首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Pili have been observed on the surface of several gram-positive bacteria, including Streptococcus pneumoniae. The S. pneumoniae strain TIGR4 pilus is composed of three structural subunit proteins encoded in the rlrA pathogenicity islet, RrgA, RrgB, and RrgC. RrgB comprises the pilus backbone, RrgA is observed at intervals along surface pili, while RrgC is found in a loosely defined relationship with RrgA. We investigated the incorporation of each subunit into pili and the reliance of such placement on each of the other subunits. Both accessory subunits RrgA and RrgC are present in similar quantities in pili of all sizes. However, neither protein is required for the polymerization of RrgB, suggesting a nonessential role for RrgA and RrgC in the initiation of pilus assembly. Additionally, the rlrA islet encodes three sortases, SrtC-1, SrtC-2, and SrtC-3 (formerly SrtB, SrtC, and SrtD), which are divergent in sequence from the housekeeping sortase, SrtA. We determined the contributions of these four sortases to pilus assembly and found that SrtA is dispensable for pilus assembly and localization to the cell wall. Instead, SrtC-1, SrtC-2, and SrtC-3 are responsible for pilus assembly and exhibit functional redundancy with respect to backbone assembly and cell wall localization. A level of specificity and coordination among the class C sortases was revealed by the finding that SrtC-1 and SrtC-3 are required for the incorporation of the accessory subunits and by showing a deleterious effect on pilus assembly upon alteration of the cell wall sorting signals of the accessory subunit proteins.  相似文献   

2.
The respiratory tract pathogen Streptococcus pneumoniae is a primary cause of morbidity and mortality worldwide. Pili enhance initial adhesion as well as the capacity of pneumococci to cause pneumonia and bacteremia. Pilus-associated sortases (SrtB, SrtC, and SrtD) are involved in the biogenesis of pneumococcal pili, composed of repeating units of RrgB that create the stalk to which the RrgA adhesin and the preferential pilus tip subunit RrgC are covalently associated. Using single sortase-expressing strains, we demonstrate that both pilin-polymerizing sortases SrtB and SrtC can covalently link pili to the peptidoglycan cell wall, a property shared with the non-pilus-polymerizing enzyme SrtD and the housekeeping sortase SrtA. Comparative analysis of the crystal structures of S. pneumoniae SrtC and SrtB revealed structural differences explaining the incapacity of SrtC, but not of SrtB, to incorporate RrgC into the pilus. Accordingly, site-directed mutagenesis of Thr160 in SrtB to an arginine as in SrtC (Arg160) partially converted its substrate specificity into that of SrtC. Solving two crystal structures for SrtC suggests that an opening of a flexible lid and a concomitant cysteine rotation are important for catalysis and the activation of the catalytic cysteine of pilus-associated sortases.  相似文献   

3.
Pili are surface-exposed virulence factors involved in the adhesion of bacteria to host cells. The human pathogen Streptococcus pneumoniae expresses a pilus composed of three structural proteins, RrgA, RrgB, and RrgC, and requires the action of three transpeptidase enzymes, sortases SrtC-1, SrtC-2, and SrtC-3, to covalently associate the Rrg pilins. Using a recombinant protein expression platform, we have previously shown the requirement of SrtC-1 in RrgB fiber formation and the association of RrgB with RrgC. To gain insights into the substrate specificities of the two other sortases, which remain controversial, we have exploited the same robust strategy by testing various combinations of pilins and sortases coexpressed in Escherichia coli. We demonstrate that SrtC-2 catalyzes the formation of both RrgA-RrgB and RrgB-RrgC complexes. The deletion and swapping of the RrgA-YPRTG and RrgB-IPQTG sorting motifs indicate that SrtC-2 preferentially recognizes RrgA and attaches it to the pilin motif lysine 183 of RrgB. Finally, SrtC-2 is also able to catalyze the multimerization of RrgA through the C-terminal D4 domains. Similar experiments have been performed with SrtC-3, which catalyzes the formation of RrgB-RrgC and RrgB-RrgA complexes. Altogether, these results provide evidence of the molecular mechanisms of association of RrgA and RrgC with the RrgB fiber shaft by SrtC-2 and SrtC-3 and lead to a revised model of the pneumococcal pilus architecture accounting for the respective contribution of each sortase.  相似文献   

4.
RrgA is a pilus-associated adhesin in Streptococcus pneumoniae   总被引:2,自引:0,他引:2  
Adherence to host cells is important in microbial colonization of a mucosal surface, and Streptococcus pneumoniae adherence was significantly enhanced by expression of an extracellular pilus composed of three subunits, RrgA, RrgB and RrgC. We sought to determine which subunit(s) confers adherence. Bacteria deficient in RrgA are significantly less adherent than wild-type organisms, while overexpression of RrgA enhances adherence. Recombinant monomeric RrgA binds to respiratory cells, as does RrgC with less affinity, and pre-incubation of epithelial cells with RrgA reduces adherence of wild-type piliated pneumococci. Non-adherent RrgA-negative, RrgB- and RrgC-positive organisms produce pili, suggesting that pilus-mediated adherence is due to expression of RrgA, rather than the pilus backbone itself. In contrast, RrgA-positive strains with disrupted rrgB and rrgC genes exhibit wild-type adherence despite failure to produce pili by Western blot or immunoelectron microscopy. The density of bacteria colonizing the upper respiratory tract of mice inoculated with piliated RrgA-negative pneumococci was significantly less compared with wild-type; in contrast, non-piliated pneumococci expressing non-polymeric RrgA had similar numbers of bacteria in the nasopharynx as piliated wild-type bacteria. These data suggest that RrgA is central in pilus-mediated adherence and disease, even in the absence of polymeric pilus production.  相似文献   

5.
Although the pili of Gram‐positive bacteria are putative virulence factors, little is known about their structure. Here we describe the molecular architecture of pilus‐1 of Streptococcus pneumoniae, which is a major cause of morbidity and mortality worldwide. One major (RrgB) and two minor components (RrgA and RrgC) assemble into the pilus. Results from TEM and scanning transmission EM show that the native pili are approximately 6 nm wide, flexible filaments that can be over 1 μm long. They are formed by a single string of RrgB monomers and have a polarity defined by nose‐like protrusions. These protrusions correlate to the shape of monomeric RrgB–His, which like RrgA–His and RrgC–His has an elongated, multi‐domain structure. RrgA and RrgC are only present at the opposite ends of the pilus shaft, compatible with their putative roles as adhesin and anchor to the cell wall surface, respectively. Our structural analyses provide the first direct experimental evidence that the native S. pneumoniae pilus shaft is composed exclusively of covalently linked monomeric RrgB subunits oriented head‐to‐tail.  相似文献   

6.
7.
Pili have been identified on the cell surface of Streptococcus pneumoniae, a major cause of morbidity and mortality worldwide. In contrast to Gram-negative bacteria, little is known about the structure of native pili in Gram-positive species and their role in pathogenicity. Triple immunoelectron microscopy of the elongated structure showed that purified pili contained RrgB as the major compound, followed by clustered RrgA and individual RrgC molecules on the pilus surface. The arrangement of gold particles displayed a uniform distribution of anti-RrgB antibodies along the whole pilus, forming a backbone structure. Antibodies against RrgA were found along the filament as particulate aggregates of 2-3 units, often co-localised with single RrgC subunits. Structural analysis using cryo electron microscopy and data obtained from freeze drying/metal shadowing technique showed that pili are oligomeric appendages formed by at least two protofilaments arranged in a coiled-coil, compact superstructure of various diameters. Using extracellular matrix proteins in an enzyme-linked immunosorbent assay, ancillary RrgA was identified as the major adhesin of the pilus. Combining the structural and functional data, a model emerges where the pilus RrgB backbone serves as a carrier for surface located adhesive clusters of RrgA that facilitates the interaction with the host.  相似文献   

8.
Streptococcus pneumoniae, like many other Gram-positive bacteria, assembles long filamentous pili on their surface through which they adhere to host cells. Pneumococcal pili are formed by a backbone, consisting of the repetition of the major component RrgB, and two accessory proteins (RrgA and RrgC). Here we reconstruct by transmission electron microscopy and single particle image reconstruction method the three dimensional arrangement of two neighbouring RrgB molecules, which represent the minimal repetitive structural domain of the native pilus. The crystal structure of the D2-D4 domains of RrgB was solved at 1.6 Å resolution. Rigid-body fitting of the X-ray coordinates into the electron density map enabled us to define the arrangement of the backbone subunits into the S. pneumoniae native pilus. The quantitative fitting provide evidence that the pneumococcal pilus consists uniquely of RrgB monomers assembled in a head-to-tail organization. The presence of short intra-subunit linker regions connecting neighbouring domains provides the molecular basis for the intrinsic pilus flexibility.  相似文献   

9.
Many surface proteins in Gram-positive bacteria are covalently linked to the cell wall through a transpeptidation reaction catalysed by the enzyme sortase. Corynebacterium diphtheriae encodes six sortases, five of which are devoted to the assembly of three distinct types of pilus fibres--SrtA for the SpaA-type pilus, SrtB/SrtC for the SpaD-type pilus, and SrtD/SrtE for the SpaH-type pilus. We demonstrate here the function of SrtF, the so-called housekeeping sortase, in the cell wall anchoring of pili. We show that a multiple deletion mutant strain expressing only SrtA secretes a large portion of SpaA polymers into the culture medium, with concomitant decrease in the cell wall-linked pili. The same phenotype is observed with the mutant that is missing SrtF alone. By contrast, a strain that expresses only SrtF displays surface-linked pilins but no polymers. Therefore, SrtF can catalyse the cell wall anchoring of pilin monomers as well as pili, but it does not polymerize pilins. We show that SrtA and SrtF together generate wild-type levels of the SpaA-type pilus on the bacterial surface. Furthermore, by regulating the expression of SpaA in the cell, we demonstrate that the SrtF function becomes critical when the SpaA level is sufficiently high. Together, these findings provide key evidence for a two-stage model of pilus assembly: pilins are first polymerized by a pilus-specific sortase, and the resulting fibre is then attached to the cell wall by either the cognate sortase or the housekeeping sortase.  相似文献   

10.
Pili are surface-attached, fibrous virulence factors that play key roles in the pathogenesis process of a number of bacterial agents. Streptococcus pneumoniae is a causative agent of pneumonia and meningitis, and the appearance of drug-resistance organisms has made its treatment challenging, especially in developing countries. Pneumococcus-expressed pili are composed of three structural proteins: RrgB, which forms the polymerized backbone, RrgA, the tip-associated adhesin, and RrgC, which presumably associates the pilus with the bacterial cell wall. Despite the fact that the structures of both RrgA and RrgB were known previously, structural information for RrgC was still lacking, impeding the analysis of a complete model of pilus architecture. Here, we report the structure of RrgC to 1.85 Å and reveal that it is a three-domain molecule stabilized by two intradomain isopeptide bonds. RrgC does not depend on pilus-specific sortases to become attached to the cell wall; instead, it binds the preformed pilus to the peptidoglycan by employing the catalytic activity of SrtA. A comprehensive model of the type 1 pilus from S. pneumoniae is also presented.  相似文献   

11.
Different surface organelles contribute to specific interactions of a pathogen with host tissues or infectious partners. Multiple pilus gene clusters potentially encoding different surface structures have been identified in several gram-positive bacterial genomes sequenced to date, including actinomycetales, clostridia, corynebacteria, and streptococci. Corynebacterium diphtheriae has been shown to assemble a pilus structure, with sortase SrtA essential for the assembly of a major subunit SpaA and two minor proteins, SpaB and SpaC. We report here the characterization of a second pilus consisting of SpaD, SpaE, and SpaF, of which SpaD and SpaE form the pilus shaft and SpaF may be located at the pilus tip. The structure of the SpaDEF pilus contains no SpaABC pilins as detected by immunoelectron microscopy. Neither deletion of spaA nor sortase srtA abolishes SpaDEF pilus formation. The assembly of the SpaDEF pilus requires specific sortases located within the SpaDEF pilus gene cluster. Although either sortase SrtB or SrtC is sufficient to polymerize SpaDF, the incorporation of SpaE into the SpaD pili requires sortase SrtB. In addition, an alanine in place of the lysine of the SpaD pilin motif abrogates pilus polymerization. Thus, SpaD, SpaE, and SpaF constitute a different pilus structure that is independently assembled and morphologically distinct from the SpaABC pili and possibly other pili of C. diphtheriae.  相似文献   

12.
Pili of Gram-negative pathogens are formed from pilin precursor molecules by non-covalent association within the outer membrane envelope. Gram-positive microbes employ the cell wall peptidoglycan as a surface organelle for the covalent attachment of proteins, however, an assembly pathway for pili has not yet been revealed. We show here that pili of Corynebacterium diphtheriae are composed of three pilin subunits, SpaA, SpaB and SpaC. SpaA, the major pilin protein, is distributed uniformly along the pilus shaft, whereas SpaB is observed at regular intervals and SpaC seems positioned at the pilus tip. Assembled pili are released from the bacterial surface by treatment with murein hydrolase, suggesting that the pilus fibres may be anchored to the cell wall envelope. All three pilin subunit proteins are synthesized as precursors carrying N-terminal signal peptides and C-terminal sorting signals. Some, but not all, of the six sortase genes encoded in the genome of C. diphtheriae are required for precursor processing, pilus assembly or cell wall envelope attachment. Pilus assembly is proposed to occur by a mechanism of ordered cross-linking, whereby pilin-specific sortase enzymes cleave precursor proteins at sorting signals and involve the side chain amino groups of pilin motif sequences to generate links between pilin subunits. This covalent tethering of adjacent pilin subunits appears to have evolved in many Gram-positive pathogens that encode sortase and pilin subunit genes with sorting signals and pilin motifs.  相似文献   

13.
RrgB is the major pilin which forms the pneumococcal pilus backbone. We report the high-resolution crystal structure of the full-length form of RrgB containing the IPQTG sorting motif. The RrgB fold is organized into four distinct domains, D1-D4, each of which is stabilized by an isopeptide bond. Crystal packing revealed a head-to-tail organization involving the interaction of the IPQTG motif into the D1 domain of two successive RrgB monomers. This fibrillar assembly, which fits into the electron microscopy density map of the native pilus, probably induces the formation of the D1 isopeptide bond as observed for the first time in the present study, since neither in published structures nor in soluble RrgB produced in Escherichia coli or in Streptococcus pneumoniae is the D1 bond present. Experiments performed in live bacteria confirmed that the intermolecular bond linking the RrgB subunits takes place between the IPQTG motif of one RrgB subunit and the Lys183 pilin motif residue of an adjacent RrgB subunit. In addition, we present data indicating that the D1 isopeptide bond is involved in RrgB stabilization. In conclusion, the crystal RrgB fibre is a compelling model for deciphering the molecular details required to generate the pneumococcal pilus.  相似文献   

14.
Corynebacterium diphtheriae SpaA pili are composed of three pilin subunits, SpaA, SpaB and SpaC. SpaA, the major pilin protein, is distributed uniformly along the pilus shaft, whereas SpaB is observed at regular intervals, and SpaC seems to be positioned at the pilus tip. Pilus assembly in C. diphtheriae requires the pilin motif and the C-terminal sorting signal of SpaA, and is proposed to occur by a mechanism of ordered cross-linking, whereby pilin-specific sortase enzymes cleave precursor proteins at sorting signals and involve the side-chain amino groups of pilin motif sequences to generate covalent linkages between pilin subunits. We show here that two elements of SpaA pilin precursor, the pilin motif and the sorting signal, are together sufficient to promote the polymerization of an otherwise secreted protein by a process requiring the function of the sortase A gene (srtA). Five other sortase genes are dispensable for SpaA pilus assembly. Further, the incorporation of SpaB into SpaA pili requires a glutamic acid residue within the E box motif of SpaA, a feature that is found to be conserved in other Gram-positive pathogens that encode sortase and pilin subunit genes with sorting signals and pilin motifs. When the main fimbrial subunit of Actinomyces naeslundii type I fimbriae, FimA, is expressed in corynebacteria, C. diphtheriae strain NCTC13129 polymerized FimA to form short fibres. Although C. diphtheriae does not depend on other actinomycetal genes for FimA polymerization, this process involves the pilin motif and the sorting signal of FimA as well as corynebacterial sortase D (SrtD). Thus, pilus assembly in Gram-positive bacteria seems to occur by a universal mechanism of ordered cross-linking of precursor proteins, the multiple conserved features of which are recognized by designated sortase enzymes.  相似文献   

15.
Gram-positive pili are composed of covalently bound pilin subunits whose assembly is mediated via a pilus-specific sortase(s). Major subunits constitute the pilus backbone and are therefore essential for pilus formation. Minor subunits are also incorporated into the pilus, but they are considered to be dispensable for backbone formation. The srtG cluster is one of the putative pilus gene clusters identified in the major swine pathogen Streptococcus suis. It consists of one sortase gene (srtG) and two putative pilin subunit genes (sgp1 and sgp2). In this study, by constructing mutants for each of the genes in the cluster and by both immunoblotting and immunogold electron microscopic analysis with antibodies against Sgp1 and Sgp2, we found that the srtG cluster mediates the expression of pilus-like structures in S. suis strain 89/1591. In this pilus, Sgp1 forms the backbone, whereas Sgp2 is incorporated as the minor subunit. In accordance with the current model of pilus assembly by Gram-positive organisms, the major subunit Sgp1 was indispensable for backbone formation and the cognate sortase SrtG mediated the polymerization of both subunits. However, unlike other well-characterized Gram-positive bacterial pili, the minor subunit Sgp2 was required for polymerization of the major subunit Sgp1. Because Sgp2 homologues are encoded in several other Gram-positive bacterial pilus gene clusters, in some types of pili, minor pilin subunits may contribute to backbone formation by a novel mechanism.  相似文献   

16.
The important human pathogen Streptococcus pyogenes (group A streptococcus GAS), requires several surface proteins to interact with its human host. Many of these are covalently linked by a sortase enzyme to the cell wall via a C-terminal LPXTG motif. This motif is followed by a hydrophobic region and charged C terminus, which are thought to retard the protein in the cell membrane to facilitate recognition by the membrane-localized sortase. Previously, we identified two sortase enzymes in GAS. SrtA is found in all GAS strains and anchors most proteins containing LPXTG, while SrtB is present only in some strains and anchors a subset of LPXTG-containing proteins. We now report the presence of a third sortase in most strains of GAS, SrtC. We show that SrtC mediates attachment of a protein with a QVPTGV motif preceding a hydrophobic region and charged tail. We also demonstrate that the QVPTGV sequence is a substrate for anchoring of this protein by SrtC. Furthermore, replacing this motif with LPSTGE, found in the SrtA-anchored M protein of GAS, leads to SrtA-dependent secretion of the protein but does not lead to its anchoring by SrtA. We conclude that srtC encodes a novel sortase that anchors a protein containing a QVPTGV motif to the surface of GAS.  相似文献   

17.
The core PI-2b pilus present in “hypervirulent” ST-17 Streptococcus agalactiae strains consists of three pilin subunits (Spb1, Ap1 and Ap2) assembled by sortase SrtC1 and cell-wall anchored by Srt2. Spb1 was shown to be the major pilin and Ap2 the anchor pilin. Ap1 is a putative adhesin. Two additional genes, orf and lep, are part of this operon. The contribution of Lep and Ap1 to the biogenesis of the PI-2b pilus was investigated. Concerning the role of PI-2b, we found that higher PI-2b expression resulted in higher adherence to human brain endothelial cells and higher phagocytosis by human THP1 macrophages.  相似文献   

18.
The assembly of pili on the cell wall of Gram-positive bacteria requires transpeptidase enzymes called sortases. In Streptococcus agalactiae, the PI-1 pilus island of strain 2603V/R encodes two pilus-specific sortases (SrtC1 and SrtC2) and three pilins (GBS80, GBS52 and GBS104). Although either pilus-specific sortase is sufficient for the polymerization of the major pilin, GBS80, incorporation of the minor pilins GBS52 and GBS104 into the pilus structure requires SrtC1 and SrtC2, respectively. The S. agalactiae housekeeping sortase, SrtA, whose gene is present at a different location and does not catalyze pilus polymerization, was shown to be involved in cell wall anchoring of pilus polymers. To understand the structural basis of sortases involved in such diverse functions, we determined the crystal structures of S. agalactiae SrtC1 and SrtA. Both enzymes are made of an eight-stranded beta-barrel core with variations in their active site architecture. SrtA exhibits a catalytic triad arrangement similar to that in Streptococcus pyogenes SrtA but different from that in Staphylococcus aureus SrtA. In contrast, the SrtC1 enzyme contains an N-terminal helical domain and a 'lid' in its putative active site, which is similar to that seen in Streptococcus pneumoniae pilus-specific sortases, although with subtle differences in positioning and composition. To understand the effect of such differences on substrate recognition, we have also determined the crystal structure of a SrtC1 mutant, in which the conserved DP(W/F/Y) motif was replaced with the sorting signal motif of GBS80, IPNTG. By comparing the structures of WT wild type SrtA and SrtC1 and the 'lid' mutant of SrtC1, we propose that structural elements within the active site and the lid may be important for defining the role of specific sortase in pili biogenesis.  相似文献   

19.
Streptococcus pneumoniae expresses on its surface adhesive pili, involved in bacterial attachment to epithelial cells and virulence. The pneumococcal pilus is composed of three proteins, RrgA, RrgB, and RrgC, each stabilized by intramolecular isopeptide bonds and covalently polymerized by means of intermolecular isopeptide bonds to form an extended fiber. RrgB is the pilus scaffold subunit and is protective in vivo in mouse models of sepsis and pneumonia, thus representing a potential vaccine candidate. The crystal structure of a major RrgB C-terminal portion featured an organization into three independently folded protein domains (D2-D4), whereas the N-terminal D1 domain (D1) remained unsolved. We have tested the four single recombinant RrgB domains in active and passive immunization studies and show that D1 is the most effective, providing a level of protection comparable with that of the full-length protein. To elucidate the structural features of D1, we solved the solution structure of the recombinant domain by NMR spectroscopy. The spectra analysis revealed that D1 has many flexible regions, does not contain any intramolecular isopeptide bond, and shares with the other domains an Ig-like fold. In addition, we demonstrated, by site-directed mutagenesis and complementation in S. pneumoniae, that the D1 domain contains the Lys residue (Lys-183) involved in the formation of the intermolecular isopeptide bonds and pilus polymerization. Finally, we present a model of the RrgB protein architecture along with the mapping of two surface-exposed linear epitopes recognized by protective antisera.  相似文献   

20.
Vegetative forms of Bacillus cereus are reported to form pili, thin protein filaments that protrude up to 1 mum from the bacterial surface. Pili are assembled from two precursor proteins, BcpA and BcpB, in a manner requiring a pilus-associated sortase enzyme (SrtD). Pili are also formed on the surface of Bacillus anthracis expressing bcpA-srtD-bcpB. BcpA is distributed throughout the entire pilus, whereas BcpB appears positioned at its tip. In agreement with the hypothesis for pilus assembly in Gram-positive bacteria, BcpA encompasses the YPK pilin motif and the LPXTG sorting signal, each of which is absolutely required for the incorporation of BcpA and BcpB into pili. In contrast to BcpB, which relies on the presence of BcpA for incorporation into pili, BcpA fibre assembly occurs even in the absence of BcpB. B. anthracis sortase A (srtA), but not sortase B (srtB) or C (srtC), is required for proper anchoring of pili to the bacterial envelope, suggesting that BcpA/BcpB pili are linked to peptidoglycan cross-bridges.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号