首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Human plasma haptoglobin (Hp) comprises alpha and beta subunits. The alpha subunit is heterogeneous in size, therefore isolation of Hp and its subunits is particularly difficult. Using Escherichia coli, we show that alpha1, alpha2, beta, and alpha2beta chain was abundantly expressed and primarily present in the inclusion bodies consisting of about 30% of the cell-lysate proteins. Each cloned subunit retained its immunoreactivity as confirmed using antibodies specific to alpha or beta chain. By circular dichroism, the structure of each expressed subunit was disordered as compared to the native Hp. The antioxidant activity was found to be associated with both alpha and beta chains when assessed by Cu(2+)-induced oxidation of low density lipoprotein (LDL). Of remarkable interest, the antioxidant activity of beta chain was extremely potent and markedly greater than that of native Hp (3.5x), alpha chain (10x) and probucol (15x). The latter is a clinically proved potent compound used for antioxidant therapy. The "unrestricted" structure of beta subunit may therefore render its availability for free-radical scavenge, which provides a utility for the future design of a "mini-Hp" in antioxidant therapy. It may also provide a new insight in understanding the mechanism involved in the antioxidant nature of Hp.  相似文献   

2.
cDNAs containing the entire coding regions of the alpha and beta subunits of calmodulin-dependent protein kinase II (CaM kinase II) were isolated from a rat cerebrum cDNA library, ligated into an expression vector under the control of SV40 early promoter and introduced into Chinese hamster ovary (CHO) cells. To investigate the role of the alpha and beta subunits and their functional domains in CaM kinase II activity, the properties of the kinases expressed in the transfected cells were studied. CaM kinase II activity was detected in the transfected cells when the alpha and beta cDNAs were introduced into CHO cells simultaneously. RNA transfer blot and protein immunoblot analyses demonstrated the expression of the mRNAs and proteins of both alpha and beta subunits in the cloned cells. When alpha or beta cDNA was introduced into CHO cells separately, a significant level of the enzyme activity was also expressed, indicating that the alpha and beta subunits exhibited enzyme activity individually. The apparent Km values for ATP and MAP 2 were almost the same for the alpha subunit, beta subunit, alpha beta complex, and brain CaM kinase II. However, there was a slight difference in the affinity for calmodulin between the expressed proteins. The alpha and beta subunits expressed in the same cells polymerized to form alpha beta complex of a size similar to that of brain CaM kinase II. The alpha subunit also polymerized to form an oligomer, which showed almost the same S value as that of alpha beta complex and brain CaM kinase II. In contrast, the beta subunit did not polymerize. The alpha subunit, beta subunit, alpha beta complex, and brain CaM kinase II were autophosphorylated with [gamma-32P]ATP in the presence of Ca2+ and calmodulin, which resulted in the appearance of Ca2+-independent activity. The Ca2+-independent activity was 60-75% of the total activity as measured in the presence of Ca2+ plus calmodulin. To examine the functional relationship of peptide domains of the subunits of CaM kinase II, deleted cDNAs were introduced into CHO cells and the properties of the expressed proteins were studied. In cells transfected with alpha or beta cDNA from which the association domain was deleted, a significant level of kinase activity was expressed. However, the expressed proteins showed hardly any autophosphorylation and the appearance of Ca2+-independent enzyme activity was very low, indicating that the association domain was essential for the autophosphorylation and for the appearance of the Ca2+-independent activity.  相似文献   

3.
Reactive oxygen species-scavenging enzyme Cu/Zn superoxide dismutase (SOD) regulated by peroxisome proliferator-activated receptors (PPARs) plays an important role in vascular responsiveness. However, it remains unknown whether statin restores vascular dysfunction through the activation of reactive oxygen species-scavenging enzymes in vivo. We hypothesized that pitavastatin restores vascular function by modulating oxidative stress through the activation of Cu/ZnSOD and PPAR-gamma in hypercholesterolemia. New Zealand White male rabbits were fed either normal chow or a 1% cholesterol (CHO) diet for 14 wk. After the first 7 wk, the CHO-fed rabbits were further divided into three groups: those fed with CHO feed only (HC), those additionally given pitavastatin, and those additionally given an antioxidant, probucol. The extent of atherosclerosis was assessed by examining aortic stiffness. When compared with the HC group, both the pitavastatin and probucol groups showed improved aortic stiffness by reducing aortic levels of reactive oxidative stress, nitrotyrosine, and collagen, without affecting serum cholesterol or blood pressure levels. Pitavastatin restored both Cu/ZnSOD activity (P < 0.005) and PPAR-gamma expression and activity (P < 0.01) and inhibited NAD(P)H oxidase activity (P < 0.0001) in the aorta, whereas probucol inhibited NAD(P)H oxidase activity more than did pitavastatin (P < 0.0005) without affecting Cu/ZnSOD activity or PPAR-gamma expression and activity. Importantly, Cu/ZnSOD activity was positively correlated with the PPAR-gamma activity in the aorta (P < 0.005), both of which were negatively correlated with aortic stiffness (P < 0.05). Vascular Cu/ZnSOD and PPAR-gamma may play a crucial role in the antiatherogenic effects of pitavastatin in hypercholesterolemia in vivo.  相似文献   

4.
5.
The ability of probucol, a lipid-lowering drug with antioxidant properties, to prevent the Cu2+-induced oxidation of human plasma low density lipoproteins (LDL) was examined as a function of the concentration of probucol in LDL. In the absence of probucol, 3 microM Cu2+ induced half-maximal LDL lipid oxidation, as determined by the formation of thiobarbituric acid reactive substances (TBARS). Oxidation was associated with a loss of apolipoprotein B-100 and the appearance of higher molecular weight forms of the protein. In the presence of 0.6 mol% probucol (relative to phospholipid) and with 3 microM Cu2+, the time required to obtain half-maximal LDL lipid oxidation increased from 130 to 270 min and was explained by an increase in the lag time prior to LDL lipid oxidation. Once rapid oxidation of LDL had begun, the rate of TBARS formation was similar to that for LDL containing no probucol. At a probucol concentration of 4.2 mol%, the antioxidant prevented the oxidation of LDL-lipids. The delay in Cu2+-induced LDL oxidation with probucol corresponded to the time required for free radical-mediated processes to convert probucol to a spiroquinone and a diphenoquinone. These in vitro findings suggest that the potent antioxidant property of probucol is directly related to the amount of drug in the LDL particle and may have relevance to its antiatherosclerotic effects observed in vivo.  相似文献   

6.
Patients with increased haemolytic haemoglobin (Hb) have 10-20-times greater incidence of cardiovascular mortality. The objective of this study was to evaluate the role of Hb peroxidase activity in LDL oxidation. The role of Hb in lipid peroxidation, H(2)O(2) generation and intercellular adhesion molecule-1 (ICAM-1) and vascular cell adhesion molecule-1 (VCAM-1) was assessed using NaN(3), a peroxidase inhibitor, catalase, a H(2)O(2) decomposing enzyme and human umbilical vein endothelial cells (HUVECs), respectively. Hb induced H(2)O(2) production by reacting with LDL, linoleate and cell membrane lipid extracts. Hb-induced LDL oxidation was inhibited by NaN(3) and catalase. Furthermore, Hb stimulated ICAM-1 and VCAM-1 expression, which was inhibited by the antioxidant, probucol. Thus, the present study suggests that the peroxidase activity of Hb produces atherogenic, oxidized LDL and oxidized polyunsaturated fatty acids (PUFAs) in the cell membrane and reactive oxygen species (ROS) formation mediated Hb-induced ICAM-1 and VCAM-1 expression.  相似文献   

7.
The cannabinoid CB1 receptor (CB1R) is a G protein-coupled receptor, which couples to the Gi/o family of heterotrimeric G proteins. The receptor displays both basal and agonist-induced signaling and internalization. Although basal activity of CB1Rs is attributed to constitutive (agonist-independent) receptor activity, studies in neurons suggested a role of postsynaptic endocannabinoid (eCB) release in the persistent activity of presynaptic CB1Rs. To elucidate the role of eCBs in basal CB1R activity, we have investigated the role of diacylglycerol lipase (DAGL) in this process in Chinese hamster ovary (CHO) cells, which are not targeted specifically with eCBs. Agonist-induced G protein activation was determined by detecting dissociation G protein subunits expressed in CHO cells with bioluminescence resonance energy transfer (BRET), after labeling the alpha and beta subunits with Renilla luciferase and enhanced yellow fluorescent protein (EYFP), respectively. Preincubation of the cells with tetrahydrolipstatin (THL), a known inhibitor of DAGLs, caused inhibition of the basal activity of CB1R. Moreover, preincubation of CHO and cultured hippocampal neurons with THL increased the number of CB1Rs on the cell membrane, which reflects its inhibitory action on CB1R internalization in non-simulated cells. In CHO cells co-expressing CB1R and angiotensin AT1 receptors, angiotensin II-induced Go protein activation that was blocked by both a CB1R antagonist and THL. These data indicate that cell-derived eCB mediators have a general role in the basal activity of CB1Rs in non-neural cells and neurons, and that this mechanism can be stimulated by AT1 receptor activation.  相似文献   

8.
We previously established that probucol decreases basal expression of VCAM-1 in the aorta of WHHL rabbits and inhibits the up-regulation of VCAM-1 expression that normally accompanies atherogenesis. To determine whether this effect is shared by other antioxidants in vivo, we now investigated whether a structurally unrelated antioxidant, vitamin E, also inhibits arterial VCAM-1 expression and whether the degree of VCAM-1 inhibition correlates with the reduction of atherosclerosis or the antioxidant protection of LDL. Atherogenesis and VCAM-1 mRNA and protein were determined in four groups of NZW rabbits (n = 6;-8) fed 0.5% cholesterol alone or supplemented with 0.1% vitamin E, a low dose (0.04;-0.075%) of probucol yielding the same degree of antioxidant protection of plasma LDL as vitamin E, or a high dose (0.5%) of probucol, and in normocholesterolemic rabbits. After 81 days, extensive atherosclerosis and a greater than 4-fold up-regulation of VCAM-1 mRNA was seen in rabbits on high cholesterol diet, mostly in the intima. Treatment with vitamin E, high-dose probucol, and low-dose probucol significantly decreased VCAM-1 mRNA by 49.0, 74.9, and 57. 5%, respectively, and reduced atherosclerosis in adjacent segments of the thoracic aorta to a similar degree as reported by previous studies. Immunocytochemistry confirmed that lesions of antioxidant-treated animals also contained less VCAM-1 protein. Neither the degree of VCAM-1 inhibition nor the extent of atherosclerosis correlated with the degree of antioxidant protection of plasma LDL.In summary, treatment with structurally unrelated antioxidants conveyed different degrees of antioxidant protection to plasma LDL but significantly reduced VCAM-1 expression in vivo and inhibited atherogenesis. This is consistent with the assumption that antiatherogenic effects of antioxidants may in part be mediated by interference with oxidation-dependent intracellular signaling.  相似文献   

9.
Antioxidants possess potent ability to regulate gene expression beyond their specific antioxidant activity. Genomic analysis reveals that three phenolic antioxidants, probucol, BO-653, and tBHQ, all of which have a phenoxyl group with one or two tert-butyl groups at the ortho-position, inhibit both the mRNA and protein levels of proteasome alpha-subunits in human endothelial cells. The chemical structure required for the gene regulation was studied by using derivatives of BO-653 and other antioxidants. It was found that the phenoxyl group and tert-butyl group at the ortho-position of the compounds were critical for down-regulation of the proteasome gene. Two antioxidant responsive elements (AREs) were identified in the promoter region of proteasome alpha subunit 3 (PSMA3). Results from promoter truncation analysis revealed that the proximal ARE region was necessary for the down-regulation of the expression of PSMA3. Electrophoretic mobility shift assays revealed that BO-653-mediated induction of DNA-binding to an upstream promoter region of PSMA3 containing the ARE motif was blocked by antibody against c-Jun but not Nrf2. These results indicate that the suppression of the proteasome alpha subunits expression by phenolic antioxidants is strictly dependent on both their chemical structure and the ARE consensus region in the promoter, which may be negatively regulated by AP-1.  相似文献   

10.
This study was designed to evaluate the antioxidant effect of probucol on peroxidation of low-density lipoproteins (LDLs) initiated by oxygenated free radicals (O2*-) and ethanol-derived peroxyl radicals (RO2*) generated by gamma radiolysis. Initial radiolytic yields related to the markers of lipid peroxidation [i.e. decrease in endogenous alpha-tocopherol, formation of thiobarbituric acid-reactive substances (TBARS) and conjugated dienes] were determined as a function of LDL concentration (1.5 and 3 g l(-1), expressed as total LDL) and in the absence or the presence of probucol at different concentrations (2.3 x 10(-6), 3.5 x 10(-6), 9 x 10(-6) and 20.5 x 10(-6) mol l(-1)). Our results showed that probucol was able to decrease not only the yields of TBARS and conjugated dienes but also the levels of these peroxidation products obtained at high doses (2500 Gy) compared to LDLs without probucol. Under our conditions, probucol displayed an optimal antioxidant effect for an initial concentration in LDLs equivalent to 15 probucol molecules per LDL particle, which corresponded to a pharmacologically relevant concentration of probucol. Moreover, our data showed that probucol was unable to react with RO2* and thus did not protect LDL vitamin E from free radical attack. In addition, the scavenging capacity of probucol on O2*- appeared to be very poor, and probucol more likely reacted with LDL intermediate radical products. Finally, a very significant steady-state level of probucol remained in LDLs at high doses (up to 2500 Gy), equivalent to at least 40% of the initial concentration of probucol. This addressed the question of a mechanism for regeneration of probucol in LDLs. Our results as a whole suggested that the antioxidant effect of probucol in vivo could not be explained by its scavenging capacity with regard to RO2*/O2*- free radicals.  相似文献   

11.
Although vitamin C deficiency and scurvy are generally considered as pure nutritional disorders, only a minority of the vitamin C concentration is determined by food intake. In the presence of transition metals (iron and copper), the antiscorbutic factor shifts from an antioxidant to a pro-oxidant function. Haptoglobin (Hp) is a plasma α-2 glycoprotein characterized by 3 common phenotypes (Hp 1-1, Hp 2-1 and Hp 2-2). Its free hemoglobin (Hb)-binding capacity prevents Hb-driven oxidative damage. When the antioxidant capacity of Hp is insufficient, its role is taken over by hemopexin (heme-binding protein) and by vitamin C (free radical scavenger). The Hp 2-2 phenotype has a lower capacity to inhibit oxidation and vitamin C depletion. In this article, two consequences of this major finding are tackled. The Hp polymorphism is an important non-nutritional modifying factor in the pathogenesis of vitamin C deficiency and scurvy, which may explain the success of long-range human migration by the natural selection of some populations characterized by high Hp 1 allele frequencies. Moreover, we propose tailoring the recommended dietary allowance (RDA) values of vitamin C, taking into consideration the Hp phenotype dependency.  相似文献   

12.
Probucol is used commercially as an antiatherogenic drug. Bisphenol is formed in vivo as a metabolite of probucol. The structure of bisphenol suggests the antioxidant function but its capacity has not been studied in detail. In the present study, dynamics of the antioxidant action of bisphenol were studied in several model systems and compared with those of probucol and alpha-tocopherol. The reactivity toward radicals and antioxidant activity of bisphenol per se were found to be much smaller than those of alpha-tocopherol or N,N'-diphenyl-p-phenylenediamine (DPPD) but stronger than probucol. However, bisphenol spared alpha-tocopherol in the oxidation of phosphatidylcholine liposomal membranes and it spared DPPD and acted as a synergist against the oxidant of methyl linoleate in solution. These results imply that bisphenol may act as a potent antioxidant in combination with other antioxidants.  相似文献   

13.
LDL oxidation plays a pivotal role in atherosclerosis. Excellular hemoglobin (Hb) is a trigger of LDL oxidation. By virtue of its ability to bind hemoglobin, haptoglobin (Hp) serves as an antioxidant. Oxidation of LDL by hemoglobin was analyzed to occur by heme displacement from methemoglobin lodged in LDL. The LDL-associated heme is disintegrated, and iron inserted this way in LDL triggers formation of lipid peroxides. The genetic polymorphism of haptoglobin was found to be a risk factor in the pathogenesis of atherosclerosis. Individuals with Hp2-2 have more vascular incidences as compared to those with Hp1-1. In the current study, oxidation of LDL by metHb was carried out at physiological pH without addition of external peroxides. Hb-derived oxidation of lipids and protein was found to be practically inhibited by Hp1-1 but only partially by Hp2-2. Heme transfer from metHb to LDL was almost completely omitted by Hp1-1 and only partially by Hp2-2. We concluded that partial heme transfer from the Hb-Hp2-2 complex to LDL is the reason for oxidation of LDL lipids as well as protein. These findings provide a molecular basis for Hp2-2 atherogenic properties.  相似文献   

14.
15.
The antioxidant activities of probucol were measured in the oxidations of methyl linoleate in homogeneous solution and soybean phosphatidylcholine liposomal membranes and also of low-density lipoproteins. When an excess amount of probucol was reacted with galvinoxyl, the EPR spectrum of galvinoxyl disappeared and a new triplet EPR signal was found: g = 2.0058 and aH(2H) = 0.14 mT. The identical EPR spectrum was observed when probucol was reacted with tert-butoxyl radical generated from di-tert-butylperoxy oxalate. This EPR signal disappeared rapidly when reacted with either alpha-tocopherol or 6-O-palmitoyl-ascorbic acid. Probucol suppressed the free-radical-mediated oxidations of methyl linoleate in hexane and in acetonitrile, in a dose-dependent manner. Its antioxidant activity was 17.5-fold less than that of alpha-tocopherol in hexane. Probucol incorporated into soybean phosphatidylcholine liposomes suppressed its oxidation. The antioxidant activity of probucol was less than that of alpha-tocopherol, but the difference between the two antioxidant activities was smaller in the membranes than in homogeneous solution. Probucol also suppressed the oxidation of low-density lipoprotein. Interestingly, probucol suppressed the oxidation of LDL as efficiently as alpha-tocopherol, implying that physical factors as well as chemical reactivity are important in determining the overall activity of antioxidant in low-density lipoprotein.  相似文献   

16.
Similar to blood types, human plasma haptoglobin (Hp) is classified into three phenotypes: Hp 1-1, 2-1 and 2-2. They are genetically inherited from two alleles Hp 1 and Hp 2 (represented in bold), but only the Hp 1-1 phenotype is found in almost all animal species. The Hp 2-2 protein consists of complicated large polymers cross-linked by alpha2-beta subunits or (alpha2-beta)n (where n>or=3, up to 12 or more), and is associated with the risk of the development of diabetic, cardiovascular and inflammatory diseases. In the present study, we found that deer plasma Hp mimics human Hp 2, containing a tandem repeat over the alpha-chain based on our cloned cDNA sequence. Interestingly, the isolated deer Hp is homogeneous and tetrameric, i.e. (alpha-beta)4, although the locations of -SH groups (responsible for the formation of polymers) are exactly identical to that of human. Denaturation of deer Hp using 6 m urea under reducing conditions (143 mmbeta-mercaptoethanol), followed by renaturation, sustained the formation of (alpha-beta)4, suggesting that the Hp tetramers are not randomly assembled. Interestingly, an alpha-chain monoclonal antibody (W1), known to recognize both human and deer alpha-chains, only binds to intact human Hp polymers, but not to deer Hp tetramers. This implies that the epitope of the deer alpha-chain is no longer exposed on the surface when Hp tetramers are formed. We propose that steric hindrance plays a major role in determining the polymeric formation in human and deer polymers. Phylogenetic and immunochemical analyses revealed that the Hp 2 allele of deer might have arisen at least 25 million years ago. A mechanism involved in forming Hp tetramers is proposed and discussed, and the possibility is raised that the evolved tetrameric structure of deer Hp might confer a physiological advantage.  相似文献   

17.
We recently reported having identified of the ligand for an orphan G-protein-coupled receptor, hOT7T175, as the gene product (68-121)-amide of the metastasis suppressor gene KiSS-1. We further showed that the ligand, which we named "metastin," inhibits chemotaxis and invasion of Chinese hamster ovary (CHO) cells transfected with hOT7T175 cDNA (CHO/h175) in vitro, and pulmonary metastasis of hOT7T175-transfected B16-BL6 melanomas in vivo. In the present study, we investigated the activity of metastin in CHO/h175 cells in greater detail. Metastin significantly suppressed motility in a chemotaxis assay and wound healing assay at 10-100 nM order concentrations. Two N-terminally truncated peptides, metastin(40-54) and metastin(45-54) inhibited the migration of CHO/h175 cells as potently as metastin itself. Metastin also inhibited the spreading, monolayer growth and colony formation in agar (0.8%) of CHO/h175 cells at 10-100 nM concentrations. These results indicate that metastin is a potent inhibitor of cell motility, leading to suppression of cell growth and antimetastatic activity, and suggest that low molecular chemical compounds could replace its activity as a novel antimetastatic agent.  相似文献   

18.
A new series of compounds belonging to 3-substituted amino-1-aryl-6-hydroxy-hex-2-ene-1-ones (4-12a-e) have been synthesized and evaluated for antioxidant and hypolipidemic activities. Amongst all the synthesized compounds, seven compounds, namely 5b, 5d, 6e, 8a, 8b, 10b and 11a, exhibit better antioxidant activity than probucol. Two compounds, 5d and 10b, have been evaluated in detail for antioxidant and hypolipidemic activities and show comparable activity profile to that of probucol and guggulipid. From the present study it may be postulated that the mechanism of action of these compounds could be through activation of lecithin cholesterol acyltransferase (LCAT), liver lipolytic activity, increased faecal bile acid secretion and inhibition of hepatic cholesterol biosynthesis.  相似文献   

19.
A variant of a low density lipoprotein receptor-negative Chinese hamster ovary (CHO) cell mutant was isolated using a nutritional selection called MeLoCo. The variant, designated met-18b-2, internalized and metabolized mevalonate at rates 10-40 times greater than the progenitor cells from which they were derived. The extent of incorporation of radioactivity from [3H]mevalonate into steroidal and nonsteroidal mevalonate derivatives, including modified proteins, was much greater in met-18b-2 cells than in their progenitors. Much of the internalized [3H]mevalonate was converted to nonpolar lipids. Unlike wild type CHO cells or the receptor-negative progenitors, met-18b-2 cells were killed by high concentrations of mevalonate (greater than 6 mM) in the culture medium. Regulation of 3-hydroxy-3-methylglutaryl-CoA reductase activity and cholesterol esterification was dramatically more sensitive to mevalonate in met-18b-2 cells than in progenitor cells. In cell extracts, both the rates of conversion of [3H]mevalonate to cholesterol and mevalonate kinase activities were similar for met-18b-2 and progenitor cells. In contrast to progenitor cells, met-18b-2 cells internalized [3H]mevalonate with high capacity (Km approximately 0.3 mM) kinetics. The increased uptake of [3H]mevalonate was temperature dependent and highly specific. These results suggest that met-18b-2 cells express a mevalonate transport activity that is not normally expressed by CHO cells. This activity may be due to a specific mevalonate transporter that is differentially expressed in specialized tissues. Because intracellular mevalonate in met-18b-2 cells can be labeled to high specific activity, these cells should prove very useful in further characterizing the structures of mevalonate derivatives and their metabolism.  相似文献   

20.
Chain-breaking antioxidants such as butylated hydroxytoluene, alpha-tocopherol, and probucol have been shown to decrease markedly the oxidative modification of low density lipoprotein (LDL). Their mechanism of action appears to involve scavenging of LDL-lipid peroxyl radicals. The purpose of this study was to investigate the occurrence of radical reactions produced during oxidation of LDL and LDL-containing probucol initiated by lipoxygenase or copper. In addition, we have investigated the possibility of a synergistic interaction between ascorbate and probucol in inhibiting the oxidation of LDL. Incubation of LDL-containing probucol and lipoxygenase produced a composite electron spin resonance (ESR) spectrum due to the endogenous alpha-tocopheroxyl radical and probucol-derived phenoxyl radical. The spectral assignment was further verified by chemical oxidation of alpha-tocopherol and probucol. In the presence of ascorbic acid, these radicals in the LDL particle were reduced to their parent compounds with concomitant formation of the ascorbate radical. In both the peroxidation of linoleic acid and the copper-initiated peroxidation of LDL, the antioxidant activity of probucol was significantly increased by low (3-6 microM) concentrations of ascorbate. The probucol-dependent inhibition of LDL oxidation was enhanced in the presence of ascorbic acid. We conclude that the reaction between the phenoxyl radical of probucol and ascorbate results in a synergistic enhancement of the antioxidant capacity of these two compounds and speculate that such reactions could play a role in maintaining the antioxidant status of LDL during oxidative stress in vivo.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号