibiting elevated K+-induced secretion. The data indicate that ketamine and phencyclidine at clinically relevant concentrations specifically inhibit the adrenal chromaffin cell nicotinic receptor at a site similar to or identical with the site of action of local anesthetic. Although the nicotinic receptor inhibition is probably not related to the anesthetic and behavioral effects of ketamine and phencyclidine, it is likely that the centrally mediated increase in sympathetic nervous system activity which is characteristic of these drugs is moderated by the peripheral blocking effects on catecholamine secretion from the adrenal medulla.  相似文献   

3.
Y Itzhak  S Alerhand 《FASEB journal》1989,3(7):1868-1872
The existence of multiple receptor sites for the psychotomimetic agents phencyclidine (PCP) and some opiate-benzomorphans such as (+)N-allylnormetazocine ([+]SKF 10,047) in the mammalian central nervous system is well documented. These are: 1) sigma/PCP (sigma p) site, which binds both PCP and psychotomimetic opiates but not antipsychotics such as haloperidol, 2) PCP site, which selectively binds PCP analogs, and 3) sigma/haloperidol (sigma h) site, for which certain antipsychotics and (+)SKF 10,047, but not PCP analogs, display high affinity. In this study we examined the regulation of these receptor sites after chronic treatment of mice with either PCP or haloperidol. The following radiolabeled ligands were used to assess binding to the various receptor subtypes: [3H]-1-[1-[3-hydroxyphenyl)cyclohexyl]piperidine ([3H]PCP-3-OH; sigma p and PCP sites), [3H]thienyl-phencyclidine ([3H]TCP; PCP site), (+)-[3H]SKF 10,047 (sigma p and sigma h sites), and [3H]haloperidol (sigma h and D-2 dopamine receptors). Treatment of mice for 1, 7, 14, and 21 days with PCP (10 mg.kg-1.day-1) failed to induce variations in sigma p, sigma h, and PCP receptor binding. However, similar treatment with haloperidol (4 mg.kg-1.day-1) induced: 1) complete elimination of the binding to sigma h sites, 2) up-regulation of D-2 dopamine receptors, and 3) no change in sigma p and PCP receptor binding after 14 or 21 days of treatment. However, a single day of haloperidol treatment or in vitro incubation of mouse brain membranes with haloperidol failed to alter receptor binding. This study suggests that prolonged treatment of mice with haloperidol induces a loss in sigma h receptors that are presumably associated with certain psychotomimetic effects. This phenomenon is accompanied by an up-regulation of D-2 dopamine receptors.  相似文献   

4.
G F Steinfels  S W Tam  L Cook 《Life sciences》1986,39(26):2611-2615
In rats trained to discriminate the prototypic sigma receptor agonist, (+)-N-Allylnormetazocine [(+)-N-Allylnormetazocine [(+)-NANM/SKF 10,047], from saline, the (+)- but not the (-)-isomer of 3-(3-hydroxyphenyl)-N-(1-propyl)piperidine (3-PPP) produced (+)-NANM-like discriminative stimuli. (+)-3-PPP binds stereo selectively to the (+)-NANM binding site, but not to the phencyclidine binding site. Additionally, phencyclidine was found to produce (+)-NANM-like discriminative stimuli. Although the 3-PPP isomers were shown to produce changes in central dopaminergic activity (Hjorth et al. Life Sci 37, 673, 1985), the discriminative stimulus properties of (+)-3-PPP are apparently not mediated via the dopaminergic system. This hypothesis is supported by the fact that apomorphine did not produce (+)-NANM-like discriminative stimuli. These stimuli are thus non-dopaminergic and may be due to the (+)-3-PPP actions at the sigma binding site. However, it is possible that (+)-NANM, PCP, and (+)-3-PPP may have common non-sigma pharmacologic properties that account for the similar discriminative stimulus properties of these compounds.  相似文献   

5.
Y Itzhak  I Stein 《Life sciences》1990,47(13):1073-1081
An increasing amount of evidence suggests the existence of specific binding sites for psychotomimetic drugs from the opiate-benzomorphan and arylcyclohexylamine series. The sigma binding sites have preferential affinity for the dextrorotatory isomers of certain opiate benzomorphans, such as (+)SKF 10047, (+)cyclazocine and (+)pentazocine and also for some neuroleptics (e.g., haloperidol). The PCP receptor has preferential affinity for phencyclidine (PCP) analogs and other non-competitive N-methyl-D-aspartate (NMDA) receptor antagonists. The physiological significance of the PCP receptor is associated with the blockade of the NMDA type of the glutamate receptor, implying a neuroprotective role of the PCP receptor. However, the significance of the sigma binding sites is less conspicuous. It is not only that drugs from distinct pharmacological classes display a certain degree of affinity for the "sigma/haloperidol" binding sites, but also that drugs which do not induce or block psychotomimetic activity, i.e., (+)3-(3-hydroxyphenyl)-N-(1-propyl) piperidine [(+)3-PPP] and 1,3-di-o-tolyl-guanidine (DTG), display relatively high affinity for the sigma binding sites. The diversity of the compounds which are proposed to interact with the sigma receptors and the variety of the responses elicited by these drugs suggest the existence of sigma receptor subtypes. The finding that the type A of monoamine oxidase (MAO) inhibitors, which are used in treatment of affective disorders, display high affinity for the sigma binding sites suggests their involvement in affective or schizoaffective disorders. Revealing the existence of sigma receptor subtypes may help to elucidate their association with various psychiatric disorders.  相似文献   

6.
High-affinity binding sites (apparent KD 2.87 nM) for [3H]desmethylimipramine ([3H]DMI), have been demonstrated and characterized in membrane preparations of bovine adrenal medulla. The binding of [3H]DMI improved upon pretreatment of the membrane with KCl and was saturable, sodium dependent, and potently inhibited by nisoxetine and imipramine. [3H]DMI binding was also inhibited by various phencyclidine (PCP)- and (or) sigma-receptor ligands, with the following order of potency: haloperidol > rimcazole > (-)-butaclamol > dextromethorphan > MK-801 > (+)-3-(3-hydroxyphenyl)-N-(1-propyl)piperidine ((+)-3-PPP) > PCP > N-(2-thienyl)cyclohexyl-3,4-piperidine (TCP) > (+)-SKF-10047 > (-)-SKF-10047. The inhibition produced by sigma ligands was not attributed to stimulation of either sigma 1- or sigma 2-receptors, owing to inactivity of the selective sigma-receptor ligands (+)-pentazocine and 1,3-di(2-tolyl)guanidine (DTG). The inhibition of [3H]DMI binding by sigma- and PCP-receptor ligands was not attributed to PCP1- or PCP2-receptor stimulation, owing to the decreased potency (100-fold) of these ligands in [3H]DMI assays compared with the affinity for brain PCP1 sites, and the ineffectiveness of the PCP2-ligand N-(1-(2-benzo(b)thiophenyl)cyclohexyl)piperidine (BTCP). Scatchard analysis of the inhibition by the sigma-ligands haloperidol and (+)-3-PPP, as well as the PCP1 receptor ligand MK-801, demonstrated noncompetitive interaction with the site bound by [3H]DMI. These studies indicate that bovine adrenomedullary membranes possess a specific receptor for the noradrenaline uptake inhibitor [3H]DMI, which is sensitive to allosteric modulation produced by PCP and sigma-ligands.  相似文献   

7.
Photoaffinity labeling of rat brain phencyclidine (PCP) receptors with [3H] azido phencyclidine ([3H]AZ-PCP) reveals the existence of five polypeptides which are specifically labeled by the affinity probe (Mr's 90,000, 62,000, 49,000, 40,000 and 33,000). These labeled components are unevenly distributed in rat brain. In the frontal cortex, thalamus and olfactory bulb, the major bands labeled are the Mr's 90 K and 62 K polypeptides; in the cerebellum most of the labeling is in the 90 K and 33 K bands; and in the hippocampus all but the Mr 40 K band are heavily labeled. Together with dexoxadrol/[3H]PCP competition binding data, which indicated the existence of high and low affinity dexoxadrol/PCP binding sites, these results suggest regional heterogeneity of PCP receptors. The regional distribution of the high affinity dexoxadrol binding sites correlates best with that of the Mr 90 K polypeptide.  相似文献   

8.
Polypeptide components of the phencyclidine (PCP) receptor present in rat hippocampus were identified with the photolabile derivative of phencyclidine [3H]azidophencyclidine ( [3H]AZ-PCP). The labeled affinity probe was shown to reversibly bind to specific sites in the dark. The number of receptor sites bound is equal to those labeled by [3H]PCP, and their pharmacology and stereospecificity are identical with those of the PCP/sigma-opiate receptors. The dissociation constant of [3H]AZ-PCP from these receptors is 0.25 +/- 0.08 microM. Photolysis of hippocampus membranes preequilibrated with [3H]AZ-PCP, followed by sodium dodecyl sulfate-polyacrylamide gel electrophoresis, revealed the existence of five major labeled bands of which a Mr 90 000 band and a Mr 33 000 band were heavily labeled. Inhibition experiments, in which membranes were incubated with [3H]AZ-PCP in the presence of various PCP analogues and opiates, indicate that labeling of both the Mr 90 000 band and the Mr 33 000 band is sensitive to relatively low concentrations (10 microM) of potent PCP/sigma receptor ligands, while similar concentrations of levoxadrol, naloxone, morphine, D-Ala-D-Leu-enkephalin, atropine, propranolol, and serotonin were all ineffective. Stereoselective inhibition of labeling of the Mr 90 000 band and of the Mr 33 000 band was also observed by the use of dexoxadrol and levoxadrol. The Mr 33 000 band was not as sensitive as the Mr 90 000 band to inhibition by the selective PCP receptor ligands N-[1-(2-thienyl)cyclohexyl]piperidine and PCP.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

9.
Plasma prolactin (PRL) was decreased in naive rats sacrificed 30 min after phencyclidine (PCP) administration (10 mg/kg, s.c.). There was, however, no decrease in plasma PRL 30 min after s.c. injection of PCP (10 mg/kg) on the 29th day following 28 days of chronic PCP administration. These data suggest the development of tolerance to the PRL-suppressive effect of PCP as result of long-term administration of the drug. The Bmax of [3H]-spiperone binding to rat striatal membranes was decreased 24 hrs after 28 days of PCP treatment without change in affinity (Kd). No indication of the development of tolerance in these rats was found with regard to the locomotor-stimulating effect of PCP. The plasma PRL-suppressive effect of the PCP analog PCMP was found to be stereo-specific; (-) PCMP was much less potent than (+)-PCMP.  相似文献   

10.
Neurochemical interactions of tiletamine, a potent phencyclidine (PCP) receptor ligand, with the N-methyl-D-aspartate (NMDA)-coupled and -uncoupled PCP recognition sites were examined. Tiletamine potently displaced the binding of [3H]1-(2-thienyl)cyclohexylpiperidine with an IC50 of 79 nM without affecting sigma-, glycine, glutamate, kainate, quisqualate, or dopamine (DA) receptors. Like other PCP ligands acting via the NMDA-coupled PCP recognition sites, tiletamine decreased basal, harmaline-, and D-serine-mediated increases in cyclic cGMP levels and induced stereotypy and ataxia. Tiletamine was nearly five times more potent than PCP at inhibiting the binding of 3-hydroxy[3H]PCP to its high-affinity NMDA-uncoupled PCP recognition sites. However, following parenteral administration, dizocilpine maleate (MK-801), ketamine, PCP, dexoxadrol, and 1-(2-thienyl)cyclohexylpiperidine HCl, but not tiletamine, increased rat pyriform cortical DA metabolism and/or release, a response modulated by the NMDA-uncoupled PCP recognition sites. Pretreatment with tiletamine did not attenuate the MK-801-induced increases in rat pyriform cortical DA metabolism, a result suggesting that tiletamine is not a partial agonist of the NMDA-uncoupled PCP recognition sites in this region. However, following intracerebroventricular administration (100-500 micrograms/rat), tiletamine increased pyriform cortical DA metabolism with a bell-shaped dose-response curve. These data indicate a differential interaction of tiletamine with the NMDA-coupled and -uncoupled PCP recognition sites. The paradoxical effects of tiletamine suggest that tiletamine might activate receptor(s) or neuronal pathways of unknown pharmacology.  相似文献   

11.
The effects of phencyclidine (PCP) on ACh release were compared to those of morphine, ethylketocyclazocine (EKC), and N-allylnormetazocine (SKF10047) in a superfused striatal slice preparation. The (+)-isomer of the prototypic sigma opiate agonist, SKF10047, and the prototypic kappa opiate agonist, EKC, had essentially the same pharmacological profile as did PCP. That is, they each inhibited ACh release in a concentration dependent manner (with EKC being the most potent) and this effect was antagonized by 0.1 microM naloxone. Since morphine was without effect on ACh release, it is unlikely that these drugs inhibit ACh release by acting at mu receptors. In addition, we observed that the inhibitory effect of PCP, (+) SKF10047, and EKC on ACh release was reversed by 0.1 microM haloperidol. Given that PCP has been shown to stimulate basal DA release in this preparation, it is possible that PCP, EKC and (+) SKF10047 inhibit ACh release indirectly by stimulating DA release. The naloxone-induced blockade of the effect of PCP and these benzomorphans is discussed in relation to the effects of naloxone on other systems known to influence ACh release.  相似文献   

12.
Y Itzhak 《Life sciences》1988,42(7):745-752
The pharmacological specificity of representative psychotomimetic agents such as phencyclidine (PCP) analogs, opiate benzomorphans and several antipsychotic agents was assessed for the sigma and PCP binding sites. In a series of binding experiments, in rat brain membranes, sigma and PCP binding sites were labeled with [3H]-1-[1-(3-hydroxyphenyl)cyclohexyl]piperidine [( 3H]PCP-3-OH), (+) [3H]-N-allylnormetazocine [(+) [3H]SKF 10047] and (+) [3H]-3-[3-hydroxy-phenyl]-N-(1-propyl)piperidine [(+) [3H]-3-PPP]. PCP analogs inhibit potently high affinity [3H]PCP-3-OH binding and (+) [3H]SKF 10047 binding, moderately the low affinity binding component of [3H]PCP-3-OH and very weakly (+) [3H]-3-PPP binding. (+)SKF 10047 and cyclazocine are potent to moderate inhibitors of (+) [3H]SKF 10047, high affinity [3H]PCP-3-OH and (+) [3H]-3-PPP binding, but extremely weak inhibitors of low affinity [3H]PCP-3-OH binding. The antipsychotic agents display high affinity for (+) [3H]-3-PPP binding sites, moderate affinity for (+) [3H]SKF 10047 sites and have no effect on either the high or low affinity [3H]PCP-3-OH binding. The present data further support the existence of multiple sigma and PCP binding sites.  相似文献   

13.
At concentrations greater than or equal to 100 microM, phencyclidine (PCP), N-(1-(2-thienyl)-cyclohexyl)piperidine (TCP), and MK-801 induced [3H]dopamine release from dissociated cell cultures of rat mesencephalon. This release was Ca2+ independent and tetrodotoxin insensitive. Tetrodotoxin (2 microM) itself had no effect on spontaneous release of [3H]dopamine. [3H]Dopamine release was induced by 1,3-di(2-tolyl)guanidine, a sigma ligand, and by 4-aminopyridine (1-3 mM), a K+ channel blocker. No stereoselectivity was observed for [3H]dopamine release evoked by the dioxadrol enantiomers, dexoxadrol, and levoxadrol, or by enantiomers of N-allylnormetazocine (SKF 10,047). The selective dopamine uptake inhibitor 1-(2-[bis(4-fluorophenyl)methoxy]ethyl)-4-(3-phenylpropyl)piperazine dihydrochloride (GBR 12909) did not affect spontaneous or TCP-evoked [3H]dopamine release. Together, these data suggest that the dopamine-releasing effects of PCP-like compounds on the mesencephalic cells were not mediated by actions at the PCP receptor or sigma binding site, Ca2+, or Na+ channels, or at the high affinity dopamine uptake site. It remains conceivable that blocking actions of PCP-like compounds at voltage-regulated K+ channels may at least partly explain the response. These results are discussed in comparison with findings in intact brain.  相似文献   

14.
The phencyclidine (PCP) derivative, [3H]N-[1-(2-benzo[b]thiophenyl)cyclohexyl]piperidine ([3H]BTCP), was used to label in vivo the dopamine uptake complex in mouse brain. The striatum accumulated the highest level of total and specific binding. Drugs which bind to the dopamine uptake site inhibited [3H]BTCP binding on an order similar to their in vitro affinities for the high-affinity [3H]BTCP site. Drugs which label selectively other monoamine uptake complexes. PCP, or sigma recognition sites were ineffective at doses up to 40 mg/kg. PCP bound to and dissociated from the dopamine uptake complex very rapidly. N-[1-(2-Thienyl)cyclohexyl]pideridine (TCP) and (+)-5-methyl-10,11-dihydro-5H-dibenzo[a,d]cyclohepten-5,10-imine maleate (MK-801) had no effect at any time or at any dose. These results imply that the pharmacological effects of PCP are due to its simultaneous interaction with the dopamine uptake complex and the PCP receptor. Conversely, TCP and MK-801, which have the same behavioral properties as PCP, exert their action only through the interaction with the PCP receptor.  相似文献   

15.
《Life sciences》1993,53(18):PL285-PL290
It has been suggested that sigma receptor antagonists may be useful as antipsychotic drugs. N, N-dipropyl-2-[4-methoxy-3-(2-phenylethoxy)phenyl]-ethylamine monohydrochloride (NE-100) is a novel compound with high affinity for the sigma receptor (IC50 = 4.16 nM), but low affinity (IC50 > 1000 nM) for D1, D2, 5-HT1A, 5-HT2 and phencyclidine (PCP) receptors. The head-weaving behavior induced by either (+)SKF10047 or PCP was dose-dependently antagonized by NE-100 with oral ED50 at 0.27 and 0.12 mg/kg, respectively. NE-100 did not affect dopamine agonists-induced stereotyped behavior and/or hyperactivity. NE-100 failed to induce catalepsy in rats. These findings indicate that NE-100 may have antipsychotic activity without the liability of motor side effects typical of neuroleptics.  相似文献   

16.
One of the most consistent findings in schizophrenia is the decreased expression of the GABA synthesizing enzymes GAD67 and GAD65 in specific interneuron populations. This dysfunction is observed in distributed brain regions including the prefrontal cortex, hippocampus, and cerebellum. In an effort to understand the mechanisms for this GABA deficit, we investigated the effect of the N-methyl-d-aspartate receptor (NMDAR) antagonist phencyclidine (PCP), which elicits schizophrenia-like symptoms in both humans and animal models, in a chronic, low-dose exposure paradigm. Adult rats were given PCP at a dose of 2.58 mg/kg/day i.p. for a month, after which levels of various GABAergic cell mRNAs and other neuromodulators were examined in the cerebellum by qRT-PCR. Administration of PCP decreased the expression of GAD67, GAD65, and the presynaptic GABA transporter GAT-1, and increased GABAA receptor subunits similar to those seen in patients with schizophrenia. Additionally, we found that the mRNA levels of two Golgi cell selective NMDAR subunits, NR2B and NR2D, were decreased in PCP-treated rats. Furthermore, we localized the deficits in GAD67 expression solely to these interneurons. Slice electrophysiological studies showed that spontaneous firing of Golgi cells was reduced by acute exposure to low-dose PCP, suggesting that these neurons are particularly vulnerable to NMDA receptor antagonism. In conclusion, our results demonstrate that chronic exposure to low levels of PCP in rats mimics the GABAergic alterations reported in the cerebellum of patients with schizophrenia (Bullock et al., 2008. Am. J. Psychiatry 165, 1594–1603), further supporting the validity of this animal model.  相似文献   

17.
One of the most consistent findings in schizophrenia is the decreased expression of the GABA synthesizing enzymes GAD67 and GAD65 in specific interneuron populations. This dysfunction is observed in distributed brain regions including the prefrontal cortex, hippocampus, and cerebellum. In an effort to understand the mechanisms for this GABA deficit, we investigated the effect of the N-methyl-d-aspartate receptor (NMDAR) antagonist phencyclidine (PCP), which elicits schizophrenia-like symptoms in both humans and animal models, in a chronic, low-dose exposure paradigm. Adult rats were given PCP at a dose of 2.58 mg/kg/day i.p. for a month, after which levels of various GABAergic cell mRNAs and other neuromodulators were examined in the cerebellum by qRT-PCR. Administration of PCP decreased the expression of GAD67, GAD65, and the presynaptic GABA transporter GAT-1, and increased GABAA receptor subunits similar to those seen in patients with schizophrenia. Additionally, we found that the mRNA levels of two Golgi cell selective NMDAR subunits, NR2B and NR2D, were decreased in PCP-treated rats. Furthermore, we localized the deficits in GAD67 expression solely to these interneurons. Slice electrophysiological studies showed that spontaneous firing of Golgi cells was reduced by acute exposure to low-dose PCP, suggesting that these neurons are particularly vulnerable to NMDA receptor antagonism. In conclusion, our results demonstrate that chronic exposure to low levels of PCP in rats mimics the GABAergic alterations reported in the cerebellum of patients with schizophrenia (Bullock et al., 2008. Am. J. Psychiatry 165, 1594–1603), further supporting the validity of this animal model.  相似文献   

18.
The effects of the enantiomers of (+/-)-CAMP and (+/-)-TAMP [(+/-)-cis- and (+/-)-trans-2-aminomethylcyclopropanecarboxylic acids, respectively], which are cyclopropane analogues of GABA, were tested on GABA(A) and GABA(C) receptors expressed in Xenopus laevis oocytes using two-electrode voltage clamp methods. (+)-CAMP was found to be a potent and full agonist at homooligomeric GABA(C) receptors (K:(D) approximately 40 microM: and I:(max) approximately 100% at rho(1); K:(D) approximately 17 microM: and I:(max) approximately 100% at rho(2)) but a very weak antagonist at alpha(1)beta(2)gamma(2L) GABA(A) receptors. In contrast, (-)-CAMP was a very weak antagonist at both alpha(1)beta(2)gamma(2L) GABA(A) receptors and homooligomeric GABA(C) receptors (IC(50) approximately 900 microM: at rho(1) and approximately 400 microM: at rho(2)). Furthermore, (+)-CAMP appears to be a superior agonist to the widely used GABA(C) receptor partial agonist cis-4-aminocrotonic acid (K:(D) approximately 74 microM: and I:(max) approximately 78% at rho(1); K:(D) approximately 70 microM: and I:(max) approximately 82% at rho(2)). (-)-TAMP was the most potent of the cyclopropane analogues on GABA(C) receptors (K:(D) approximately 9 microM: and I:(max) approximately 40% at rho(1); K:(D) approximately 3 microM: and I:(max) approximately 50-60% at rho(2)), but it was also a moderately potent GABA(A) receptor partial agonist (K:(D) approximately 50-60 microM: and I:(max) approximately 50% at alpha(1)beta(2)gamma(2L) GABA(A) receptors). (+)-TAMP was a less potent partial agonist at GABA(C) receptors (K:(D) approximately 60 microM: and I:(max) approximately 40% at rho(1); K:(D) approximately 30 microM: and I:(max) approximately 60% at rho(2)) and a weak partial agonist at alpha(1)beta(2)gamma(2L) GABA(A) receptors (K:(D) approximately 500 micro: and I:(max) approximately 50%). None of the isomers of (+/-)-CAMP and (+/-)-TAMP displayed any interaction with GABA transport at the concentrations tested. Molecular modeling based on the present results provided new insights into the chiral preferences for either agonism or antagonism at GABA(C) receptors.  相似文献   

19.
The R- and S-enantiomers of 4-amino-3-hydroxybutanoic acid (GABOB) were full agonists at human recombinant rho1 GABA(C) receptors. Their enantioselectivity (R>S) matched that reported for their agonist actions at GABA(B) receptors, but was the opposite to that reported at GABA(A) receptors (S>R). The corresponding methylphosphinic acid analogues proved to be rho1 GABA(C) receptor antagonists with R(+)-CGP44533 being more potent than S(-)-CGP44532, thus showing the opposite enantioselectivity to the agonists R(-)- and S(+)-GABOB. These studies highlight the different stereochemical requirements for the hydroxy group in these analogues at GABA(A), GABA(B) and GABA(C) receptors.  相似文献   

20.
Tritium-labeled (+)-pentazocine ([3H]-1b) of specific activity 26.6 Ci/mmol was synthesized in 3 steps starting with (+)-normetazocine (2) of defined optical purity. [3H]-1b has been characterized as a highly selective ligand for labeling of sigma receptors. Competition data revealed that [3H]-1b could be displaced from guinea pig brain membrane preparations with a number of commonly used sigma receptor ligands. [3H]-1b exhibited saturable, enantioselective binding with a Kd of 5.13 +/- 0.97 nM and a Bmax of 1146 +/- 122 fmol/mg protein. Phencyclidine (PCP) displaced [3H]-1b with low affinity while MK-801 was inactive, thus indicating insignificant activity at the PCP-binding site; apomorphine failed to displace [3H]-1b indicating lack of dopamine receptor cross-reactivity. Since the affinity of [3H]-1b is about 6 times that of the two commonly employed sigma ligands ((+)-3-[3H]PPP and [3H]DTG) and since it is more selective for sigma receptors than the benzomorphan [3H]SKF-10,047, it represents the first example of a highly selective benzomorphan based sigma receptor ligand. [3H]-1b should prove useful for further study of the structure and function of sigma receptors.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号